specific peptides that can be used to create a personalized, targeted T cell therapy for children with high risk medulloblastoma.

IMMU-16. INTRA-TUMOURAL IL-12 DELIVERY ENABLES CAR T-CELL IMMUNOTHERAPY FOR HIGH-GRADE GLIOMA

Giulia Agliardi¹, Anna Rita Liuzzi², Alastair Hotblack¹, Donatella De Feo², Nicolás Núñez², Ekaterina Friebel², Francesco Nannini¹, Thomas Roberts³, Rajiv Ramasawmy³, Cassandra Stowe¹, Iwan Williams¹, Bernard Siow^{3,4}, Mark Lythgoe³, Tammy Kalber³, Sergio Quezada¹, Martin Pule¹, Sonia Tugues², Burkhard Becher², and <u>Karin Straathof^{5,1}</u>; ¹UCL Cancer Institute, London, GB, United Kingdom, ²Institute of Experimental Immunology, University of Zurich, Zurich, CH, Switzerland, ³UCL Centre for Advanced Biomedical Imaging, London, GB, United Kingdom, ⁴Francis Crick Institute, London, GB, United Kingdom, ⁵UCL Great Ormond Street Institute of Child Health, London, GB, United Kingdom

Treatment with T-cells redirected to tumour specificity with a chimeric antigen receptor (CAR) may be well suited to treat intracranial tumours due to the ability of T-cells to access the central nervous system and migrate to infiltrative sites of disease. In adult glioblastoma, a case report of local and distant eradication of intracranial and spinal tumour deposits following intraventricular infusion of IL13Ra2-CAR T-cells indicates the potential of this approach. However, in contrast to the sustained complete remissions observed in haematological malignancies, in the majority of patients with glioblastoma CAR T-cell therapy has not resulted in clinical benefit. Tumour heterogeneity and the highly immune inhibitory tumour microenvironment (TME) are likely key barriers to achieving durable anti-tumour immunity. Here use intra-tumoural administration of IL-12 to enable CAR T-cell immunity. We employed CAR-T cells targeting the tumour-specific epidermal growth factor variant III (EGFRvIII). In an immunocompetent orthotopic mouse model of high-grade glioma, we show that CAR-T cells alone failed to control fully established tumour, but when combined with a single, locally delivered dose of IL-12, durable antitumor responses were achieved. IL-12 not only boosted cytotoxicity of CAR T-cells, but also reshaped the TME driving increased infiltration of proinflammatory CD4+ T-cells, decreased numbers of regulatory T-cells (Tregs) and activation of the myeloid compartment. Critically, immunotherapy enabling benefits of IL-12 were achieved with minimal systemic effects. Our findings show that local delivery of IL-12 is an effective adjuvant for CAR-T cell therapy for high-grade glioma. Assessment of application in high-risk childhood brain tumours is ongoing.

IMMU-17. CAR T CELLS TARGETING THE INTEGRIN ALPHA $_{\rm V}$ BETA $_{\rm 3}$ EXHIBIT ROBUST ANTI-TUMOR RESPONSES AGAINST DIFFUSE INTRINSIC PONTINE GLIOMA (DIPG) AND GLIOBLASTOMA (GBM)

<u>Dustin Cobb,</u> Jacopo de Rossi, Lixia Liu, Erin An, and Daniel Lee; University of Virginia, Charlottesville, VA, USA

Effective therapies for DIPG and GBM are lacking. CD19 chimeric antigen receptor (CAR) T cells are highly effective in patients with refractory B-cell malignancies. We aim to develop novel CARs for high-grade gliomas. The integrin complex alpha, beta, was selected as a CAR-T cell target due to its expression on gliomas and their vasculature, yet with minimal expression throughout normal tissues, vessels and organs. Indeed, a majority of DIPG and GBM cell lines express surface $\alpha_{\nu}\beta_{3}$. Second-generation CAR-T cells expressing an anti- $\alpha_{\nu}\beta_{3}$ scFv and either a CD28 or 4-1BB co-stimulatory domain and CD3zeta were constructed. Transduced healthy, donor-derived T cells exhibited high level CAR expression, efficient expansion, and representative populations of memory subsets including central, effector, and stem cell-like memory CAR-T cells. $\alpha_{\nu}\beta_{3}.28z$ and $\alpha_{\nu}\beta_{3}.BBz$ CAR-T cells exhibited antigenspecific in vitro cytotoxicity and cytokine production against DIPG and GBM cell lines. Both CARs mediated rapid and robust anti-tumor responses in NSG mice bearing orthotopic DIPG or GBM tumors. 5/13 $\alpha_{\nu}\beta_{3}$.28z and $0/14 \alpha_v \beta_3$. BBz treated animals died without detectable disease within 2 weeks of infusion suggesting different toxicity profiles and is consistent with faster CAR-T cell expansion in CD28-versus 4-1BB-containing CD19 CAR-T cells seen clinically. Our results demonstrate that α, β3, BBz CAR-T cell therapy may be both highly effective and safe in DIPG and GBM patients. Due to the restricted nature of $\alpha_v \beta_3$ expression in normal tissues, the robust responses seen in tumor-bearing mice, and the slower kinetics of $\alpha_{\nu}\beta_3.BBz$ CAR-T cell expansion, a first-in-human clinical trial is being planned.

IMMU-18. FAVORABLE OUTCOME IN REPLICATION REPAIR DEFICIENT HYPERMUTANT BRAIN TUMORS TO IMMUNE CHECKPOINT INHIBITION: AN INTERNATIONAL RRD CONSORTIUM REGISTRY STUDY

Eric Bouffet¹, Sumedha Sudhaman¹, Jiil Chung¹, Jacalyn Kelly¹, Ailish Coblentz¹, Melissa Edwards¹, Tatiana Lipman¹,

Cindy Zhang¹, Ayse Bahar Ercan¹, Lauren Sambira¹, Anne Bendel², Stefan Bielack³, Elisabeth Koustenis³, Deborah Blumenthal⁴, Daniel Bowers⁵, Alberto Broniscer⁶, Annika Bronsema⁷, Sara Carroll⁸, Stefano Chiaravalli9, Kristina Cole10, Shlomi Constantini4 Rebecca Loret De Mola¹¹, Gavin Dunn¹², Charlotta Fröjd¹³, David Gass¹⁴, Karen Gauvain¹², Ben George¹⁵, Nobuko Hijiya¹⁶, Lindsey Hoffman¹⁷, Jeffrey Knipstein¹⁵, Ted Laetsch⁵, Valérie Larouche¹⁸, Alvaro Lassaletta¹⁹, Scott Lindhorst²⁰, Alexander Lossos²¹, Sandra Luna-Fineman¹⁷, Vanan Magimairajan²², Gary Mason²³, Warren Mason²⁴, Maura Massimino⁹, Oz Mordechai²⁵, Enrico Opocher²⁶, Michal Oren²⁷, Michael Osborn²⁸, Alyssa Reddy²⁹, Mark Remke³⁰, Sumita Roy³¹, Magnus Sabel³², David Samuel³³, Kami Schneider¹⁷, Santanu Sen³⁴, Duncan Stearns³⁵, David Sumerauer³⁶, Gregory Thomas¹¹, Patrick Tomboc³⁷, An Van Damme³⁸, Margaret Wierman³ Ira Winer⁴⁰, Lee Yi Yen⁴¹, Michal Zapotocky³⁶, David Ziegler⁴², Stefanie Zimmermann⁴³, Rina Dvir⁴, Gidi Rechayi²⁷, Carol Durno¹, Melyssa Aronson⁴⁴, Michael Taylor¹, Peter Dirks¹, Trevor Pugh⁴ Adam Shlien¹, Cynthia Hawkins¹, Daniel Morgenstern¹, and <u>Uri Tabori¹</u>; ¹The Hospital for Sick Children, Toronto, ON, Canada, ²Children's Minnesota Minneapolis Hospital, Minneapolis, MN, USA, ³Klinikum Stuttgart-Olgahospital, Stuttgart, Germany, *Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel, *UT Southwestern Medical Centre, Dallas, TX, USA, 6St. Jude's Children's Research Hospital, Memphis, TN, USA, University Medical Centre of Hamburg-Eppendorf, Hamburg, Germany, ⁸Cleveland Clinic Florida, Weston, FL, USA, ⁹Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy, ¹⁰Children's Hospital of Philadelphia, Philadelphia, PA, USA, ¹¹Oregon Health & Science University, Portland, OR, USA, ¹²Washington University School of Medicine, St, Louis, MO, USA, ¹³Västra Götalandsregionen, Vänersborg, Sweden, ¹⁴Carolinas Healthcare System, Charlotte, NC, USA, ¹⁵Medical College of Wisconsin, Milwaukee, WI, USA, 16Ann and Robert H, Lurie Children's Hospital of Chicago, Chicago, IL, USA, ¹⁷Children's Hospital of Colorado, Aurora, CO, USA, ¹⁸Centre Mère-Enfant Soleil du CHU de Québec, Sante-Foy, QC, Canada, 19 Hospital Infantil Universitario Niño Jesús, Madrid, Spain, ²⁰Medical University of South Carolina, Charleston, SC, USA, ²¹Hadassah Medical Organization, Jerusalem, Israel, ²²Cancer Care Manitoba, Winnipeg, MB, Canada, ²³Children's Hospital of Pittsburg of UPMC, Pittsburgh, PA, USA, ²⁴Princess Margaret Hospital, Toronto, ON, Canada, ²⁵Rambam Academic Hospital, Haifa, Israel, ²⁶Università Degli Studi di Milano, Milan, Italy, ²⁷The Chaim Sheba Medical Center, Tel HaShorer, Israel, ²⁸Women's and Children's Hospital, North Adelaide, Australia, ²⁹UCSF Benioff Children's Hospital, San Francisco, CA, USA, ³⁰University Hospital Düsseldorf, Dusseldorf, Germany, 31 Children's Hospital of Michigan, Detroit, MI, USA, ³²Queen Silvia Children's Hospital, Göteborg, Sweden, ³³Valley Children's Hospital, Madera, USA, ³⁴Kokilaben Dhirubhai Ambani Hospital, Mumbai, India, 35Rainbow Babies and Children's Hospital, Cleveland, OH, USA, 36FN Motol, Prague, Czech Republic, ³⁷West Virginia University Children's Hospital, Morgantown, WV, USA, 38Saint Luc UCL, Brussels, Belgium, 39University of Colorado (UCHealth), Aurora, CO, USA, ⁴⁰Wayne State University, Detroit, MI, USA, ⁴Taipei Veterans General Hospital, Taipei City, Taiwan, ⁴²Kids Cancer Centre, Randwick, Australia, ⁴³Universitätsklinikum Frankfurt, Frankfurt, Germany, ⁴⁴Mount Sinai Hospital, Toronto, ON, Canada, ⁴⁵Princess Margaret Cancer Centre, Toronto, ON, Canada

Pediatric brain tumors with replication repair deficiency (RRD) are hypermutant and may respond to immune checkpoint inhibition (ICI). We performed a consortium registry study of ICI in recurrent RRD cancers. Clinical and companion biomarkers were collected longitudinally on all patients. Biomarkers included tumor mutational burden (TMB), neoantigens and genetic signatures obtained from whole genome and exome sequencing. Immune inference was obtained by RNAseq and T cell rearrangement was collected in the tumor and in blood throughout treatment. Of the 46 tumors on the study, 32 were brain tumors with glioblastoma in 96%. Rapid, objective responses (>50%) were observed in 50% of glioblastomas. Three year overall survival for the whole cohort was 48+/-8% which compares favorably with historical controls. Brain tumors fared worse with OS of 39+/-10% and late recurrences observed even after 2 years of therapy (p=0.02). Tumor size and acute "flare" constitute poor outcome throughout all cancers. While all tumors are hypermutant, TMB and predicted neoantigens correlated with response to ICI (p=0.02). Specific signatures extracted from SNVs and total mutations predicted response to ICI and favorable outcome (p=0.005). RNA inference and TCR reveal that the FLARE phenotype is mostly acute nonspecific immune response and not true progression. Finally, glioblastomas (n=8) which failed single agent ICI had favorable responses to combinational immunotherapies with prolonged survival of 65%+/-8% at one year after failure vs 0 for other patients (p=0.01). RRD glioblastomas exhibit favorable outcome and responses to ICI. Combinational therapies based on tumor and immune signatures of these cancers are necessary.