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A B S T R A C T

Background. Left ventricular hypertrophy is causally impli-
cated in the high risk of death and heart failure (HF) in chronic
kidney disease (CKD) patients. Whether the left ventricular
mass index (LVMI) adds meaningful predictive power for

mortality and de novo HF to simple risk models has not been
tested in the CKD population.
Methods. We investigated this problem in 1352 CKD patients
enrolled in the Chronic Renal Insufficiency Cohort (CRIC).
LVMI was measured by echocardiography and the risks for
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death and HF were estimated by the Study of Heart and Renal
Protection (SHARP) score, a well-validated risk score in CKD
patients.
Results. During a median follow-up of 7.7 years, 326 patients
died and 208 had de novo HF. The LVMI and the SHARP score
and a cross-validated model for HF (CRIC model) were all signifi-
cantly (P< 0.001) related to the risk of death and HF. LVMI
showed a discriminatory power for death (Harrell’s C index 66%)
inferior to that of the SHARP score (71%) and the same was true
for the risk of HF both in the test (LVMI 72%, CRIC model 79%)
and in the validation cohort (LVMI 71%, CRIC model 74%).
LVMI increased very little the discriminatory (2–3%) and the risk
reclassification power (3.0–4.8%) by the SHARP score and the
CRIC model for HF for the same outcomes.
Conclusions. In CKD, measurement of LVMI solely for the
stratification of risk of death and perhaps for the risk of HF
does not provide evident prognostic values in this condition.

Keywords: CKD, death, heart failure, LVH, left ventricular
mass index, prognosis, SHARP risk score

I N T R O D U C T I O N

Alterations in left ventricular (LV) mass and structure are a
hallmark in animal models of mild [1] and advanced [2]
chronic kidney disease (CKD). In living kidney donors, LV
mass shows a mild increase 1 year after kidney donation [3, 4],
at the time when the glomerular filtration rate (GFR) measured
by chromium-51-labeled ethylenediaminetetraacetic acid clear-
ance [3] or estimated by the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI) creatinine equation
[4] is �30% lower than prior to donation. In CKD patients
without heart failure (HF), the prevalence of LV hypertrophy
(LVH) is increasingly greater comparing Stage G2–Stage G5
CKD, further supporting the importance of renal dysfunction
in the development of LVH [5]. LVH in CKD also predicts inci-
dent HF and death even after adjustment for major cardiovas-
cular risk factors and cardiac biomarkers such as brain
natriuretic peptide and troponin T [6].

Current guidelines recommend considering echocardiogra-
phy to refine cardiovascular (CV) risk assessment in hyperten-
sive patients [7]. However, there are few studies in hypertensive
patients examining the added value of echocardiography in ad-
dition to established risk scores based on classical risk factors
like the Framingham score or SCORE [8]. Similarly, the pres-
ence of LVH is held as a useful measurement for risk stratifica-
tion in CKD patients, and some investigators have suggested
that the measurement of LV mass index (LVMI) should be peri-
odically performed in these patients [9]. Although the causal
role of LVH for the risk of HF and cardiovascular disease
(CVD) in pre-dialysis CKD patients is beyond question, the
prognostic value of this biomarker in the CKD population
remains undefined because there is still no study investigating
the prognostic value of LVM by applying risk discrimination
[10] and re-classification analyses [11] and calibration [12]. A
recent study in two European cohorts of end-stage kidney fail-
ure patients on haemodialysis [13] demonstrated that the mea-
surement of LVMI fails to add predictive power to statistical

models based on simple, easily available clinical parameters in
this population. Since observational studies are population spe-
cific, the question of whether the measurement of LV mass may
be useful for predicting clinical outcomes in the pre-dialysis
CKD population needs to be specifically tested in the same
population.

To be adopted in every day clinical practice, a given candi-
date prognostic biomarker, such as LVMI, should provide prog-
nostic information beyond and above that provided by
well-validated and simple risk prediction rules [14]. The Study
of Heart and Renal Protection (SHARP) CKD-CVD risk calcu-
lator (available at http://dismod.ndph.ox.ac.uk/kidneymodel/
app/) was developed in 9270 patients with moderate–severe
CKD and validated in three external CKD cohorts [15], which
provides reliable estimates of the death probability within 5 and
10 years by using simple and easily available risk factors.

In this study we investigated whether LVMI adds prognostic
information to the risk estimates made by the SHARP risk cal-
culator for predicting all-cause mortality and to a simple risk
model for HF built within the Chronic Renal Insufficiency
Cohort (CRIC) database, an ongoing multicentre cohort study
including a large number of CKD patients with various degrees
of renal dysfunction, who were enrolled between June 2003 and
August 2008 from seven clinical centres in the USA [16].

M A T E R I A L S A N D M E T H O D S

The study protocol of the CRIC study was approved by the in-
stitutional review boards at participating institutions and the re-
search was conducted in accordance with the ethical principles
of the Declaration of Helsinki.

Patients

The CRIC study was designed as a prospective cohort of ap-
proximately 3600 patients with mild–moderate CKD who were
enrolled through seven clinical centres in the USA [16, 17].
Eligibility and exclusion criteria of the CRIC study are given in
Supplementary data, Table S1.

Echocardiography

Echocardiograms were performed at 1 year after enrolment
using standard techniques to acquire optimal views of cardiac
function. Images were transferred to the core echocardiography
laboratory (University of Pennsylvania), where they were read
by a registered diagnostic cardiac sonographer according to the
guidelines of the American Society of Echocardiography [18].
Readers were blinded to participants’ baseline estimated GFR
(eGFR). LVMI was derived by the area length method and
indexed to height2.7. According to the scope of this study, only
CRIC patients of with available echocardiographic data were
retained in the analysis (see Figure 1). In a sensitivity analysis,
we also considered the additional prognostic value of LV ejec-
tion fraction and the E/A ratio as indicators of LV systolic and
diastolic function, respectively.

Laboratory and blood pressure (BP) data

Samples for cystatin C were processed using a Siemens BNII
nephelometer at the CRIC Central Laboratory, with an intra-
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assay coefficient of variation of 4.9%. eGFR was calculated from
serum cystatin and creatinine using the CRIC study equation
[19]. Biomarker assays for lipids, haemoglobin, phosphate, cal-
cium, glucose, high sensitivity CRP and serum albumin were
performed at the CRIC Central Laboratory at the University of
Pennsylvania. BP was averaged over three measurements per-
formed in a standardized fashion in a seated position at rest us-
ing a calibrated sphygmomanometer.

SHARP risk score calculator

The SHARP risk calculator permits the calculation of 5- and
10-year estimated death probability in Stages 3b–5 CKD
patients >40 years of age [15]. The SHARP risk estimates are
calculated conditional on age, gender, ethnicity, education,
adult dependence, smoking, alcohol intake, body mass index
(BMI), BP, high-density lipoprotein cholesterol, albumin, hae-
moglobin, phosphate, urinary albumin:creatinine ratio, back-
ground CV comorbidities, diabetes, CKD stage, CKD duration
and type of nephropathy. For the purpose of this study, patients
with missing values for at least one of these variables were ex-
cluded from the analysis (see Figure 1).

Follow-up study

The primary outcome was overall mortality, which was
assessed over a median of 7.7 years of follow-up [interquartile
range (IQR) 6.5–8.7 months]. HF (i.e. the secondary study out-
come) was identified by asking study participants every
6 months if they were hospitalized, and selected hospitals or
healthcare systems were queried for qualifying encounters. The
first 30 discharge codes were identified for all hospitalizations,

and codes relevant to HF resulted in the retrieval of medical
records by study personnel for centralized adjudicated review.
At least two study physicians reviewed all possible HF events
using medical records and guidelines on clinical symptoms, ra-
diographic evidence of pulmonary congestion, physical examina-
tion of the heart and lungs and, when available, central venous
haemodynamic monitoring data and echocardiographic imaging.
HF was confirmed when both reviewers agreed based on modi-
fied clinical Framingham criteria [20]. The follow-up time in the
survival analysis started from the date of the echocardiographic
assessment. Patients’ follow-up was ended at the time of HF (for
incident HF only), death, withdrawal, loss to follow-up or the end
of the follow-up period, whichever occurred first. For both all-
cause mortality and HF, withdrawal, loss to follow-up and the
end of the follow-up period were censoring events. For HF, death
prior to the occurrence of HF was a competing event.

Statistical analysis

Normally distributed continuous variables were expressed as
mean 6 SD, non-normally distributed continuous variables as
median and IQR and binary variables as absolute frequency
and percentage. The interrelationship between the SHARP risk
scores (at 5 and 10 years) and LVMI was investigated by
Spearman’s correlation coefficient (q), and the P-value and
shared variance between these two variables was assessed by
calculating R2.

To examine the additional prognostic values of LVMI for
all-cause mortality and for HF, we randomly split the study co-
hort into a testing cohort and a validation cohort with a ratio of
1:1. The independent relationship between the incidence rate of
all-cause mortality with the SHARP risk scores (i.e. 5-year and
10-year estimated death probabilities) and LVMI was investi-
gated by univariable and multivariable Cox proportional
hazards models in the testing cohort. In the Cox models, associ-
ations were expressed as hazard ratios (HRs) along with their
95% confidence intervals (CIs) and P-values.

The additional prognostic value of LVMI for all-cause mortal-
ity over that provided by the SHARP risk scores was investigated
by discrimination [Harrell’s C (HC) index] [10], calibration [12]
and risk reclassification [integrated discrimination improvement
(IDI)] [11] metrics.

Because no specific risk calculator is available to predict the
risk for HF in CKD patients, to estimate the additional prognos-
tic value of LVMI to predict such an outcome, we developed a
mechanistic model of HF within the CRIC in the testing cohort
and evaluated the additional prognostic value of LVMI in the
validation cohort. Because of the presence of the competitive
risk of death prior to HF, the subdistribution hazards models
(i.e. Fine and Gray’s models) were adopted [21]. We built
a mechanistic model based on variables (listed in Table 1) re-
lated to the study outcome with P< 0.05 in univariate sub-
distribution hazards models in the testing cohort; i.e. age, BMI,
diabetes, systolic BP, haemoglobin, albumin, triglycerides, phos-
phate, eGFR, CV comorbidities and history of atrial fibrillation,
and referred to this model as the CRIC model. Associations
were expressed as subdistribution HRs (SHRs) along with their
95% CIs and P-values. We examined whether LVMI holds addi-
tional prognostic value for predicting HF using the CRIC model

FIGURE 1: Flow of patients across the study.
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in the validation cohort. All the analyses were performed using
Stata/IC 13.1 for Windows (StataCorp, College Station, TX,
USA).

R E S U L T S

The source population of the CRIC study included 3520
patients (Figure 1). Among these, 223 patients were excluded
because they were �40 years of age (i.e. they were outside the
age range contemplated in the SHARP risk model), 314 patients
because of a lack of information on CKD duration, 1220 be-
cause of non-applicability of the SHARP risk calculator (eGFR
�45 mL/min/1.73 m2), 2 because of missing information on al-
cohol intake and 409 patients because they did not undergo
echocardiography to measure LVMI. Thus 1352 patients were
available for data analysis (Figure 1). The main demographic,
clinical and biochemical data of the whole study population as
well as of patients in the test and validation cohort (for the data
analysis pertaining to HF) are given in Table 1. Their mean age
was 61 years, 51% were males, 55% were diabetic, 60% were
smokers and 53% were alcohol drinkers. The large majority of
patients were on antihypertensive treatment (97%) and 66%
were on statins. BMI was 32 kg/m2 on average and BP was 128/
69 mmHg. The remaining biochemical and clinical data, includ-
ing background CV comorbidities, are given in Table 1. A total of
1069 patients (79.1%) had LVH by echocardiography. As shown

in Supplementary data, Figure S1, the LVMI had a positively
skewed distribution with a median of 64 g/m2.7 (IQR 51–81).

The 5-year death probability estimated by the SHARP risk
calculator had a positively skewed distribution, with a median
value of 16.6% (IQR 10.5–27.5), while the distribution of the
10-year estimated death probability was quite normal, with a
median value of 41.1% (IQR 26.1–57.7) (Supplementary data,
Figure S2, upper panels). The distribution of the probability for
HF by the CRIC model in both the test and the validation co-
hort was positively skewed (Supplementary data, Figure S2,
lower panel).

LVMI was directly related to both 5- and 10-year death
probabilities (both q¼ 0.31, P< 0.001) and to the risk for HF
as estimated by the CRIC model in both the test (q¼ 0.45,
P< 0.001) and the validation cohort (q¼ 0.42, P< 0.001)
(Supplementary data, Figure S3).

Prognostic score, LVMI and all-cause mortality

During follow-up [median 7.7 years (IQR 6.5–8.7)], 327
patients died [3.4 deaths/100 persons-year (95% CI 3.0–3.7)].
On univariate Cox regression analyses (Table 2), both the
SHARP scores [5-year HR (1% increase in the score) 1.044
(95% CI 1.038–1.050), P< 0.001; 10-year HR (1% increase in
the score) 1.035 (95% CI 1.030–1.040), P< 0.001] and LVMI
[HR (1 g/m2.7 increase) 1.019 (95% CI 1.015–1.023), P< 0.001]

Table 1. Patients’ demographic, clinical and biochemical characteristics at the beginning of the follow-up

Variables Whole cohort Test cohort Validation cohort
(n¼ 1352) (n¼ 676) (n¼ 676)

Age (years) 61 6 9 61 6 9 62 6 9
Male gender, % 51 51 51
Diabetic, % 55 53 57
Ex-smokers, % 44 43 46
Current smokers, % 16 17 14
Alcohol drinkers, % 53 52 54
BMI (kg/m2) 32 6 8 32 6 8 32 6 8
CKD duration (years) 3 6 2 3 6 2 3 6 2
Systolic BP (mmHg) 128 6 22 129 6 22 128 6 21
Diastolic BP (mmHg) 69 6 12 69 6 13 68 6 12
On antihypertensive treatment, % 97 97 97
On statins, % 66 67 65
Haemoglobin (g/dL) 12.3 6 1.7 12.4 6 1.7 12.2 6 1.7
Albumin (g/dL) 4.0 6 0.4 4.0 6 0.4 4.0 6 0.5
Total cholesterol (mg/dL) 179 6 44 179 6 43 179 6 45
High-density lipoprotein cholesterol (mg/dL) 48 6 15 48 6 15 48 6 16
Triglycerides (mg/dL) 157 6 103 155 6 99 161 6 108
Phosphate (mg/dL) 3.8 6 0.7 3.8 6 0.7 3.8 6 0.7
Calcium (mg/dL) 9.3 6 0.6 9.3 6 0.6 9.3 6 0.5
Glucose (mg/dL) 118 6 54 116 6 52 120 6 56
eGFR (mL/min/1.73 m2) 31.6 6 8.3 31.5 6 8.4 31.7 6 8.3
Urine albumin:creatinine ratio (mg/g), median (IQR) 132 (17–679) 147 (19–690) 120 (16–673)
LVMI (g/m2.7) 68.4 6 24.6 68.6 6 25.7 68.2 6 23.5
CRP (mg/L), median (IQR) 2.7 (1.1–6.4) 2.8 (1.1–6.3) 2.5 (1.1–6.6)
Diabetic nephropathy, % 32 30 34
Background CV comorbidities
Myocardial infarction/revascularization, % 27 26 29
Peripheral vascular disease, % 10 11 9
Congestive HF, % 13 14 12
Stroke, % 13 14 12
Atrial fibrillation/arrhythmia, % 22 22 22

Data are expressed as mean 6 SD unless stated otherwise.
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significantly related with the incidence rate of all-cause mortal-
ity. However, the strength of the association between the
SHARP risk scores and mortality did not change when the
LVMI was combined with the same scores (Table 2).

The discriminatory powers of the 5- and 10-year SHARP
risk scores for mortality (HC index) were identical, 71% and
71%, respectively, and higher than that provided by LVMI
(66%) alone (Figure 2). The introduction of LVMI into the two
Cox analyses including these two risk scores only provided a

very modest increase (2%) in the discriminatory power of the
same models (Figure 2).

Of note, by simultaneously including LVMI, LV ejection
fraction and E/A ratio into the same prognostic model, this ex-
panded model provided an HC (67.6%) for mortality that was
quite similar to that of the model based on LVMI alone
(66.0%), indicating that the inclusion of LV functional
parameters does not improve the prognostic value of LVMI.
Similarly, the inclusion of LV systolic and diastolic function in
the LVMI-based model for predicting HF produced a modest
increase in the discriminatory power both in the test (HC, from
72% to 75%) and in the validation cohort (HC, from 71% to
73%), i.e. figures not superior to those provided by the SHARP
risk calculator.

The additional prognostic value of LVMI as assessed by the
IDI confirmed that this biomarker provides just a modest in-
crease in prognostic accuracy over the two SHARP risk scores
(model based on 5-year estimated probability of death: IDI
þ3.1%, P< 0.001; model based on 10-year estimated probabil-
ity of death: IDIþ3.0%, P< 0.001).

In calibration analyses, the unadjusted Cox models based on
5- or 10-year estimated death probability (v2¼ 15.8, P¼ 0.001
and v2¼ 10.3, P¼ 0.02, respectively) or LVMI (v2¼ 9.5,
P¼ 0.02) produced prognostic estimates for all-cause mortality
that significantly differed from the observed probabilities of the
same outcome denoting poor calibration (Figure 2) and the in-
clusion of LVMI into the two Cox analyses based on the two
risk scores did not materially improve the calibration of the
same models, which remained rather unsatisfactory (Figure 2).

FIGURE 2: Discrimination and risk calibration abilities of prognostic estimates for death derived from the SHARP calculator, LVMI and both.

Table 2. Univariable and multivariable Cox proportional hazards models
of all-cause mortality in the study population

Variables (units on
increase)

HR
(95% CI)

P-value

Univariable Cox proportional hazards models
5-year estimated death
probability (1%)

1.044 (1.038–1.050) crude <0.001

10-year estimated death
probability (1%)

1.035 (1.030–1.040) <0.001

LVMI (1 g/m2.7) 1.019 (1.015–1.023) <0.001
Multivariable Cox proportional hazards models

5-year estimated death
probability (1%)

1.038 (1.032–1.045) adjusted <0.001

LVMI (1 g/m2.7) 1.014 (1.010–1.018) <0.001
Multivariable Cox proportional hazards models

10-year estimated death
probability (1%)

1.030 (1.025–1.035) adjusted <0.001

LVMI (1 g/m2.7) 1.014 (1.010–1.018) <0.001
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LVMI and the risk for HF

During the follow-up period, 208 incident cases of HF were
collected: 100 cases occurred in the test cohort and 108 cases in
the validation cohort. The number of deaths was 107 in the test
cohort and 122 in the validation cohort. On Cox regression
analyses, taking into account the competitive risk of mortality
(Fine and Gray approach), LVMI was significantly related to
the incidence rate of HF both in the test and in the validation
cohort (Tables 3 and 4). The predictive model developed in the
test cohort (Table 3) and implemented in the validation cohort
(Table 4) included age, diabetes, BMI, systolic BP, haemoglobin,
albumin, triglycerides, phosphate, eGFR, CV comorbidities and
history of atrial fibrillation (i.e. the variables that were signifi-
cantly related with the risk of HF at univariate Cox regression
analyses—CRIC model). Such a model provided a discrimina-
tory power for predicting HF of 79% in the test cohort and of
74% in the validation cohort, figures higher than those provided
by LVMI alone in the two cohorts (72 and 71%) (Figure 3). The
addition of LVMI to the CRIC model provided just a modest in-
crease in the discriminatory power of the same model both in
the test (from 79% to 81%, þ2%) and in the validation cohort
(from 74% to 77%, þ3%) (Figure 3). The additional prognostic
value of LVMI as assessed by the IDI confirmed a modest in-
crease in prognostic accuracy by this biomarker over the CRIC
model in the test (þ4.2%, P< 0.001) and in the validation

cohort (þ4.8%, P< 0.001). In the test cohort, the CRIC and the
LVMI-based models and even more so the CRIC model þ
LVMI provided prognostic estimates that substantially differed
(P ranging from 0.006 to 0.09) from the observed risk, indicat-
ing poor calibration. However, in the validation cohort, the
three models were all calibrated fairly well (Figure 3).

D I S C U S S I O N

In this study, in a large population of Stages G3b–G5 CKD
patients of the CRIC, LVMI was independently associated with
all-cause mortality and de novo HF but did not meaningfully
improve risk prediction for these two conditions when added to
clinical models. These findings suggest that measurement of
LVMI by echocardiography provides a prognostic power for
all-cause mortality inferior to that by a risk score based on easily
available clinical information like the SHARP study risk calcula-
tor. When combined with the SHARP study score, LVMI only
to a very modest degree improved the prediction of mortality
by various prognostic tests, including calibration, risk reclassifi-
cation and the integrated discrimination index. Overall, our
analyses in the CRIC suggest that the measurement of LVMI by
echocardiography solely for risk stratification in pre-dialysis
CKD patients fails to provide meaningful additional prognostic
value to the SHARP study risk score.

Table 4. Subdistribution hazards models of incident HF (n¼ 108) in the validation cohort (n¼ 676)

Variables (units of increase) SHR (95% CI); P-value SHR (95% CI); P-value SHR (95% CI); P-value

LVMI (1 g/m2.7) . . . 1.024 (1.017–1.031); < 0.001 1.023 (1.014–1.032); < 0.001
Age (1 year) 1.02 (0.99–1.04); 0.17 . . . 1.01 (0.99–1.04); 0.34
Diabetes (0¼ no, 1¼ yes) 1.84 (1.12–3.03); 0.02 . . . 1.75 (1.05–2.91); 0.03
BMI (1 kg/m2) 1.00 (0.98–1.04); 0.57 . . . 0.98 (0.95–1.01); 0.17
Systolic BP (1 mmHg) 1.00 (0.99–1.01); 0.70 . . . 0.99 (0.98–1.00); 0.13
Haemoglobin (1 g/dL) 1.04 (0.90–1.21); 0.61 . . . 1.00 (0.87–1.17); 0.95
Albumin (1 g/dL) 0.76 (0.44–1.30); 0.31 . . . 0.76 (0.44–1.29); 0.30
Triglycerides (1 mg/dL) 0.99 (0.98–0.99); 0.008 . . . 0.99 (0.98–0.99); 0.006
Phosphate (1 mg/dL) 1.11 (0.83–1.48); 0.47 . . . 1.13 (0.84–1.52); 0.43
eGFR (1 mL/min/1.73 m2) 0.96 (0.93–0.98); 0.001 . . . 0.96 (0.94–0.99); 0.006
CV comorbidities (0¼ no, 1¼ yes) 1.94 (1.29–2.92); 0.001 . . . 1.72 (1.14–2.58); 0.01
Atrial fibrillation (0¼ no, 1¼ yes) 1.99 (1.30–3.07); 0.002 . . . 1.75 (1.13–2.72); 0.01

Second column: multiple Cox model including all univariate correlates of HF but LVMI; third column: univariate Cox model including LVMI; fourth column: multiple Cox model
including all univariate correlates of HF and LVMI.

Table 3. Subdistribution hazards models of incident HF (n¼ 100) in the test cohort (n¼ 676)

Variables (units of increase) SHR (95% CI); P-value SHR (95% CI); P-value SHR (95% CI); P-value

LVMI (1 g/m2.7) . . . 1.020 (1.015–1.026); < 0.001 1.018 (1.010–1.026); < 0.001
Age (1 year) 1.02 (0.99–1.05); 0.07 . . . 1.03 (1.01–1.05); 0.04
Diabetes (0¼ no, 1¼ yes) 2.32(1.30–4.16); 0.004 . . . 2.43 (1.33–4.44); 0.004
BMI (1 kg/m2) 1.00 (0.98–1.03); 0.70 . . . 0.98 (0.95–1.01); 0.27
Systolic BP (1 mmHg) 1.01 (1.00–1.02); 0.05 . . . 1.01 (0.99–1.02); 0.24
Haemoglobin (1 g/dL) 0.90 (0.78–1.04); 0.17 . . . 0.93 (0.80–1.08); 0.33
Albumin (1 g/dL) 1.05 (0.63–1.77); 0.84 . . . 1.12 (0.69–1.83); 0.65
Triglycerides (1 mg/dL) 1.00 (0.99–1.01); 0.12 . . . 1.00 (0.99–1.01); 0.10
Phosphate (1 mg/dL) 1.12 (0.89–1.40); 0.35 . . . 1.15 (0.89–1.49); 0.30
eGFR (1 mL/min/1.73 m2) 0.97 (0.94–0.99); 0.01 . . . 0.97 (0.95–0.99); 0.04
CV comorbidities (0¼ no, 1¼ yes) 2.31 (1.48–3.60); 0.001 . . . 2.08 (1.33–3.25); 0.001
Atrial fibrillation (0¼ no, 1¼ yes) 1.71 (1.09–2.67); 0.02 . . . 1.60 (1.01–2.52); 0.04

Second column: multiple Cox model including all univariate correlates of HF but LVMI; third column: univariate Cox model including LVMI; fourth column: multiple Cox model
including all univariate correlates of HF and LVMI.
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LVH is a common alteration in CKD and up to 79% of
patients in the CRIC exhibited such an alteration. Previous
studies in this cohort confirmed that LVMI is a powerful risk
factor for all-cause mortality and progression to HF in CKD
[6], supporting a causal role of LVH in the high CV risk in this
population. Due to the causal role of LVH in the high risk for
HF and other adverse CV outcomes, the value of LVMI for
prognosis and risk stratification has long been taken for granted
in studies in the general population where the analysis was
based on Cox regression analysis only. These include the classic,
time-honoured community study based on the Framingham
cohort [22], studies in hypertensive patients [23–25], patients
with coronary heart disease [26] or in the elderly population
[27] and studies focusing on sudden death [28, 29]. Similarly,
clinical studies focusing on LVMI in the pre-dialysis CKD pop-
ulation investigated the prognostic power of this parameter
solely by Cox regression analysis [30, 31]. However, established
causal risk factors like LVH or other major risk factors like
hypercholesterolaemia are not necessarily valid prognostic fac-
tors. At the individual patient level, the prognostic power of
hypercholesterolaemia (top quintile) for CV death is weak be-
cause only 15% of those who would later die of ischaemic heart
disease would be identified on the basis of serum cholesterol
levels [32]. By the same token, confirming previous analyses in
the CRIC database [6], we found that LVMI is a highly signifi-
cant predictor of all-cause death and incident HF by Cox re-
gression analysis. However, we also found that LVMI holds
very modest additional discriminant power for the identifica-
tion of patients who die or develop HF during follow-up. Thus
established risk factors for death and HF in the CKD population
may have just weak or no predictive power for the same out-
comes at the patient level. Studies aimed at establishing the

value of prognostic biomarkers ought to be based on discrimi-
nant analysis and other prognostic analyses centred on patients
rather than at a population level. In this study in a large CKD
cohort, LVMI per se had a discriminatory power (HC index) for
all-cause mortality and HF inferior to that provided by the SHARP
risk score and the CRIC model and did not add clinically relevant
discriminant power to that by the same risk models. Furthermore,
LVMI failed to ameliorate the calibration of models for the risk of
mortality and HF. Thus, in keeping with studies in the end-stage
kidney disease population [13], LVMI conveys quite limited prog-
nostic information in pre-dialysis CKD patients as well.

The low prognostic power of LVMI notwithstanding, it is im-
portant to stress that findings in this study are immaterial to the
established value of echocardiographic studies in the CKD popu-
lation. In the current guidelines, the presence of LVH and/or
other alterations in LV mass and function represent a fundamen-
tal element for the management of patients with suspected HF
[33]. However, as far as risk stratification is concerned, LVMI is
outperformed by simple clinical risk scores for the risk of death
like the SHARP study score and by the CRIC model for HF.
Therefore nephrologists may better define the risk of death and
HF by these scores rather than by measuring LVMI.

The main limitation of this study is the fact that more than
half of the CRIC patients did not qualify for inclusion in the
analysis and that we adopted a prognostic model for HF that we
can only cross-validate within the CRIC. This model had no ex-
ternal validation. Thus the issue of whether LVMI adds prog-
nostic model to the CRIC model for HF demands further
testing in cohorts different from the CRIC. LVH in CKD has
complex pathophysiology and needs to be interpreted in the
functional scenario of the CV system rather than per se [34].

In conclusion, LVMI is inferior to well-validated clinical risk
scores for the prediction of mortality in CKD. When combined
with the SHARP score, LVMI improves the risk discrimination
ability of this score quite modestly and fails to meaningfully
improve risk calibration and reclassification. Thus it appears
unlikely that the measurement of LVMI will improve stratifica-
tion by risk models based on easily available clinical variables in
CKD patients.
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