NEURO-ONCOLOGY

Abstract

LATE BREAKING

LTBK-01. INO-5401 AND INO-9012 DELIVERED INTRAMUSCULARLY (IM) WITH ELECTROPORATION (EP) IN COMBINATION WITH CEMIPLIMAB (REGN2810) IN NEWLY DIAGNOSED GLIOBLASTOMA

David A. Reardon¹, Steven Brem², Arati Suvas Desai², Stephen Joseph Bagley², Sylvia Christine Kurz³, Macarena Ines De La Fuente⁴, Seema Nagpal⁵, Mary Roberta Welch⁶, Adilia Hormigo⁷, Peter Forsyth⁸, Jacob Mandell⁹, Simon Khagi¹⁰, Robert Aiken¹¹, Tobias Walbert¹², Frank Lieberman¹³, Jana Portnow¹⁴, James Batiste¹⁵, Nicholas Carroll¹⁶, Albert Sylvester¹⁶, Patricia Campbell¹⁶, Israel Lowy¹⁷, Alex Dolgoter¹⁸, Jean Boyer¹⁶, Kimberly Kraynyak¹⁶, Matthew P Morrow¹⁶, Trevor McMullan¹⁶, David B, Weiner^{16,19}, and Jeffrey Skolnik¹⁶; ¹Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA, ²University of Pennsylvania, Philadelphia, PA, USA, ³NYU Langone Health, New York, NY, USA, ⁴Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA, 5Stanford University, Stanford, CA, USA, 6Columbia University, New York, NY, USA, 7Icahn School of Medicine at Mount Sinai, New York, NY, USA, ⁸Moffitt Cancer Center, Tampa, FL, USA, ⁹Baylor College of Medicine, ¹¹ Houston, TX, USA, ¹⁰University of North Carolina, Chapel Hill, NC, USA, ¹¹UMDNJ, Rutgers, NJ, USA, ¹²Henry Ford Cancer Institute, Detroit, M, USA, ¹³UPMC Cancer Center, Pittsburgh, PA, USA, ¹⁴City of Hope, Los Angeles, CA, USA, ¹⁵Sarah Cannon Research Institute, Chattanooga, TN, USA, ¹⁶Inovio Pharmaceuticals, Plymouth Meeting, PA, USA, ¹⁷Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA, ¹⁸Inovio, San Diego, CA, USA, ¹⁹The Wistar Institute, Philadelphia, PA, USA

BACKGROUND: Novel T cell-enabling therapies, in combination with checkpoint inhibition, may improve OS in GBM. INO-5401 (synthetic DNA plasmids encoding hTERT, WT-1, PSMA) plus INO-9012 (synthetic DNA plasmid encoding IL-12), and the PD-1 immune checkpoint inhibitor cemiplimab, is given to patients with newly diagnosed GBM to evaluate tolerability, efficacy and immunogenicity. METHODS: Phase I/II, single arm, 2 cohort study (A: MGMT unmethylated, B: MGMT methylated). Primary endpoint is safety; efficacy and immunogenicity are secondary. Nine mg INO-5401 plus 1 mg INO-9012 (every 3 weeks x 4 doses, then Q9W) is given IM with EP by CELLECTRA® 2000 with cemiplimab (350 mg IV Q3W). RT is given as 40 Gy over 3 weeks. TMZ is given with radiation (all patients), and adjuvantly (Cohort B only). RESULTS: Fifty-two subjects enrolled: 32 in Cohort A; 20 in Cohort B. 35% women; median age 60 years (19-78 years). The adverse event profile is consistent with singleagent (INO-5401, INO-9012, EP and cemplinab) reported events. OS at 12 months was 84.4% (Cohort A) and 85% (Cohort B). OS at 18 months in Cohort A is 50% (95% CI 31.9 - 68.1); median OS is 17.9 months (14.5 - NR); Cohort B OS18 and median OS will be presented. Tumor gene transcripts at diagnosis confirmed expression of INO-5401 antigens. Peripheral immune responses following INO-5401 revealed antigen-specific T cell responses by Interferon gamma ELISpot and flow cytometry, including cytokine production and expansion of antigen specific CD8+T cells with lytic

potential. CONCLUSIONS: INO-5401 + INO-9012, a novel DNA plasmid immunotherapy, demonstrates acceptable risk/benefit and generates robust systemic immune responses to encoded tumor antigens when administered with cemiplimab and RT/TMZ in newly diagnosed GBM patients. Overall survival is encouraging. Clinical trial information: NCT03491683.

LTBK-04. PHASE 2 MULTICENTER STUDY OF THE ONCOLYTIC ADENOVIRUS DNX-2401 (TASADENOTUREV) IN COMBINATION WITH PEMBROLIZUMAB FOR RECURRENT GLIOBLASTOMA; CAPTIVE STUDY (KEYNOTE-192)

Gelareh Zadeh¹, Mariza Daras², Timothy F. Cloughesy³, Howard Colman⁴, Priya U. Kumthekar⁵, Clark C. Chen⁶, Robert Aiken⁷, Morris D. Groves⁸, Shirley Ong⁹, Rohan Ramakrishna¹⁰, Michael A. Vogelbaum¹¹, Simon Khagi¹², Thomas Kaley², Jason M. Melear⁸, David M. Peereboom¹³, Analiz Rodriguez¹⁴, Maxim Yankelevich⁷, Suresh G. Nair¹⁵, Vinay K. Puduvalli⁹, Farshad Nassiri¹, Adam M. Sonabend⁵, Laura Agensky¹⁶, Brett Ewald¹⁶, Matteo Levisetti¹⁶, and Frederick F. Lang¹⁷; ¹Toronto Western Hospital, University Health Network, University of Toronto, Toronto, ON, Canada, ²Memorial Sloan Kettering Cancer Center, New York, NY, USA, ³University of California Los Angeles, Los Angeles, CA, USA, ⁴Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA, ⁵Feinberg School of Medicine, Northwestern University, Chicago, IL, USA, ⁶University of Minnesota, Minneapolis, MN, USA, ⁷Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA, ⁸Texas Oncology Austin Brain Tumor Center, Austin, TX, USA, ⁹The Ohio State University Wexner Medical Center, Columbus, OH, USA, ¹⁰Weill Cornell Brain and Spine Center, New York, NY, USA, ¹¹Moffitt Cancer Center, Tampa, FL, USA, ¹²University of Nrth Carolina at Chapel Hill, Chapel Hill, NC, USA, ¹³Cleveland Clinic, Cleveland, OH, USA, ¹⁴University of Arkansas for Medical Sciences, Little Rock, AR, USA, ¹⁵Lehigh Valley Health Network, Allentown, PA, USA, ¹⁶DNAtrix, Houston, TX, USA, ¹⁷The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

BACKGROUND: A Phase 2 multi-center study was conducted to evaluate the replication-competent oncolytic adenovirus, DNX-2401 (tasadenoturev), in combination with the anti-PD-1 antibody, pembrolizumab, in subjects with recurrent glioblastoma. METHODS: Subjects ≥ 18 years with glioblastoma at first or second recurrence were treated with a single intratumoral injection of 5e8-5e10 vp DNX-2401 at the time of biopsy, followed by 200 mg pembrolizumab infusions every 3 weeks until progression or toxicity. RESULTS: Forty-nine subjects were enrolled at first (79.6%) or second (20.4%) recurrence after prior surgery (89.8%), radiotherapy (100%), and temozolomide (100%). Forty-eight of 49 (98%) were treated with 5e8 vp (n=3), 5e9 vp (n=3), or 5e10 vp (n=42) DNX-2401 and pembrolizumab. Median treatment (cycle 31). Adverse events were primarily mild to moderate, consistent with underlying disease, and manageable. Headache, brain edema, and fatigue are the most common events reported as related to the treatment regimen. Of subjects treated with full dose DNX-2401 and pembrolizumab (n=42), 5 subjects (11.9%) had confirmed responses, including 2 durable ongoing complete responses and 3 partial responses. One subject remains tumor free > 12 months after completing the planned 24 months of pembrolizumab. Median overall survival was 12.5 months; OS-12 and OS-18 were 54.5% and 20.8%, respectively. Four subjects, all of which have survived more than 21 months, continue to be followed for survival. CONCLUSIONS: DNX-2401 plus pembrolizumab provides encouraging activity and is safe in patients with recurrent glioblastoma. A global, randomized, controlled Phase 3 study is planned.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.