
Neuro-Oncology Advances
3(1), 1–14, 2021 | doi:10.1093/noajnl/vdab027 | Advance Access date 11 February 2021

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

© The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Hannah E. Olsen, Geoffrey M. Lynn, Pablo A. Valdes, Christian D. Cerecedo Lopez, 
Andrew S. Ishizuka, Omar Arnaout , W. Linda Bi, Pier Paolo Peruzzi, E. Antonio Chiocca, 
Gregory K. Friedman†, and Joshua D. Bernstock†

Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, 
USA (H.E.O., P.A.V., C.D.C.L., O.A., W.L.B., P.P.P., E.A.C., J.D.B.); Avidea Technologies, Inc., Baltimore, Maryland, USA 
(G.M.L., A.S.I., J.D.B.); Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, 
Massachusetts, USA (P.A.V., J.D.B.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, 
University of Alabama at Birmingham, Birmingham, Alabama, USA (G.K.F.); Department of Neurosurgery, University 
of Alabama at Birmingham, Birmingham, Alabama, USA (G.K.F.)

†These authors jointly supervised this work.

Corresponding Author: Joshua D. Bernstock, MD, PhD, MPH, Department of Neurosurgery, Harvard Medical School, Brigham and 
Women’s Hospital, Boston Children’s Hospital Hale Building, 60 Fenwood Road, Boston, MA 02115, USA (jbernstock@bwh.harvard.
edu).

Abstract
Though outcomes for pediatric cancer patients have significantly improved over the past several decades, too 
many children still experience poor outcomes and survivors suffer lifelong, debilitating late effects after con-
ventional chemotherapy, radiation, and surgical treatment. Consequently, there has been a renewed focus on 
developing novel targeted therapies to improve survival outcomes. Cancer vaccines are a promising type of im-
munotherapy that leverage the immune system to mediate targeted, tumor-specific killing through recognition 
of tumor antigens, thereby minimizing off-target toxicity. As such, cancer vaccines are orthogonal to conven-
tional cancer treatments and can therefore be used alone or in combination with other therapeutic modalities to 
maximize efficacy. To date, cancer vaccination has remained largely understudied in the pediatric population. In 
this review, we discuss the different types of tumor antigens and vaccine technologies (dendritic cells, peptides, 
nucleic acids, and viral vectors) evaluated in clinical trials, with a focus on those used in children. We conclude 
with perspectives on how advances in combination therapies, tumor antigen (eg, neoantigen) selection, and 
vaccine platform optimization can be translated into clinical practice to improve outcomes for children with 
cancer.

Cancer continues to be a major cause of morbidity and mor-
tality in children and is the second leading cause of death 
before adolescence.1 The prognosis of pediatric cancer has 
markedly improved in recent years, with the average overall 
survival (OS) of pediatric cancers rising from 58% in 1975 to 
83% in 2014.2 Therapies for pediatric cancer, however, often 
cause significant toxicity that leads to lifelong disability.3,4 
Additionally, many children will develop aggressive malignan-
cies refractory to maximal medical and surgical management 
and ultimately experience dismal outcomes.5 Central nervous 

system (CNS) malignancies are among the most aggressive 
of pediatric cancers and are notoriously difficult to manage.6,7 
Decades of research into tumor biology and clinical studies 
evaluating chemotherapy, radiation, and surgical resection-
based approaches have had limited success in improving sur-
vival outcomes.6,8 The current standard of care for pediatric 
high-grade gliomas (HGGs), which represent approximately 
10% of all pediatric CNS tumors, comprises surgical resection 
followed by concomitant radiotherapy and chemotherapy (ie, 
temozolomide) with a median OS of 10–18 months.9–11 Highly 
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Vaccination Types

Dendritic Cell Vaccines

Dendritic cells (DCs) are “professional” antigen-presenting 
cells (APCs) that are specialized for processing and pre-
senting antigens for priming CD4+ and CD8+ T cells and 
producing cytokines that drive expansion and differentia-
tion of T-cell responses.55 Thus, DCs act as a bridge between 
innate and adaptive immunity.20,56,57 For use as cellular 
vaccines, autologous DCs are isolated via apheresis, ma-
tured using immunostimulatory agents (eg, filgrastim), 
and loaded with an antigen before reinjection into the 
patient via the intradermal, intravenous, intranodal, or 
subcutaneous route.58,59 The advantage of isolating and 
manipulating DCs ex vivo is that antigen loading and ac-
tivation can be performed under controlled conditions. 
Advances in gene-editing technologies including viral 
transduction, RNA interference, and CRISPR/Cas9 have 
greatly expanded scientists’ ability to engineer DCs to op-
timally perform a host of antitumoral functions.60 In addi-
tion, DC vaccines are often paired with adjuvants, such as 
imiquimod, interleukin-2, or KLH, which may be provided 
in the DC cultures or concomitantly delivered to increase 
the magnitude and duration of the antitumor response.61 
Limitations of DC-based vaccines include the labor-in-
tensive and costly cell isolation/enrichment and ex vivo 
stimulation process62, potentially weak responses due to 
insufficient cell numbers or inadequate cell activation or 
phenotype; and/or T-cell inactivation from an immuno-
suppressive tumor environment.63 Despite these chal-
lenges, it is notable that the first cancer vaccine to receive 
Food and Drug Administration approval is the DC vaccine 
sipuleucel-T (Provenge) for prostate cancer.64

Based on data from phase I/II trials, DC-based vaccina-
tion appears to be well tolerated with minimal toxicity in 
children with a diverse spectrum of malignancies and pre-
treatment conditions.57,65–67 Table 2 provides a summary of 
DC-based vaccine trials in children. Of note, most of these 

targeted agents with more favorable toxicity profiles 
and improved therapeutic efficacy are urgently needed 
to improve the quality of life and long-term outcomes of 
children with cancer.12

Immunotherapy harnesses the ability of the immune 
system to combat infection and neoplasia and has emerged 
as a promising treatment modality for many pediatric and 
adult malignancies.12,13 Cancer immunotherapy can be 
broadly defined as any therapy that leverages autologous 
or engineered immune cells to mediate tumor killing and, 
as such, encompasses a variety of treatments with diverse 
compositions and mechanisms of action.14,15 Examples of 
successful immunotherapies include antibodies that block 
immunosuppressive pathways, such as pembrolizumab, 
a PD-1 immune checkpoint inhibitor that has gained ap-
proval for treating a myriad of solid tumors; talimogene 
laherparepvec, an oncolytic virus approved for treating 
melanoma; and, more recently, tisagenlecleucel—a chi-
meric antigen receptor (CAR) T-cell therapy approved for 
treating pediatric acute lymphoblastic leukemia.16–18

Our understanding of tumor immunology has grown 
in tandem with technical improvements in vaccine de-
velopment, leading to a renewed focus on vaccination as 
cancer therapeutic.15,19–21 Prophylactic vaccination against 
microorganisms (eg, smallpox, polio, and influenza) is a 
highly effective method of preventing life-threatening in-
fections.22 Vaccination relies on exposing patients to the 
target microorganism or a structural fragment (ie, antigen) 
to generate an immune response that protects against fu-
ture infection.23 Similarly, therapeutic cancer vaccines 
can induce immune cells, particularly cytotoxic CD8+ T 
cells, to become activated, expanded, and licensed to me-
diate tumor-specific killing through recognition of tumor 
antigens.24 As tumor cells demonstrate much greater ho-
mology with healthy tissue than infectious microorgan-
isms, the crux of successful cancer vaccine construction 
lies in safeguarding healthy tissue while inducing targeted 
immunity against tumor antigens preferentially expressed 
by tumor cells.20,21

Tumor antigen selection is critical to the success of any 
cancer vaccine. The tumor antigen should be highly ex-
pressed and have a high affinity for binding major histo-
compatibility complex (MHC) molecules, which are key 
factors for ensuring that the antigen is adequately pre-
sented to enable immune cell recognition and killing.25,26 
Additionally, the length and number of antigens must be 
considered to maximize the breadth of both CD8+ and CD4+ 
T-cell responses, which each have unique requirements 
for antigen recognition: CD8+ T cells recognize peptides of  
8–11 amino acids in length presented in MHC-I, whereas 
CD4+ T cells recognize peptides of 12–15 amino acids in 
length bound to MHC-II.27,28 Several different classes of 
tumor antigens exist that can meet these criteria. Here we 
discuss the unique advantages and challenges associated 
with each class of tumor antigens.

Tumor-associated antigens (TAAs) are native proteins 
that are quantitatively overexpressed by tumor cells.20,29 
The advantage of TAAs is that they tend to be upregulated 
(ie, highly expressed) by certain tumor types and are thus 

conserved targets for vaccination.29 Though the majority 
of vaccine studies have evaluated TAAs, this class of an-
tigen faces a number of limitations. A key challenge is that 
TAA-reactive T cells can be removed by central tolerance, 
leaving only T cells with low affinity for tumor antigen rec-
ognition.30 Additionally, there is a possible risk of damage 
to healthy tissue; although off-target toxicity has not yet 
been reported in vaccine studies, CAR T cells targeting 
certain TAAs have resulted in severe, dose-limiting 
toxicities.31,32

In contrast to TAAs, tumor-specific antigens (TSAs)—
also known as neoantigens, are non-autologous proteins 
(ie, mutated proteins) arising from tumoral genetic in-
stability.33 TSAs provide the advantages that they are not 
expressed by healthy cells and are not subject to central 
tolerance. As compared with TAAs, TSAs generate more 
targeted and higher affinity T cells, thus providing poten-
tially more effective treatment with a lower risk of auto-
immunity.34 While several hotspot mutations have been 
identified leading to commonly occurring TSAs for certain 
tumor types35,36 as well as shared frameshift mutations 
occurring in microsatellite unstable tumors,37 most TSAs 
are highly variant between individuals.38,39 Thus, off-the-
shelf approaches for targeting TSAs may not be practical 
for most patients and will instead require patient-specific 
identification and selection of TSAs for use in personal-
ized cancer vaccines.40,41 Fortunately, with the advent and 
increasing availability of high-throughput molecular and 
genomic profiling, TSAs have become practicable targets 
for cancer vaccination.42,43

The feasibility and safety of TSA-directed vaccina-
tion have been demonstrated in adult melanoma trials in 
which a TSA-directed vaccine alone or in conjunction with 
checkpoint blockade therapy yielded a robust clinical re-
sponse.44 Importantly, TSA-directed vaccination has also 
shown some efficacy against glioblastoma (GBM), despite 
this tumor’s relatively low mutation load and immune-
privileged environment.45,46 Thus, these early trials provide 
compelling support for the use of TSA-directed vaccination 
in the pediatric cancer population, particularly for treating 
CNS malignancies.

In this review, we discuss the different classes of 
cancer vaccines and antigen targets while emphasizing 
their application in pediatric oncology. Vaccine classes 
are divided according to their composition and in-
clude cellular47 (eg, dendritic cells48), peptide,49 nucleic 
acid50 (DNA or RNA), and viral vector-based.15,51 Each 
has unique advantages and drawbacks as summarized 
in Table 1. As the majority of vaccination studies have 
been performed in adults, the utility and efficacy of this 
approach for pediatric malignancies, which can differ 
markedly from their adult counterparts in terms of mo-
lecular characteristics, histology, mutational burden, and 
neoantigen profile, has yet to be determined.52–54 We pro-
vide an overview of past and current challenges faced 
in vaccine development and conclude by highlighting 
emerging technologies that overcome historic challenges 
and therefore have greater promise for treating child-
hood malignancies.

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/3/1/vdab027/6133441 by guest on 20 April 2024



3Olsen et al. Vaccination in pediatric cancers
N

eu
ro-O

n
colog

y 
A

d
van

ces

Vaccination Types

Dendritic Cell Vaccines

Dendritic cells (DCs) are “professional” antigen-presenting 
cells (APCs) that are specialized for processing and pre-
senting antigens for priming CD4+ and CD8+ T cells and 
producing cytokines that drive expansion and differentia-
tion of T-cell responses.55 Thus, DCs act as a bridge between 
innate and adaptive immunity.20,56,57 For use as cellular 
vaccines, autologous DCs are isolated via apheresis, ma-
tured using immunostimulatory agents (eg, filgrastim), 
and loaded with an antigen before reinjection into the 
patient via the intradermal, intravenous, intranodal, or 
subcutaneous route.58,59 The advantage of isolating and 
manipulating DCs ex vivo is that antigen loading and ac-
tivation can be performed under controlled conditions. 
Advances in gene-editing technologies including viral 
transduction, RNA interference, and CRISPR/Cas9 have 
greatly expanded scientists’ ability to engineer DCs to op-
timally perform a host of antitumoral functions.60 In addi-
tion, DC vaccines are often paired with adjuvants, such as 
imiquimod, interleukin-2, or KLH, which may be provided 
in the DC cultures or concomitantly delivered to increase 
the magnitude and duration of the antitumor response.61 
Limitations of DC-based vaccines include the labor-in-
tensive and costly cell isolation/enrichment and ex vivo 
stimulation process62, potentially weak responses due to 
insufficient cell numbers or inadequate cell activation or 
phenotype; and/or T-cell inactivation from an immuno-
suppressive tumor environment.63 Despite these chal-
lenges, it is notable that the first cancer vaccine to receive 
Food and Drug Administration approval is the DC vaccine 
sipuleucel-T (Provenge) for prostate cancer.64

Based on data from phase I/II trials, DC-based vaccina-
tion appears to be well tolerated with minimal toxicity in 
children with a diverse spectrum of malignancies and pre-
treatment conditions.57,65–67 Table 2 provides a summary of 
DC-based vaccine trials in children. Of note, most of these 

trials used autologous whole tumor lysate as antigenic ma-
terial. Despite the non-randomized format of early-phase 
safety studies, several pediatric trials of DC-based vac-
cines have reported improvement in clinical outcomes, 
albeit transient, which directly correlated with the degree 
of cytotoxic T lymphocyte (CTL) response as compared 
to historical controls. However, it should be noted that 
all patients eventually progressed on therapy. A phase II 
trial investigating an autologous tumor lysate-pulsed DC 
vaccine in children with metastatic or relapsed sarcomas 
demonstrated a 12% increase in OS in the DC-based vac-
cine group compared to children receiving standard of 
care chemotherapy. Five-year OS of patients in the Ewing 
sarcoma/rhabdomyosarcoma subgroup was an unprece-
dented 77%68 compared with 30–50% as per historical con-
trols.69–71 Infusion of autologous DCs and CTLs has also 
been shown to eradicate the minimal residual disease in 
children with acute myeloid leukemia following chemo-
therapy.72 A study evaluating an autologous tumor lysate-
pulsed DC vaccine in 45 children with relapsed malignant 
brain tumors demonstrated efficacy.57 Median OS for re-
lapsed HGG, GBM, and anaplastic astrocytoma patients 
was 13.5, 12.2, and 18.4  months, respectively, with the 
authors noting that HGG and atypical teratoid–rhabdoid 
tumor appeared to respond more favorably as compared 
to medulloblastoma/primitive neuro-ectodermal tumor 
and ependymoma. A follow-up phase IIb trial is currently 
ongoing (EudraCT 2009-018228-14). Benitez-Ribas recently 
performed a phase I study of a DC vaccine pulsed with au-
tologous tumor cell-lines lysate as the antigen adminis-
tered intradermally with KLH as the adjuvant, which is used 
as a source of CD4+ T-cell (helper) epitopes to augment 
the response, in 9 patients with newly diagnosed diffuse 
midline glioma (DMG) (formerly termed “diffuse intrinsic 
pontine glioma” or “DIPG”), a highly aggressive and uni-
versally fatal subgroup of pediatric HGG.73 A  specific 
antitumor response was observed in 8 patients as iden-
tified by immunologic studies in peripheral blood mono-
nuclear cells. Cerebrospinal fluid (CSF) analyses showed 
anti-DMG specific T lymphocytes in 2 patients. Though the 

  
Table 1. A Focused Comparison of the Different Classes of Cancer Vaccinations

Vaccination 
Class

Advantages Disadvantages

Dendritic cell 
(DC)

•  Clinical efficacy established (eg, Sipleucel-T)  
•   Greater control over DC activation and phenotype through 

ex vivo manipulation

•   High cost, labor-intensive manufacturing to 
process patient samples ex vivo

Peptide •   Synthetic and rapidly manufacturable using automated 
equipment  

•   Most modular, enabling immune programming through 
adjuvant selection  

•   Low toxicity, low risk for biocontamination

•   Weakly immunogenic unless adequately for-
mulated with immunostimulant (adjuvant) in 
nanoparticles  

•   Limited number of antigens compared with nu-
cleic acid and viral approaches

Nucleic acid 
(DNA/RNA) 

•   Rapid manufacturing using primarily automated equip-
ment  

•   RNA has inherent innate immune (adjuvant) activity, 
shown to lead to robust T-cell responses

•   DNA weakly induces T-cell immunity  
•   T-cell responses with RNA have been variable 

and depend on delivery platform and route of 
injection

Viral vectors •   Most potent vaccines for inducing T-cell immunity  
•   Viruses with large genomes can accommodate many 

antigens and other encoded therapies 

•   Anti-vector immunity limits the number of injec-
tions that can be given to patients  

•   Use of cell-based expression systems leads to 
higher costs, potential biocontaminants
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authors have not yet reported clinical outcomes data, the 
vaccine was well tolerated and no dose-limiting toxicities 
were observed.

In summary, DC-based vaccination appears to be well 
tolerated and effective for inducing T-cell immunity in pe-
diatric cancers, though additional studies will be needed 
to fully understand the potential of these therapies for the 
pediatric population.

Peptide Vaccines

An alternative to loading DCs with antigenic material ex 
vivo is to vaccinate patients with peptide antigens that can 
be processed and presented by endogenous APCs, par-
ticularly DCs, that prime T-cell immunity in lymph nodes 
draining the sites of vaccination.49 Peptide vaccines gen-
erally include one or more synthetic peptides comprising 
tumor antigens combined with immunostimulants (“adju-
vants”) that are used to enhance peptide antigen immu-
nogenicity.83,84 The length of peptide antigens is selected 
to maximize the breadth of the T-cell response and de-
pends, in part, on the antigenic target. For TSAs, peptide 
antigens of 25 amino acids in length are typically used 
wherein the middle (15th amino acid) is the mutant (ie, 
tumor-specific) residue.85,86 This length ensures that all 
8–11 amino acid CD8+ T-cell epitopes and most 12–15 amino 
acid CD4+ T-cell epitopes including the mutant amino acid 
are represented in each sequence. A similar rationale is ap-
plied to TAAs, whereby protein antigens greater than 100 
amino acids in length are produced as a pool of peptide 
fragments overlapping by 9–14 amino acids to ensure that 
most CD4+ and CD8+ T-cell epitopes are represented.87,88 
Finally, to maximize the breadth of T-cell responses, pep-
tide vaccines typically composed of  up to 20 unique pep-
tide antigens, which is largely dictated by manufacturing 
and cost constraints.

Peptide vaccines are advantageous in that they can 
be produced rapidly, at relatively low cost, entirely by 
synthetic processes using automated equipment.89,90 
Additionally, peptide vaccines are among the most mod-
ular as they, unlike, other vaccine platforms (eg, viruses), 
have little to no inherent immunostimulatory proper-
ties and therefore enable the quality and magnitude of 
the immune response to be programmed based on the 
adjuvant(s) used.91–93 A potential disadvantage of peptide-
based vaccines is that they permit a lower antigen payload 
(~20 peptide antigens each of 25–35 amino acids in length) 
as compared with recombinant vaccine approaches (eg, 
viruses and nucleic acids) that can encode multiple pro-
tein antigens that are each several hundred amino acids 
in length.94 However, more antigens are not necessarily 
better. The presence of multiple antigens can lead to com-
petition that may diminish the response against any one 
specific antigen.20,34 Additionally, T-cell responses directed 
against a single antigen can mediate durable tumor re-
gression.95,96 Thus, it is likely that the antigen payload of 
peptide-based therapeutic cancer vaccines, which typically 
comprise about 10–20 peptide antigens, is sufficient given 
appropriate antigen selection.43,97

Table 3 provides a summary of peptide-based vac-
cine trials in children. In the pediatric setting, several 
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early-phase studies have investigated Wilms’ Tumor gene, 
WT-1, targeted peptide-based vaccines in children with 
solid and hematologic malignancies. In a study of 5 pa-
tients with various malignancies, Hashii et al.98 found that 
intradermal vaccination with a single WT-1-derived short 
(9 amino acid) peptide antigen formulated in a water-in-
oil emulsion-based adjuvant, Montanide ISA51, induced 
complete remission in one patient and a period of stable 
disease in another patient. However, clinical benefit was 
limited with 4 patients experiencing disease progres-
sion and/or death during the trial. In a larger study of 26 
children and young adults less than 20 years old with re-
lapsed solid and hematologic malignancies, no patients 
demonstrated a clinical response.99 Limited efficacy with 
this approach may be due to the use of only a single short 
(minimal epitope) peptide antigen resulting in limited T-cell 
breadth, and/or use of an emulsion formulation that lacks 
immunostimulants (eg, Toll-like receptor agonists [TLRa]) 
needed for strong T-cell induction100 and may instead pro-
mote T-cell exhaustion.101

Additional peptide vaccines targeting conserved tumor 
antigens have been tested in pediatric clinical studies. 
Kushner et  al.109 performed a phase I  trial in which 15 
children with high-risk neuroblastoma were administered 
a vaccine containing the immunological adjuvant OPT-821 
and the neuroblastoma-associated antigens GD2 and GD3. 
Patients were also given β-glucan, a biologic response 
modifier that enhances the antitumor response.110,111 No 
patients had dose-limiting toxicities and 12 patients dem-
onstrated an antibody response against GD2 and/or GD3. 
Carcinoembryonic antigen glypican-3 (GPC3), a hepatic 
heparan sulfate proteoglycan expressed in many pedi-
atric tumors such as hepatoblastoma, yolk-sac tumors, 
and Wilms’ tumors, has also been piloted as a target for 
vaccination.112,113 A phase I  study of 18 pediatric patients 
with GPC3-expressing solid tumors found that vaccination 
with a single MHC-I matched GPC3-peptide formulated in 
a water-in-oil emulsion improved or maintained clinical 
status (CR + PR + SD) in 67% of patients,114 despite using a 
suboptimal emulsion formulation, as discussed above.

Early peptide vaccine studies in pediatric CNS malig-
nancies have been encouraging. Pollack et  al.102 investi-
gated the safety and performance of a peptide vaccine 
targeting known glioma-associated antigens (IL-13Rα2, 
EphA2, and survivin) administered subcutaneously with 
polyinosinic–polycytidylic acid (poly[I:C]), a TLR-9 ago-
nist, stabilized by poly(lysine) and carboxymethylcellulose 
(poly-ICLC) adjuvant in 26 children with newly diagnosed 
brainstem or non-brainstem gliomas. Five children had 
pseudoprogression, a transient increase in edema, and 
contrast enhancement secondary to a treatment-induced 
immune response that was followed by stabilization and/
or regression.115 Patients with pseudoprogression were 
successfully treated with dexamethasone and had a higher 
median survival (19.5  months vs 10.9  months). A  phase 
I study of cytomegalovirus (CMV)-specific peptide vaccine 
in patients with recurrent medulloblastoma and malignant 
glioma is ongoing (NCT03299309) and is of interest given 
the noted expression of CMV proteins in such tumors.116

Peptide vaccines are also being studied in DMG. Ochs 
et  al.117 showed that vaccination with peptides derived 
from H3.3K27M (a unifying oncogenic mutation resulting 
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early-phase studies have investigated Wilms’ Tumor gene, 
WT-1, targeted peptide-based vaccines in children with 
solid and hematologic malignancies. In a study of 5 pa-
tients with various malignancies, Hashii et al.98 found that 
intradermal vaccination with a single WT-1-derived short 
(9 amino acid) peptide antigen formulated in a water-in-
oil emulsion-based adjuvant, Montanide ISA51, induced 
complete remission in one patient and a period of stable 
disease in another patient. However, clinical benefit was 
limited with 4 patients experiencing disease progres-
sion and/or death during the trial. In a larger study of 26 
children and young adults less than 20 years old with re-
lapsed solid and hematologic malignancies, no patients 
demonstrated a clinical response.99 Limited efficacy with 
this approach may be due to the use of only a single short 
(minimal epitope) peptide antigen resulting in limited T-cell 
breadth, and/or use of an emulsion formulation that lacks 
immunostimulants (eg, Toll-like receptor agonists [TLRa]) 
needed for strong T-cell induction100 and may instead pro-
mote T-cell exhaustion.101

Additional peptide vaccines targeting conserved tumor 
antigens have been tested in pediatric clinical studies. 
Kushner et  al.109 performed a phase I  trial in which 15 
children with high-risk neuroblastoma were administered 
a vaccine containing the immunological adjuvant OPT-821 
and the neuroblastoma-associated antigens GD2 and GD3. 
Patients were also given β-glucan, a biologic response 
modifier that enhances the antitumor response.110,111 No 
patients had dose-limiting toxicities and 12 patients dem-
onstrated an antibody response against GD2 and/or GD3. 
Carcinoembryonic antigen glypican-3 (GPC3), a hepatic 
heparan sulfate proteoglycan expressed in many pedi-
atric tumors such as hepatoblastoma, yolk-sac tumors, 
and Wilms’ tumors, has also been piloted as a target for 
vaccination.112,113 A phase I  study of 18 pediatric patients 
with GPC3-expressing solid tumors found that vaccination 
with a single MHC-I matched GPC3-peptide formulated in 
a water-in-oil emulsion improved or maintained clinical 
status (CR + PR + SD) in 67% of patients,114 despite using a 
suboptimal emulsion formulation, as discussed above.

Early peptide vaccine studies in pediatric CNS malig-
nancies have been encouraging. Pollack et  al.102 investi-
gated the safety and performance of a peptide vaccine 
targeting known glioma-associated antigens (IL-13Rα2, 
EphA2, and survivin) administered subcutaneously with 
polyinosinic–polycytidylic acid (poly[I:C]), a TLR-9 ago-
nist, stabilized by poly(lysine) and carboxymethylcellulose 
(poly-ICLC) adjuvant in 26 children with newly diagnosed 
brainstem or non-brainstem gliomas. Five children had 
pseudoprogression, a transient increase in edema, and 
contrast enhancement secondary to a treatment-induced 
immune response that was followed by stabilization and/
or regression.115 Patients with pseudoprogression were 
successfully treated with dexamethasone and had a higher 
median survival (19.5  months vs 10.9  months). A  phase 
I study of cytomegalovirus (CMV)-specific peptide vaccine 
in patients with recurrent medulloblastoma and malignant 
glioma is ongoing (NCT03299309) and is of interest given 
the noted expression of CMV proteins in such tumors.116

Peptide vaccines are also being studied in DMG. Ochs 
et  al.117 showed that vaccination with peptides derived 
from H3.3K27M (a unifying oncogenic mutation resulting 

in global methylation perturbation), and formulated in a 
water-in-oil emulsion administered subcutaneously, pro-
duced an effective, mutation-specific CD4+ and CD8+ T-cell-
mediated immune response with antigen presentation on 
both MHC classes I and II in a humanized mouse model. 
Although they observed tumor regression in murine 
models, the experimental design consisted of DMG tumors 
in the flank rather than intracranially. This vaccine epitope 
is currently being tested in phase 1 clinical trial in combina-
tion with checkpoint inhibitors in children (NCT02960230).

While it is too early to quantify the potential of peptide-
based vaccines for pediatric cancers, more advanced trials 
have been conducted in the adult population. Indeed, 
several phase III adult solid tumor trials have been con-
ducted and have failed to show any clinical benefit.118–120 
While these results have dampened the initial enthusiasm 
for peptide-based vaccine approaches, recent mechanistic 
data suggest that suboptimal formulations may account, in 
part, for the observed weak efficacy and that formulating 
peptide antigens in nanoparticles that target endogenous 
DCs that promote T-cell immunity may be needed to im-
prove efficacy.121 Additionally, similarly to DC vaccines, 
peptide vaccines appear to perform optimally in patients 
with lower disease burden and when administered con-
comitantly with other treatment modalities like checkpoint 
inhibitors to allow for synergistic antitumor effects.122

In summary, peptide-based cancer vaccines can safely 
induce anticancer T-cell immunity in pediatric and adult 
populations; however, further studies are needed to un-
derstand how to optimize the composition (eg, delivery 
vehicle and adjuvant) and combination approaches with 
complementary therapeutic modalities to maximize T-cell 
responses and efficacy in children.

Nucleic Acid Vaccines

Nucleic acid vaccines utilize plasmid DNA or mRNA to ex-
press tumor antigens through transient transfection of 
muscle tissue or APCs (eg, DCs) following administration. 
Multiple genes can be incorporated into a single vector, and 
the nucleic acid can be modified to modulate expression and 
innate stimulation to augment the immune response.65,123,124 
Similar to peptide-based vaccines, nucleic acid vaccines en-
able lower costs and more rapid manufacturing as compared 
with cellular or viral vector-based vaccines, but, unlike pep-
tides, still require the use of costly recombinant enzymes for 
production.125 While early clinical studies in adult patients 
showed that DNA vaccines were sufficient in invoking a 
cellular and humoral immune response, there was little ev-
idence of clinical benefit.126 Indeed, recent preclinical data 
suggest that the platform and site of nucleic acid administra-
tion are critical to the capacity of such approaches to induce 
T-cell immunity.127 Thus, numerous delivery approaches have 
been developed to improve antigen expression in APCs as 
a means to improve efficacy through the use of direct intra-
lymph node injection, gene gun, electroporation, ultrasound, 
laser, liposome, microparticles, and/or nanoparticles.128–131 
Among the nucleic acid vaccine approaches, RNA lipoplexes 
appear to be one of the most promising and have shown the 
greatest capacity for inducing anticancer T-cell immunity.127 
Though additional optimization will be needed to balance 
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gene expression with innate stimulation that may lead to sys-
temic toxicity and blunting of antigen expression, early data 
suggest that RNA-based vaccination approaches may even-
tually have a great therapeutic impact in pediatric cancers.

Viral Vector Vaccines

Recombinant viral vectors, typically derived from the 
Poxviridae, Adenoviridae, and Rhabdoviridae families, 
are engineered to express tumor antigen transgenes 
and are among the most potent vaccine technolo-
gies for inducing T-cell immunity.132–134 Viral vectors 
provide the advantages that they can encode a large 
number of antigens that can be expressed at high levels 
and rendered immunogenic through intrinsic innate 
immunostimulatory capacity of the virus. Viral vectors 
can be further engineered to maximize gene expression, 
target specific cell populations, and/or encode multiple 
additional therapeutic modalities.135 Though viral vectors 
are easier to produce, purify, and store relative to more 
costly and labor-intensive cellular vaccines, like DC vac-
cines,136 their dependence on recombinant technologies 
can result in higher costs than synthetic peptide-based 
vaccine approaches, and antibodies generated against 
the vector (antivector immunity) can limit their use to a 
single administration.137

PROSTVAC, a well-studied poxviral-based vaccine 
targeting prostate-specific antigen that also contains 
transgenes for T-cell co-stimulatory molecule expression, 
showed promise in an early-phase II double-blind ran-
domized trial in metastatic castration-resistant prostate 
cancer; however, results from the subsequent phase III 
trial failed to show any survival improvement over pla-
cebo.138,139 PROSTVAC in combination with the anti-CTLA-4 
checkpoint inhibitor, ipilimumab, for metastatic castration-
resistant prostate cancer has been proven safe in a phase 
I  trial140 and is currently being assessed in a randomized 
phase II trial (NCT02933255).

The vaccine TG4010, a modified vaccinia Ankara vector 
expressing MUC1 and IL-2, has been evaluated in combi-
nation with first-line chemotherapy for the treatment of 
patients with advanced-stage non-small-cell lung cancer 
and was found to improve progression-free survival at 
6  months.141 Though there are no current ongoing clin-
ical trials, there are promising preclinical data to sug-
gest that viral-based vaccines may be effective in brain 
tumors. Abdelaziz et  al.142 designed human cytomega-
lovirus (HCMV)-based vaccine expressing E6-derived 
peptide fused to HCMV proteins. Patient-derived GBM 
cells infected with these vectors efficiently stimulated 
E6-specific T cells. Additionally, a phase I  dose escala-
tion evaluating the safety of aglatimagene besadenovec 
(AdV-tk), an adenoviral vector expressing herpes virus 
thymidine kinase, followed by anti-herpetic prodrug in 
pediatric malignant glioma or recurrent ependymoma 
found the approach to be safe in combination with radia-
tion therapy and temozolomide143; a subsequent phase II 
study is planned.

Combination Immunotherapy

Therapeutic cancer vaccines principally mediate tumor 
clearance through the induction of cytotoxic T cells. 
However, cancers can evade T-cell recognition and killing 
by promoting an immunosuppressive environment, in-
cluding through the expression of immune checkpoint 
molecules (eg, PD-L1) that directly inhibit T-cell killing. 
To overcome the immunosuppressive environment of 
tumors, vaccines that induce T-cell immunity should be 
used in combination with complementary therapies that 
reverse immune suppression. Indeed, many groups are 
starting to explore the potential of a combinatorial ap-
proach using vaccination to enhance the efficacy of other 
immunotherapy-based treatment modalities including 
checkpoint inhibitors, antiangiogenic agents, oncolytic vir-
uses, and radiation.19,144

One of the most promising combination immunother-
apies is the use of cancer vaccines with checkpoint in-
hibitors (eg, anti-PD-1/PD-L1 and anti-CTLA-4). Myriad 
preclinical studies have shown that cancer vaccines used 
in combination with checkpoint inhibitors lead to signif-
icantly improved efficacy as compared with either treat-
ment used alone,145 and now multiple clinical trials are 
ongoing evaluating this combination in patients.19 Among 
the most promising studies thus far, a phase I trial found 
that a GM-CSF cell-based vaccine (“GVAX”) in combi-
nation with ipilimumab, an anti-CTLA-4 antibody, en-
hanced the preexisting endogenous tumor-specific T-cell 
response compared to treatment with ipilimumab alone. 
Posttreatment expansion of the mesothelin-specific T-cell 
repertoire was associated with a significant improvement 
in OS in the combination arm, suggesting that the fre-
quency of preexisting mesothelin-specific T cells are low 
and require a vaccine to induce larger pools of precursor 
T-cells.146

The use of viruses to modulate the tumor microenvi-
ronment and provide a more permissive environment for 
T-cell killing is another promising strategy that is gaining 
increasing attention. Accordingly, Koske et  al.147 demon-
strated that combination treatment of Vesicular Stomatitis 
Virus-glycoprotein (VSV-GP), a chimeric VSV pseudotyped 
with GP of the lymphocytic choriomeningitis virus, fol-
lowed by an ovalbumin peptide-loaded DC vaccine, sig-
nificantly enhanced survival over either agent alone in a 
murine melanoma model. The authors found that this 
strategy alleviated local immune suppression in the 
tumor microenvironment by reducing regulatory T cells, 
activating tumor-infiltrating lymphocytes, and increasing 
inflammatory cytokines.

Though most combinatorial approaches have been 
tested in adults, there are a number of ongoing trials in the 
pediatric setting. A phase I trial using GVAX in combination 
with nivolumab (anti-PD-1) and ipilimumab (anti-CTLA-4) 
for refractory neuroblastoma is ongoing (NCT04239040). 
Krishnadas et al. reported complete remission in a patient 
with relapsed stage 4 neuroblastoma after treatment with 
decitabine to upregulate cancer testis antigen expression, 
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followed by DC vaccine targeting the cancer testis antigens 
MAGE-A1, MAGE-A3, and NY-ESO. Additional phase 
I  studies are underway to evaluate concomitant vacci-
nation and radiation for pediatric HGG (NCT03615404, 
NCT02722512, and NCT00634231).

Challenges and Emerging Technologies

While a variety of cancer vaccines have been evaluated 
in adult and pediatric patients, most have provided only 
modest efficacy. The shortcomings of prior vaccines 
may be in part due to weak immunogenicity of the vac-
cine leading to insufficient magnitude of CD8+ T-cell re-
sponses; inadequate, or loss, of expression of the tumor 
antigen, thereby enabling tumor cells to evade recogni-
tion; and/or, inability of vaccine-induced T cells to over-
come the suppressive tumor microenvironment.15,20,148 
Recent advances in tumor antigen identification and se-
lection algorithms are enabling more reliable antigen se-
lection, and checkpoint inhibitors have proven effective 
for unleashing T cells to mediate tumor-specific killing. 
A key challenge remains the availability of vaccine tech-
nologies for reliably inducing high-magnitude CD8+ 
T-cell responses that correlate with immunotherapy effi-
cacy.15,20,148 Indeed, patients treated with a peptide-based 
vaccine comprising peptide neoantigens admixed with 
the immunostimulant polyICLC (Hiltonol) experienced 
limited benefit from therapy despite promising preclin-
ical data.85 Weak efficacy may be, in part, attributed to 
inadequate formulation of the peptide neoantigens (see 
below), though limitations in neoantigen prediction 
and selection cannot be ruled out as their validation is 
not possible in the absence of clear vaccine-mediated 
efficacy.

Toward improving peptide-based vaccine formulations 
for inducing CD8+ T-cell immunity, Lynn et  al.121 devel-
oped a vaccine platform based on peptide antigen–TLRa 
conjugates that are programmed to self-assemble into 
nanoparticles of an optimal size (~20 nm) for targeting 
lymph node resident DCs that promote T-cell immunity. 
Programmed self-assembly was developed to ensure for-
mulation consistency for all possible antigens that can 
be generated from the human genome, thus enabling 
a universal approach for formulating tumor antigens. 
Importantly, improved formulation of tumor antigens, 
including neoantigens, with TLRa in self-assembling 
nanoparticles promoted improved uptake by and ac-
tivation of APCs (eg, DCs) that was associated with en-
hanced immunogenicity and improved tumor clearance 
in 3 murine tumor models.121 They also found that pep-
tide physical form is a key determinant of CD8+ T-cell 
immunogenicity.

Specifically, they showed that hydrophilic, water-sol-
uble peptide antigens are often non-immunogenic even 
when combined with potent immunostimulants, such 
as polyICLC, but that rendering such peptide antigens 
particulate significantly improves immunogenicity.121 
These data suggest that codelivery of peptide antigens 
with specific immunostimulants in nanoparticles will be 
key to the success of peptide-based cancer vaccines and 

that self-assembling nanoparticles (eg, SNP-7/8a) offer 
an effective platform for achieving consistent nanopar-
ticle formulations needed for reliable induction of CD8+ 
T cells.

Another promising peptide-based vaccine ap-
proach for ensuring codelivery of tumor antigens and 
immunostimulants in nanoparticles for inducing T-cell 
immunity is the use of synthetic high-density lipoprotein 
nanodiscs, which can be coupled with immunostimulatory 
CpG oligonucleotides and tumor antigen peptides. Kuai 
et al.149 recently reported that the use of this nanocarrier 
technology in a murine colon adenocarcinoma model gen-
erated a robust neoantigen-specific CD8+ T-cell response 
resulting in complete inhibition of tumor growth; addition-
ally, concomitant vaccination with dual PD-1 and CTLA-4 
blockade led to complete tumor regression in approxi-
mately 90% of mice.

Though many next-generation vaccine technologies 
have been focused on solid tumors, innovation in bio-
materials science has also made considerable progress in 
the setting of hematologic malignancies. Shah et al.150 de-
veloped a macroporous cryogel composed of cross-linked 
polyethylene glycol and alginate scaffolding with en-
trapped TLR-9a cytosine–guanosine oligodeoxynucleotide 
and GM-CSF immunostimulants. Prophylactic administra-
tion of this vaccine with either WT-1 antigen or tumor cell 
lysate in a mouse model of AML elicited a potent CTL re-
sponse and prevented engraftment of malignant cells in 
the bone marrow. Combinatorial administration of the vac-
cine with standard chemotherapeutic agents eradicated es-
tablished AML and generated transferable protective T-cell 
immunity.

In addition to the type of vaccine used, the route of 
administration and vaccine schedule will likely require 
optimization in the clinical setting to achieve maximal 
benefit for patients. Accordingly, while most vaccines 
are administered by the intramuscular or subcutaneous 
routes, mounting evidence suggests that vaccination by 
the intravenous route may be favorable for promoting 
T-cell-mediated immunity independent of the vaccination 
platform used.127,151

A final consideration is how to integrate cancer vac-
cines into a complex treatment regimen comprising che-
motherapy, radiotherapy, and immunotherapy, which may 
not always have synergistic effects. Indeed, many cancer 
patients require corticosteroid therapy at different points 
throughout treatment for various reasons (eg, tumor/
treatment-related edema, pain relief, appetite stimula-
tion).152 However, there is growing evidence to suggest that 
the immunosuppressive nature of these drugs, due in large 
part to their effects on T-cell apoptosis, may reduce the ef-
ficacy of therapeutic approaches that rely on stimulating 
a robust anticancer immune response.153,154 Wong et al.155 
found that dexamethasone treatment in adult patients with 
recurrent GBM profoundly decreased the efficacy of radia-
tion and chemotherapy, leading to lower OS. Pitter et al.156 
found similar results in a retrospective analysis of GBM 
patient cohorts, which showed dexamethasone-induced 
antiproliferative effects conferred protection from radio-
therapy- and chemotherapy-induced genotoxic stress. In 
a phase I study of H3.3K27M peptide vaccination in pedi-
atric patients with DMG and DIPG, Mueller et al.104 found 

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/3/1/vdab027/6133441 by guest on 20 April 2024



 10 Olsen et al. Vaccination in pediatric cancers

a negative association between dexamethasone adminis-
tration and the longitudinal expansion of vaccine-reactive 
CD8+ T cells. Though, while immunosuppressive chemo-
therapy agents can have deleterious effects on cancer 
vaccine efficacy, certain chemotherapy regimens, partic-
ularly those that promote immunogenic cell death or se-
lective depletion of suppressor cells (eg, regulatory T cells 
or myeloid-derived suppressor cells), have been shown to 
enhance vaccine efficacy.157,158 Therefore, further research 
will be needed to fully delineate the impact and optimal 
regimen of chemotherapies, including corticosteroids, on 
cancer vaccination efficacy.

Conclusions

The ability of checkpoint inhibitors and adoptive cell 
therapies to mediate durable regression of certain ad-
vanced cancers provides clinical proof-of-concept that 
tumor antigen-specific T cells can mediate tumor clear-
ance and improve patient outcomes. These observations 
have fueled a resurgence in efforts to advance thera-
peutic cancer vaccines for priming and/or expanding 
tumor antigen-specific T-cell responses in patients 
for use alone or in combination with other therapies. 
Despite their immense promise, however, therapeutic 
cancer vaccines have only shown modest benefit in a 
small cohort of primarily adult patients in early-stage 
trials. While many challenges remain, the emergence 
of improved vaccine technologies for inducing T-cell im-
munity, as well as refined tools for tumor antigen selec-
tion, provide optimism that next-generation therapeutic 
cancer vaccines may effectively overcome historic lim-
itations. Additionally, combination immunotherapies, 
including vaccines combined with checkpoint inhibitors, 
oncolytic viruses, certain chemotherapeutics,159 and/or 
radiation, are emerging as effective approaches for re-
versing immune suppression within the tumor and aug-
menting vaccine efficacy.

Finally, it should be noted that vaccines and other im-
munotherapies that are safe but fail to demonstrate effi-
cacy in adults with advanced cancers should not be ruled 
out for evaluation in pediatric populations. Adults are less 
responsive to vaccines due to thymic atrophy, whereas 
younger patients are more responsive to immunother-
apies and are therefore more likely to mount an effective 
T-cell response to therapeutic cancer vaccines. Despite 
this general recognition, most novel immunotherapies 
are evaluated in adult populations, and treatments that 
fail in adults are often not advanced to testing in children. 
However, the small number of early-phase studies that 
have been conducted with pediatric patients has shown 
great promise in terms of safety, feasibility, and ability 
to generate an immunologic response. Though objec-
tive clinical response rates are low, advances in antigen 
design, adjuvant therapy, and combinatorial approaches 
may drastically change the landscape of immunotherapy 
in pediatric cancer.

In summary, given the tremendous potential of ther-
apeutic cancer vaccines and their higher likelihood of 
success in pediatric populations, cancer vaccines and 

combination therapies should be rigorously investi-
gated as potentially life-saving treatments for children 
with advanced malignancies refractory to conventional 
approaches.
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combination therapies should be rigorously investi-
gated as potentially life-saving treatments for children 
with advanced malignancies refractory to conventional 
approaches.
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