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A B S T R A C T

Background: An increased number of podocyte-derived
extracellular vesicles (pEVs) may reflect podocyte injury in
renal disease. Elevated glomerular pressure and other
insults may injure podocytes, yet it remains unclear whether
the numbers of pEVs are altered in hypertensive patients.
We tested the hypothesis that urinary pEV levels would be
elevated in patients with renovascular hypertension (RVH)
compared with essential hypertension (EH) or healthy volun-
teers (HVs).

Methods: We prospectively enrolled patients with EH (n = 30)
or RVH (n = 31) to study renal blood flow (RBF) and cortical
perfusion using multidetector computed tomography under
controlled condition (regulated sodium intake and renin—
angiotensin blockade). After isolation from urine samples, pEVs
(nephrin and podocalyxin positive) were characterized by flow
cytometry. Fourteen RVH patients were studied again 3 months
after stenting or continued medical therapy. HVs (n ¼ 15)
served as controls.
Results: The fraction of pEV among urinary EVs was elevated
in RVH compared with HVs and EH (11.4 6 6.4, 6.8 6 3.4 and
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|6.3 6 3.7%, respectively; P < 0.001) and remained unchanged

after 3 additional months of therapy and after controlling for
clinical parameters. However, eGFR- and age-adjusted pEV lev-
els did not correlate with any clinical or renal parameters.
Conclusions: In hypertensive patients under controlled condi-
tions, urinary pEV levels are elevated in patients with RVH and
low eGFR compared with patients with EH and relatively pre-
served renal function. These pEVs may reflect podocyte injury
secondary to kidney damage, and their levels might represent a
novel therapeutic target.

Keywords: CKD, extracellular vesicles, hypertension, podo-
cyte, renovascular hypertension

I N T R O D U C T I O N

Podocytes are critical for maintenance of the glomerular filtra-
tion barrier, and their injury is associated with increased protein
leakage and decreased GFR [1, 2]. Hypertensive conditions may
damage podocytes, with podocyturia predicting clinical out-
comes [3]. For example, loss of podocytes in preeclampsia may
lead to a disruption of the glomerular filtration barrier and, ulti-
mately, proteinuria [4]. Both animal and human studies illus-
trate that changes to podocyte morphology followed by
progressive podocyte loss are often associated with albuminuria
[5, 6]. Importantly, early detection of podocyte injury can lead
to early intervention to prevent kidney disease progression [7].

Extracellular vesicles (EVs) are a heterogeneous group of
spherical structures bounded by a lipid bilayer and carrying a
cargo of proteins and nucleic acids, and include exosomes,
microvesicles, and apoptotic bodies that are somewhat difficult
to distinguish [8–11]. EVs may serve for intercellular communi-
cation and are often released into the extracellular space by cells
that are damaged or stressed by a hostile microenvironment,
such as hypoxia [12, 13]. Recent studies suggest that urinary
podocyte-derived EVs (pEVs) may serve as biomarkers of
podocyte-specific injury, as their levels increase at an early stage
of glomerular injury in diabetic nephropathy and kidney disease
[6]. Hence, increased urinary levels of pEVs may herald podo-
cyte stress and predict subsequent podocyte loss [6, 14].

Prolonged uncontrolled hypertension may induce vascular
remodeling, as well as obliteration and collapse of glomerular
structures. Renovascular hypertension (RVH) is characterized
by decreases in renal blood flow (RBF), perfusion [15–17], and
function compared with matched patients with essential hyper-
tension (EH) [18, 19], suggesting post-stenotic kidney damage,
which might be secondary to hypoxia [20]. Notably, ischemic
injury to stenotic kidneys (STK) and non-STK exposure to high
arterial pressure might both induce podocyte damage that pre-
cedes overt glomerular injury. However, it is yet unclear
whether pEV levels are altered in the early stages of ischemic or
hypertensive kidney disease.

We hypothesized that pEV numbers would be elevated
in the urine of patients with RVH compared with EH with a
comparable severity of hypertension, owing to post-stenotic
kidney injury. To address this, we compared the numbers of
urinary pEVs obtained from patients with RVH, EH and

healthy volunteers (HVs) and assessed the relationship between
pEVs and clinical and biochemical parameters in the same
patients.

M A T E R I A L S A N D M E T H O D S

Patients

The study was approved by the institutional review board,
was Health Insurance Portability and Accountability Act com-
pliant and written informed consent was obtained from each
patient. We prospectively recruited 71 hypertensive patients
�18 years of age with EH (n ¼ 40) or RVH (n ¼ 31) and with
serum creatinine <2.5 mg/dL to participate in studies [21, 22]
between January 2008 and September 2012. Similar to the
Cardiovascular Outcomes with Renal Atherosclerotic Lesions
(CORAL) study [23], renal artery stenosis was defined as cross-
sectional luminal obstruction >60% as per computed tomogra-
phy (CT) or magnetic resonance angiography or Doppler veloc-
ities �300 cm/s. Exclusion criteria included diabetes requiring
medications, recent cardiovascular events (myocardial infarc-
tion, stroke, congestive heart failure within 6 months), preg-
nancy and kidney transplant. The 3-day inpatient protocol in
the clinical research unit included regulated dietary sodium
intake (150 mEq/day), an isocaloric diet and CT scanning on
Day 3. All urine samples were collected on Day 1 before the
imaging study. Antihypertensive medications were continued;
for uniformity, all patients were treated with agents that block
the renin-angiotensin system [angiotensin-converting enzyme
inhibitors (ACEis) or angiotensin receptor blockers (ARBs)].
Normotensive HVs [systolic blood pressure (SBP) <130
mmHg and diastolic blood pressure (DBP) <80 mmHg] were
prospectively enrolled through the Mayo Biobank to serve as
control subjects.

RVH patients subsequently underwent renal stenting or
continued their medical therapy, according to clinical
indications and management decisions (including resistant
hypertension, progressive decline in kidney function or episodes
of circulatory congestion). Fourteen RVH patients (eight medi-
cally treated and six stented following standard procedures)
returned for repeat measurements 3 months after the initial
protocol.

Systemic and renal hemodynamics and function

We calculated eGFR using the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) equation [24]. Blood
pressure was measured by automated oscillometric recording
(Omron, Kyoto, Japan), averaging three measurements at 5, 7
and 9 min after a 5-min rest. Blood samples for plasma renin
activity were obtained from the inferior vena cava and the right
and left renal vein of all hypertensive patients, as previously
described [19]. Urine samples were collected for 24 h in all
hypertensive patients, and spot urine samples were obtained
from HVs. Samples were stored at�80�C until measurement.

To measure RBF, a 5F pigtail Cobra catheter (Cook, Inc.,
Bloomington, IN, USA) was placed in the right atrium for
central venous injection of contrast for flow studies using a
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|dual-source 64-slice multidetector computed tomography

(MDCT) scanner (SOMATOM Definition, Siemens Medical
Solution, Forchheim, Germany), as described previously [25].
Four tomographic slices (each 5-mm thick) localized in the
hilum region were acquired after a bolus injection of iopamidol-
370 or iohexol-350 (0.5 mL/kg, �10 mL/s) using a power injec-
tor during coached respiratory suspension, and reconstructed
using a B40f kernel. Fifteen minutes later, a kidney volume
study (5-mm-thick slices) was performed in the helical mode
after a second similar contrast injection to determine right and
left cortical and medullary regional volumes.

MDCT images were reconstructed and displayed with the
Analyze software package (Biomedical Imaging Resource,
Mayo Clinic, Rochester, MN, USA) to delineate cortical and
medullary regions of interest (ROIs) in each kidney. Cortical
and medullary time-attenuation data were then plotted and fit-
ted by an extended gamma-variate model to derive curve-fitting
parameters to obtain measures of cortical perfusion and RBF, as
described previously [26–28]. Renal volumes were measured
with previously validated statistical volume estimation with
Analyze, which involves sampling of randomly distributed
points over the identified ROIs. On each CT section, the cortex,
medulla and renal contours were differentiated by the substan-
tial cortical enhancement during the vascular phase and their
volumes calculated from the number of sampled points [25].
RBF was subsequently calculated as the sum of cortical and
medullary blood flows obtained from each cortex and medulla
as the product of its perfusion and volume [29].

EV isolation and analysis

EVs were isolated from whole urine using Total Exosome
Isolation reagent (Invitrogen, Waltham, MA, USA) according
to the manufacturer’s guidelines. Urine samples (1000 mL) were
centrifuged at 2000 g for 30 min at 4�C to remove cells and
debris. Supernatants (800 mL) were mixed with 1 volume of the
Total Exosome Isolation reagent and incubated for 1 h at room
temperature. After incubation, samples were centrifuged at 10
000 g for 1 h at 4�C. Pelleted exosomes were resuspended in
PBS. Isolated EVs were stained for 20 min at 37�C with 5 mM
Vybrant DiO (Molecular Probes, Eugene, OR, USA) cell-
labeling solution. Labeled EVs were washed with Total
Exosome Isolation reagent and stained with cell-specific anti-
bodies. Podocalyxin (1:20; eBioscience) and nephrin (1:250;
Bioss) antibodies were used to specifically identify pEVs. To
exclude endothelial, mesangial, parietal or other cells, we also
stained EVs using CD31 (1:20; eBioscience), platelet-derived
growth factor (PDGF)-b receptor (1:5; Abcam) and claudin
(1:10; R&D Systems). EVs were quantified using a FlowSight
(Amnis, Seattle, WA, USA) flow cytometer, as previously
described [30, 31], by acquiring at least 50 000 DiO-positive
events. Vybrant DiO was used to identify events as EVs [32].
The flow-gating strategy included positive gate for DiO events
and negative gates for CD31, PDGF-b and claudin. This was
followed by either a double- or single-positive gate for both
nephrin and podocalyxin (Figure 1A). The level of EVs was
expressed as a percentage (double positive events of podocyte
markers/negative events of other markers of all DiO events).

Statistical analysis

Data were analyzed using the JMP software package version
10.0 (SAS Institute, Cary, NC, USA). Normally distributed data
were expressed as mean 6 SD and non-normally distributed
data as median (range). Comparisons among the HV, EH and
RVH groups were performed using ANOVA followed by an
unpaired two-tailed t-test (or the Wilcoxon rank-sum test for
skewed data) and correlation coefficients using least-square fit.
To control for different variables among groups, we used analy-
sis of covariance (ANCOVA). After checking the assumption of
the ANCOVA, we selected eGFR and age as covariates. Within-
group comparisons were performed with the Wilcoxon signed-
rank test. For correlation analysis of single kidney variables,
STKs of RVH were compiled with left kidneys of EH, whereas
the contralateral kidneys (CLKs) in RVH were compiled with
the right kidney of EH. Partial correlation analysis was used to
adjust for the eGFR and age simultaneously. Statistical signifi-
cance for all tests was judged at P< 0.05.

R E S U L T S

Demographic data

Table 1 summarizes the characteristics of patients included
in this study. EH patients were younger than those in the two
other groups. The mean arterial pressure (MAP) of EH and
RVH was higher than in HVs. RVH eGFR was lower than in
EH and HVs. Urinary albumin of RVH was higher than in EH
and HVs. RBF and cortical perfusion of RVH were lower than
in EH.

Urinary levels of pEVs are elevated in RVH

Urinary levels of podocalyxin and nephrin double-positive
pEVs were elevated in RVH compared with EH and HV sub-
jects (P< 0.001 and P¼ 0.01, respectively). After eGFR and age
adjustment, the levels of pEVs of RVH remained higher than in
the other groups (Figure 1). There was no effect of sex on pEV
levels (P¼ 0.30). The levels of single-positive pEVs (both neph-
rin and podocalyxin) showed similar significant differences
among the groups (data not shown).

Correlation of pEV levels with clinical and renal
parameters

Among all participants, pEV levels correlated inversely with
eGFR and directly with serum creatinine and age, but not with
MAP, albuminuria or BMI (Figure 2).

In hypertensive patients, pEVs showed inverse correlations
with RBF and cortical perfusion of the STK of RVH patients
and the left kidney in EH (Figure 3). Interestingly, within this
normal range, albuminuria did not correlate with SBP, age,
eGFR, RBF or cortical perfusion. After controlling for eGFR
and age, no correlation was apparent between podocyte EVs
and these clinical parameters (data not shown).

Treatment did not affect pEV levels in RVH

Stenting significantly decreased both systolic and diastolic
blood pressure at follow-up (from 146.15 6 19.8 to 137.0 6
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|16.4 mmHg, P ¼ 0.03; and from 71.1 6 11.1 to 67.5 6 11.6

mmHg, P ¼ 0.02, respectively). There was no significant
change in blood pressure in medically treated RVH patients
(data not shown). When classified based on subsequent treat-
ment option, pEV levels in stented RVH patients (12.3 6 6.8%,
n ¼ 18) were not different (P ¼ 0.38) from those in the medi-
cally treated group (10.1 6 5.9%, n¼ 13). When measurements
were repeated in subgroups of RVD patients 3 months

after stenting (n ¼ 6) or with continued medical therapy
(n ¼ 8), pEV levels remained unchanged compared with base-
line levels (Figure 1).

Urinary level of CD31þ EVs

Urinary levels of CD31þ EV in RVH were lower than in EH
or HV subjects after covariate adjustment (85.5 6 5.3, 90.5 6

3.8 and 90.2 6 4.6%; P ¼ 0.001 and P ¼ 0.004, respectively),

FIGURE 1: (A) Representative flow cytometry scatter plots of EVs in HVs, EH and RVH patients. (B) After adjustment for eGFR and age, uri-
nary levels of podocyte-derived EVs were higher in RVH compared with EH or HVs. *P ¼ 0.01 versus HVs, #P ¼ 0.01 versus EH. Changes in
individual podocyte-derived EVs from baseline to 3 months follow-up were not statistically significant in either (C) stented or (D) medically
treated patients with RVH.

Table 1. Clinical characteristics of HVs and patients with EH or RVH

HV (n ¼ 15) EH (n ¼ 30) RVH (n ¼ 31) P-value P-valuea P-valueb P-valuec

Age (years) 72.0 6 5.7 56.3 6 16.3 68.3 6 8.3 <0.001 <0.001 0.58 0.002
Men, n (%) 5 (33) 12 (40) 21 (67) 0.03 0.02 0.001 0.66
Antihypertensive drugs (n) – 2.6 6 1.1 3.1 6 1.2 0.093
Taking ARB or ACEi (%) 100 100
Serum creatinine (mg/dL) 0.90 6 0.17 0.89 6 0.28 1.38 6 0.40 <0.001 <0.001 0.006 0.93
eGFR (mL/min/1.73 m2) 70 (57–84) 84 (62–95) 49 (35–65) <0.001 <0.001 0.001 0.06
Mean arterial pressure (mmHg) 86.6 6 5.1 94.8 6 11.0 93.6 6 11.4 0.04 0.61 0.02 0.01
Body mass index (kg/m2) 25.4 6 4.4 30.0 6 8.3 28.0 6 4.2 0.06
Plasma renin activity (ng/mL/h) 8.27 6 7.42 11.32 6 2.04 0.20
Urinary microalbumin (mg/mL) 3.9 (2.2–11.3) 5.0 (4.9–5.1) 6.1 (5.0–14.6) 0.02 0.02 0.03 0.32
RBF of kidney (mL/min) 389.7 6 160.6 270.8 6 124.4 0.003
Cortical perfusion (mL/min/mL) 3.71 6 1.17 2.48 6 0.62 <0.001

Values given as mean 6 SD or median (range). ARB, angiotensin receptor blocker; ACEi, angiotensin-converting enzyme inhibitor; eGFR, estimated glomerular filtration rate; RBF,
renal blood flow.
aP-value RVH versus EH.
bP-value RVH versus HVs.
cP-value EH versus HVs.
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|and unaffected by stenting (83.2 6 5.7 versus 85.8 6 6.7%, P ¼

0.345). Urinary CD31þ EVs also remained stable in the medi-
cally treated RVH group (87.8 6 1.9 versus 84.5 6 7.1, P ¼
0.401). All data were expressed as a percentage (CD31þ/nega-
tive events of other markers of all DiO events).

D I S C U S S I O N

Our study demonstrates that urinary fractions of podocyte-
derived EVs, assessed using flow cytometry targeting podoca-
lyxin and nephrin, are elevated in patients with RVH compared
with EH and HVs. Since pEVs are considered to indicate podo-
cyte injury [6, 14, 33, 34], we interpret these results as indicating

that RVH patients have greater podocyte injury compared with
EH with similar levels of blood pressure, possibly secondary to
intrarenal damage beyond stenosis. The significant correlations
of pEV levels, but not albuminuria, with renal function again
support pEVs as markers of renal damage in hypertension.
Taken together, our findings are consistent with podocyte dam-
age as a component of kidney injury beyond a stenotic lesion in
human RVH.

EVs might be released from different cell types along the
nephron, such as (proximal or distal) tubular cells and podo-
cytes [6, 14, 34–38]. Because analysis of urinary EVs may pro-
vide a noninvasive window into the physiological and
pathological state of the kidney, this approach is attractive as a
potential site-specific renal ‘biopsy’. In addition to indicating a

FIGURE 2: Nonadjusted correlation analysis among all participants. Podocyte-derived EV fractions correlated directly with age and creatinine
levels and inversely with eGFR.

FIGURE 3: Nonadjusted correlations in hypertensive patients. Podocyte-derived EV level correlated inversely with RBF (A) and cortical perfu-
sion (B) of the stenotic kidney or left kidney of hypertensive patients.
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|stress response, EVs carry a wide range of proteins and genetic

information, such as micro-RNA [39], that might afford insight
into disease course and prognosis. Alas, in the absence of stand-
ardized protocols for isolation and analysis of EVs [10], and
given the heterogeneity of many EV preparations [11], the
application of this tool is challenging. We also found lower uri-
nary levels of CD31þ EVs in RVH than in the other groups,
potentially reflecting microvascular and endothelial cell loss in
the stenotic kidney. However, many common endothelial cell
markers are expressed on a broad range of cell types [40], and
this hypothesis-generating finding warrants further studies.

Podocyte-derived EVs can be identified by several markers,
including Wilm’s tumor-1 or nephrin [34]. In this study we
used stringent criteria of double-positivity for podocalyxin and
nephrin. Podocalyxin is a marker successfully used for identifi-
cation of urinary podocytes, but it is not entirely podocyte spe-
cific, as it may also be expressed on nonrenal as well as
glomerular endothelial and parietal epithelial cells. Hence an
additional marker is recommended to define urinary podocytes
[41]. On the other hand, nephrin is highly podocyte specific,
but may be downregulated in proteinuric kidney disease [42].
Therefore, we used double-positivity for podocalyxin and neph-
rin expression in flow cytometry analysis. Notably, we observed
similar differences among the groups based on single positivity
of podocalyxin or nephrin, indicating the robustness of the pEV
changes in RVH.

The fraction of pEVs in patients with EH was not different
from that in HVs, suggesting relative preservation of podocytes
in EH with preserved renal function. Hypertensive glomerular
lesions are conventionally characterized by mesangial prolifera-
tion, matrix accumulation and glomerulosclerosis, and few
studies have explored podocyte damage in hypertension [43,
44]. Nagase et al. [43] reported that podocyte injury in hyper-
tension precedes glomerulosclerosis and is reversed by aldoster-
one blockade. We do not have direct histological evaluation of
podocytes in EH in this study, but urinary microalbumin levels
and eGFR of this group were within the normal range and blood
pressure was relatively well controlled. Moreover, all EH
patients were treated with ACEis or ARBs, which might protect
podocytes [43, 45]. In concert with the unchanged levels of
pEVs in EH, these notions argue against severe podocyte lesions
in this group.

Atherosclerotic renal artery stenosis produces partial lumen
occlusion in RVH, eventually lowering kidney perfusion and
RBF [46]. Stenotic lesions not only induce hypoxia in the kid-
ney, but also activate the renin–angiotensin–aldosterone system
and induce oxidative stress, inflammation and microvascular
rarefaction [16, 19], which might accelerate hypertension,
podocyte damage and progressive renal dysfunction [22, 47].
Interestingly, in hypertensive patients, urinary pEV levels corre-
lated inversely with STK RBF and renal cortical perfusion, but
these relationships disappeared after adjustment for eGFR, pos-
sibly due to the close association of RBI and GFR. Presumably
complex pathophysiologic mechanisms related to a decrease in
renal function underlie the loss of urinary pEVs in RVH. Kalani
et al. [34] reported that in diabetic patients, podocyte-derived
exosomes negatively correlate with eGFR, and found an
association with albuminuria and proteinuria. In our study,

albuminuria did not show any association with other clinical
parameters or with pEVs, possibly because the albuminuria of
our study groups was within a normal range. Thus, urinary pEV
levels in hypertension might provide an early marker of kidney
injury independent of albuminuria.

Technical issues involving EV isolation are challenging. We
used a commercial isolation kit, which avoids laborious ultra-
centrifugation and the need for large urine volumes, and is also
suitable for extraction of RNA and DNA [33, 48–51], which
might make it practical in the clinical setting. However, the cost
of isolation kits is not negligible, especially when applied to a
large number of samples [35]. Additionally, this method may
cause coprecipitation of the most abundant soluble proteins,
such as albumin and Tamm–Horsfall glycoprotein. Although
total protein levels of our samples were nearly normal, and
serum protein does not affect EV purity with the commercial
kit [52], the effect of slightly greater proteinuria in RVH on EV
numbers is uncertain. In addition, centrifugation and discard-
ing the supernatant are necessary steps to isolate EVs, but might
result in loss of EVs from the samples. Given that quantification
of the number of EVs shows moderate reproducibility [52, 53],
we expressed pEV as a fraction of total EV. Indeed, longitudinal
measurement of pEV levels in treated RVH patients demon-
strated the reproducibility of our approach.

Recent randomized clinical trials show that revascularization
adds little additional benefit with respect to recovery of kidney
function [23]. The failure of revascularization in the RVH group
to affect pEV levels is consistent with our previous study [22],
showing no decrease in renal vein levels of inflammatory
markers in the stented kidney. Although the number of stented
patients was small, our findings underscore the concept that
revascularization alone does not suffice to restore kidney struc-
ture and function.

Our study has some limitations. First, our cohort is relatively
small, thus follow-up data and large studies are needed to con-
firm our results. Second, we could not compare directly pEVs
with podocyte histology, and our inferences of podocyte dam-
age in RVH are indirect. Furthermore, given that urine samples
derive from both kidneys, it is difficult to ascribe pEV levels spe-
cifically to the stenotic kidney. While the precise podocyte stress
cannot be determined in this study, the comparable blood pres-
sure volumes in RVH and EH patients argue against hyperten-
sive renal injury as the predominant cause of elevated urinary
pEV levels in RVH. Third, the present study cannot link higher
pEV counts to progression of kidney disease, which would
require longitudinal studies. Indeed, our findings should be
tested in other cohorts. Finally, the urine samples from the HVs
were obtained in untimed collection. Although useful to assess
proteinuria [54], their compatibility to timed urine collection is
limited.

In conclusion, we observed elevated urinary levels of
podocyte-derived EVs in RVH patients compared with EH and
HVs, which might be related to intrarenal injury distal to renal
artery stenosis. EVs might be promising markers of podocyte
and early glomerular damage in hypertension. Future studies
are needed to evaluate and validate the role of podocyte-derived
EVs in hypertension and other diseases and their utility for
monitoring success of therapy.
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A B S T R A C T

Background: Agalsidase-a 0.2 mg/kg every other week (eow)
and agalsidase-b 1.0 mg/kg/eow are licensed in Europe as equi-
potent treatment of the a-galactosidase deficiency in Fabry dis-
ease. This case series describes the effects of agalsidase dose
adjustments in serial kidney biopsies in switch patients.
Methods: All treatment-naı̈ve patients with classical Fabry dis-
ease in our centre started on agalsidase-b 1.0 mg/kg/eow and
subsequently switched to agalsidase-a 0.2 mg/kg/eow were
included (n¼ 3). The median age at enzyme replacement ther-
apy start was 11 (range 7–18) years. Kidney biopsies were per-
formed at baseline, after 5 years of agalsidase-b 1.0 mg/kg/eow
and after 3 subsequent years of agalsidase-a 0.2 mg/kg/eow.
One patient was re-biopsied 2 years after reswitch to agalsidase-
b 1.0 mg/kg/eow. The scoring system of the International
Scoring Group of Fabry Nephropathy was used.
Results: The patients completely cleared globotriaosylceramide
(GL3) from mesangial and endothelial cells and partly cleared
podocytes on agalsidase-b 1.0 mg/kg/eow. Reaccumulation of

GL3 in podocytes, but not in the mesangium or endothelium,
occurred after 3 years of agalsidase-a 0.2 mg/kg/eow. Subsequent
reduction of podocyte GL3 was observed in the single patient
rebiopsied 2 years after reswitch to agalsidase-b 1.0 mg/kg/eow.
Conclusion: Partial clearance, reaccumulation and renewed
partial clearance of podocyte GL3 deposits in serial kidney biop-
sies over 8–10 years were seen in parallel with agalsidase dose
adjustments. Repeated kidney biopsies may impact therapeutic
choices in Fabry disease.

Keywords: child, chronic kidney disease, Fabry disease, histol-
ogy, kidney biopsy

I N T R O D U C T I O N

Progressive cellular accumulation of globotriaosylceramide
(GL3) due to a-galactosidase deficiency is a hallmark of the X-
linked disorder Fabry disease [1, 2]. More than 600 variations in
the GLA gene have been described (Fabry-database.org), not all
of which are pathogenic. The phenotype associated with Fabry
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