
Abstracts

ii154 NEURO-ONCOLOGY •  NOVEMBER 2020

significant difference was observed between the JC and Fine-tuning models 
(P = 0.673). CONCLUSIONS: Application of the BraTS model to heteroge-
neous datasets can significantly reduce its performance; however, fine-tuning 
can solve this issue. Since our fine-tuning method only requires less than 20 
cases, this methodology is particularly useful for a facility where there are 
a few glioma cases.
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BACKGROUND: GBM is associated with poor overall survival partly 
due to lack of effective treatment. Recently we showed that androgen re-
ceptor (AR) protein is overexpressed in 56% of GBM specimens and that 
AR antagonists induced dose-dependent death in several glioblastoma cell 
lines. Treatment of mice implanted with human GBM with AR antagonists 
significantly reduced the growth of the tumor and prolonged the lifespan 
of the mice. 18f-fluorine-radiolabeled Dihidrotestosteron (DHT), a natural 
ligand of AR, [16β-18F-fluoro-5α-dihydrotestosterone ([18F]-FDHT)] is 
one of the PET tracers used to detect AR expression in metastatic pros-
tate cancer. The aim of this study was to identify AR-expressing GBM tu-
mors in real time using PET-CT scan with [18F]-FDHT. MATERIALS AND 
METHODS: Twelve patients with GBM underwent a dynamic (first 30 min) 
and whole body static (later 60-80  min) [18F]-FDHT PET/CT (296-370 
MBq) scans 2-4 days prior to the surgery or biopsy. Protein was extracted 
from the tumor and subjected to western blot analysis. AR Protein fold 
change of each tumor sample was calculated by densitometry analysis com-
pared with that of normal brain, following normalization to GAPDH. RE-
SULTS: At ~60 min after injection, 6 of the 12 patients showed significantly 
higher tumor accumulation of [18F]-FDHT, compared to reference tissue 
(SUV/Control)mean: 1.33-2.63 fold, (SUV/control)max: 1.4-3.43 fold. The 
patient who had higher tumor accumulation of [18F]-FDHT, demonstrated 
also high (1.6-2.27 fold/normal brain) AR protein expression within the 
tumor. Pearson-correlation-coefficient analysis for the (SUV/Control)mean at 
~60 min after the injection versus AR protein expression, was positive and 
significant (R=0.841;p=0.0024). CONCLUSION: This study demonstrated 
for the first time that [18F]-FDHT PET can identify AR-positive-GBM-
tumors (with sensitivity and specificity at 100%) and may therefore be a 
powerful tool to select patients eligible for treatment with AR antagonists. 
It could possibly be employed also to monitor treatment response and/or 
progression during the course of therapy.
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INTRODUCTION: The role of diagnostic biopsy in diffuse intrinsic pon-
tine glioma (DIPG) remains in question. Distinguishing radiographically be-
tween DIPG and other pontine tumors with more favorable prognosis and 
different therapy is critically important.  METHODS: Cases submitted to 
the International DIPG registry with histopathologic data were analyzed. 
Central imaging review was performed on diagnostic brain MRI (if avail-
able) by two neuro-radiologists; all cases with imaging features or histo-
pathology suggestive of alternative diagnoses were re-reviewed. Imaging 
features suggestive of alternative diagnoses included non-pontine origin, < 
50% pontine involvement (without typical DIPG pattern on follow-up), fo-
cally exophytic morphology, sharply-defined margins, or marked diffusion 
restriction throughout.  RESULTS: Among 294 patients with pathology 
from biopsy and/or autopsy available, 27 (9%) had histologic diagnoses 
not consistent with DIPG, most commonly pilocytic astrocytomas (n=11) 
and embryonal tumors (n=9). Of these 294 patients with biopsy and/or aut-
opsy pathologic data, 163 also had diagnostic MRI available for central 
neuroimaging review and radiographic comparison. Among 81 patients 
classified as characteristic of DIPG, 80 (99%) had histopathology con-
sistent with DIPG (diffuse midline glioma, H3K27M-mutant, glioblastoma, 
anaplastic astrocytoma, diffuse astrocytoma). Among 63 patients classified 
as likely DIPG, but with unusual imaging features, 59 (94%) had histopath-
ology consistent with DIPG. Nineteen patients had imaging features sug-
gestive of another diagnosis, including 13 with non-pontine tumor origin; 
the remaining 6 patients all had histopathology not consistent with DIPG 
(embryonal tumors [n=3, including 1 with medulloblastoma], pilocytic 
astrocytoma [n=1], and ganglioglioma [n=1]). Association between cen-
tral imaging review and histopathology was significant (p < 0.001 by the 
Freeman-Halton Fischer Exact Probability Test). CONCLUSIONS: The im-
portant role and accuracy of central neuroimaging review in diagnosing or 
excluding DIPG is demonstrated. In patients with pontine tumors for which 
DIPG is felt unlikely radiographically, biopsy may be considered to guide 
diagnosis, prognosis, and treatment.
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BACKGROUND: Radiomics and connectome analysis are distinct 
and non-invasive methods of deriving biologic information from MRI. 
Radiomics analyzes features intrinsic to the tumor, and connectomics in-
corporates data regarding the tumor and surrounding neural circuitry. In this 
study we used both techniques to predict glioma survival. METHODS: We 
retrospectively identified 305 adult patients with histopathologically con-
firmed WHO grade II–IV gliomas who had presurgical, 3D, T1-weighted 
brain MRI. Available clinical variables included tumor lobe, hemisphere, 
multifocal nature grade, histology extent of surgical resection, patient age 
gender. For connectomics, we calculated nodal efficiencies, network size and 
degree for all pairs of 33 voxel cubes spanning the entire gray matter volume 
using similarity-based extraction and graph theory. Radiomic features were 
extracted using Pyradiomics and subjected to patient-level and population-
level clustering (N=172). These clusters were then used to construct a multi-
regional spatial interaction matrix for model building. Cox proportional 
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