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Abstract
Background. Stereotactic radiosurgery (SRS) may cause radiation necrosis (RN) that is difficult to distinguish from 
tumor progression (TP) by conventional MRI. We hypothesize that MRI-based multiparametric radiomics (mpRad) 
and machine learning (ML) can differentiate TP from RN in a multi-institutional cohort.
Methods. Patients with growing brain metastases after SRS at 2 institutions underwent surgery, and RN or TP 
were confirmed by histopathology. A radiomic tissue signature (RTS) was selected from mpRad, as well as single 
T1 post-contrast (T1c) and T2 fluid-attenuated inversion recovery (T2-FLAIR) radiomic features. Feature selection 
and supervised ML were performed in a randomly selected training cohort (N = 95) and validated in the remaining 
cases (N = 40) using surgical pathology as the gold standard.
Results. One hundred and thirty-five discrete lesions (37 RN, 98 TP) from 109 patients were included. Radiographic 
diagnoses by an experienced neuroradiologist were concordant with histopathology in 67% of cases (sensitivity 
69%, specificity 59% for TP). Radiomic analysis indicated institutional origin as a significant confounding factor for 
diagnosis. A random forest model incorporating 1 mpRad, 4 T1c, and 4 T2-FLAIR features had an AUC of 0.77 (95% 
confidence interval [CI]: 0.66–0.88), sensitivity of 67% and specificity of 86% in the training cohort, and AUC of 0.71 
(95% CI: 0.51–0.91), sensitivity of 52% and specificity of 90% in the validation cohort.
Conclusions. MRI-based mpRad and ML can distinguish TP from RN with high specificity, which may facilitate the 
triage of patients with growing brain metastases after SRS for repeat radiation versus surgical intervention.

Key Points

• A growing lesion after stereotactic radiosurgery is difficult to diagnose on conventional 
MRI.

• Multiparametric radiomics and machine learning can provide accurate, noninvasive 
diagnosis.

Multiparametric radiomic tissue signature and machine 
learning for distinguishing radiation necrosis from 
tumor progression after stereotactic radiosurgery
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Stereotactic radiosurgery (SRS) is a standard of care in pa-
tients with brain metastasis.1,2 SRS provides excellent local 
control, but one of the most common side effects is radia-
tion necrosis (RN). The incidence of RN after SRS can range 
between 5% and 25%, depending on the definition, diag-
nostic approach, and whether pathologic confirmation is 
obtained.3 However, tumor progression (TP) can often man-
ifest with similar imaging characteristics on conventional 
MRI (cMRI) with T1 post-contrast (T1c) and T2 fluid-attenuated 
inversion recovery (FLAIR) sequences.4,5 Clinically, accurate 
diagnosis of a growing lesion is imperative, because early 
salvage intervention, such as repeat SRS, may offer superior 
oncologic outcomes for patients with progressive tumor, 
whereas RN may often stabilize or resolve spontaneously, 
obviating the need for invasive procedures. Accumulating 
evidence indicates that repeat SRS may be safely delivered 
in cases of confirmed TP.6–8 Moreover, in patients with RN 
who are asymptomatic or minimally symptomatic, sur-
gical interventions may interfere with the quality of life.9,10 
Therefore, noninvasive diagnostic approaches may allow 
selection of the subset of patients who may benefit from re-
peat radiation and reduce the need for surgical intervention.

Currently, lesion growth after SRS often requires confir-
mation by advanced MRI or surgical pathology, as cMRI 
has shown limited clinical utility in differentiating TP from 
RN.11 Reports have indicated wide variation in sensitivity 
(43%–91%) and specificity (33%–88%) using qualitative 
cMRI features.12–14 In contrast, radiomics can extract 
quantitative texture features, which can serve as noninva-
sive biomarkers for various disease processes.15–17 CT and 
MRI radiomic features have been shown to correlate with 
benign versus malignant processes.18–20 Furthermore, 
newer methods, such as multiparametric radiomics 
(mpRad), offer more complete tissue characterization.20,21 
MpRad has outperformed single radiomic parameters in 
predicting breast cancer recurrence when correlated with 
Oncotype gene array methods.22 Moreover, radiomics 
combined with machine learning (ML) have been applied 
in patients with brain metastases to distinguish RN from 
TP with moderate success.23–26 However, previous studies 
only included small, single-institution cohorts, with lim-
ited pathologic information and little to no external 
validation.

We previously published an MRI radiomic tissue signa-
ture (RTS-1) consisting of 6 T1c and 4 T2-FLAIR features, 
which showed an area under the curve (AUC) of 0.81 for the 
receiver operating characteristics (ROC) using an Isomap 
SVM (IsoSVM) algorithm in a single-institution series.27 
The aim of this study is to test whether the addition of 
mpRad features can improve the diagnostic accuracy of 
the ML classifier in a large, multi-institutional patient co-
hort of post-SRS RN and TP, using surgical pathology as the 
gold standard.

Methods and Materials

Patients

This study was approved by the Institutional Review Board. 
Patients with brain metastases treated with SRS at 2 inde-
pendent institutions (Johns Hopkins University [JH] and 
Wake Forest University [WF]) from 2003 through 2017 were 
included. Patients whose index lesions were previously 
treated with whole brain radiotherapy (WBRT) or surgery 
were eligible. The JH cohort was included in a previous 
single-institution study.27 Brain metastases that increased 
in size on cMRI subsequent to SRS, generally through sev-
eral scans and with associated symptoms, were surgically 
sampled for therapeutic benefit, pathologic confirmation, 
and/or symptom relief. A small subset of cases (5 lesions) 
where the growing lesions subsequently stabilized or re-
gressed were also included as RN as per prior study.27 
Lesions that had mixed RN and TP on pathology were clas-
sified as TP.27

Neuroradiologist Interpretation

The pre- and post-SRS MRIs were reviewed by a board-cer-
tified neuroradiologist (D.L.) with 20  years of post-
fellowship experience blinded to the histopathologic 
diagnosis. Radiographic diagnoses of either RN or TP were 
made based on cMRI lesion characteristics. Mixed lesions, 
for which at least part of the lesion on cMRI was interpreted 
as tumor, were classified as progression to be consistent 

Importance of the Study

Stereotactic radiosurgery (SRS) is a key treat-
ment option for patients with brain metas-
tases. It may cause radiation necrosis, which 
can manifest clinically and radiographically 
indistinguishable from tumor progression on 
conventional MRI. Using the largest, patho-
logically confirmed, multi-institutional col-
lection of post-SRS radiation necrosis and 
progression, we identified and validated a 
novel multiparametric radiomic tissue signa-
ture for radiation necrosis. Our study demon-
strates the utility of combining multiparametric 

radiomics and machine learning in ascertaining 
individual diagnosis. Furthermore, our results 
highlight important potential confounding fac-
tors in the research of imaging biomarkers, 
namely different clinical practices and imaging 
parameters employed by different institutions. 
The multiparametric radiomic signature iden-
tified in our study has the important clinical 
utility of helping to triage patients for repeat 
radiation versus surgical sampling in the pres-
ence of lesion growth after SRS.
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with pathologic interpretation. The JH cohort was previ-
ously reviewed,27 and was re-reviewed in the same manner 
as the WF cases for the current study to ensure consistency 
between the 2 cohorts.

MRI Acquisition and Radiomic Feature Extraction

MRI acquisition parameters are listed in Supplementary 
Table S1. There were significant variations in the MRI 
scanners and imaging parameters used. This study fol-
lowed the previously published radiomics workflow.27 In 
brief, T2-FLAIR images were rigidly registered to the T1c 
sequence based on bony anatomical references using the 
Velocity AI software (Varian Medical Systems). The lesions 
were segmented manually based on the single largest di-
ameter seen on the T1c sequence. Fifty-six single radiomic 
features (for each MRI sequence) were extracted using 
an in-house software developed with MATLAB (The Math 
Works). In addition, 39 mpRad features from the combined 
T1c and T2-FLAIR images were also extracted as previously 
described.20 The full list of single and mpRad features are 
listed in Supplementary Table S2.

Exploratory Data Analysis

To visualize the heterogeneity and clustering tendency 
of the combined dataset, we performed t-distributed sto-
chastic neighbor embedding (tSNE) and hierarchical clus-
tering using “Rtsne” and “ComplexHeatmap” packages 
in R software (version 3.6.3).28,29 The tSNE is a nonlinear 
dimensionality reduction technique to visualize complex 
data in a 2-dimensional space.28 Radiomic features were 
first normalized by centering the means at 0 and scaling 
by standard deviation. The parameters for tSNE anal-
ysis were determined empirically as follows: dimension 
2, perplexity 30, max iteration 10,000, and learning rate 
5.  Hierarchical clustering was performed in a bottom up 
manner using complete linkage method, with 4 clusters 
of cases split by institutional origins and pathologic diag-
noses (Supplementary Figure S1).

Radiomic Tissue Signature (RTS-2) Selection

Seventy percent of the combined dataset was randomly 
assigned to training (N  =  95) and the remaining 30% to 
validation (N  =  40). All feature selection and model op-
timization procedures were performed in the training 
dataset to avoid information leakage using the “Caret” 
package in R software. Pathologically confirmed RN and 
TP lesions were compared using 2-sided t-tests, and those 
with P values <.25 were further selected by recursive elim-
ination (Supplementary Table S3, RN vs TP). The threshold 
used here was iteratively selected to improve inclusive-
ness of radiomic features and model performance. Given 
the potential confounding factor of institutional origin, 16 
features that were strongly correlated with institutional 
origin (JH vs WF P < 3.60 × 10-4 on t-tests with Bonferroni 
correction) were excluded from further feature selection 
(Supplementary Table S3, features labeled with *). Finally, 
all features from the previous RTS-1 was also included in 

recursive elimination.27 This resulted in 19 T1c, 18 T2-FLAIR, 
and 5 mpRad features for recursive elimination, which was 
performed by iterative elimination of one feature from 
the training dataset and maximizing the AUC of a random 
forest model based on the remaining features in each 
iteration.

Statistical Analyses

All statistical analyses were performed in the R soft-
ware. Clinical characteristics were compared using 
Fisher’s exact tests for categorical variables or 
Wilcoxon rank sum tests for continuous variables. 
Radiographic diagnoses by the neuroradiologist were 
compared to pathologic diagnoses, and the sensitivity 
and specificity were calculated using a confusion ma-
trix. Intra-observer reliability was assessed in the JH 
cohort by comparing the initial radiographic diagnoses 
for the previous study to the diagnoses from re-review 
in the current study using kappa test. Radiomic fea-
tures were compared between institutional origins (JH 
vs WF) and between diagnoses (RN vs TP) using 2-sided 
t-tests. Detailed description of machine learning 
methods can be found in the Supplementary Material. 
Performance of ML models was evaluated using AUCs 
in the training and testing datasets. The optimal sen-
sitivity and specificity were calculated by maximizing 
the Youden index. Wilcoxon rank sum tests were used 
to compare the median AUCs of the 2 RTSs and the 
sampling techniques (none vs random oversampling 
vs SMOTE). DeLong’s tests were used to compare 
ROCs of the 4 ML algorithms. Statistical significance 
was defined as P < .05.

Results

Patients and Treatment Characteristics

A total of 135 lesions (37 pure RN, 78 pure TP, 20 mixed) 
from 109 patients were evaluated. Table 1 lists the base-
line patient and treatment characteristics. The WF dataset 
contained more cases of pure TP (69.8 vs 50.0%, P = .01), 
fewer lesions in the frontal lobe (9.4 vs 35.4%) and more 
in the cerebellum (28.3 vs 17.1%, P = .009). The JH dataset 
contained more postoperative cavities (41.5 vs 5.7%, P < 
.001) and fewer patients who received prior WBRT (18.3 
vs 41.5%, P =  .005). The majority of the SRS treatments 
at JH were delivered using a robotic system (70.7%) or 
linear accelerator (LINAC, 19.5%), while all SRS treat-
ments at WF were delivered using a Cobalt-60 system 
(P < .001). Thirty-seven patients in the JH cohort (45.1%) 
and none in the WF cohort received multi-fraction SRS in 
3–5 fractions. The remaining clinical characteristics were 
not significantly different between JH and WF cohorts, 
including primary histology (most commonly non-small 
cell lung cancer and breast, P = .06), lesion volume (me-
dian 3.7 vs 2.5cm3, P  =  .72), WBRT dose (median 35 vs 
35Gy, P =  .08), SRS marginal dose (median 20 vs 18Gy, 
P =  .05), and days from SRS to surgery (median 278 vs 
321 days, P = .32).

D
ow

nloaded from
 https://academ

ic.oup.com
/noa/article/3/1/vdab150/6409703 by guest on 17 April 2024

http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab150#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab150#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab150#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab150#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab150#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab150#supplementary-data
http://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab150#supplementary-data


 4 Chen et al. Multiparametric radiomics for radiation necrosis

Neuroradiologist Interpretation

Representative MRI images and radiomic features are 
shown in Figure 1. Both RN (Figure 1, top left panels) 
and TP (Figure 1, top right panels) demonstrated ring-
enhancement around the periphery on T1c images and 
significant vasogenic edema on T2-FLAIR images. The 
radiomic images (single radiomic Entropy, middle panels; 
mpRad Clonality, bottom panels) clearly demarcate the 
heterogeneity of the lesion and surrounding tissue in both 
RN and TP. All cases were reviewed by an experienced 
neuroradiologist to render an interpretation. Radiographic 
diagnoses were concordant with pathology in 90 of the 

135 cases (67% accuracy), with a sensitivity of 69% and 
specificity of 59%. Within the JH cohort, which have been 
re-reviewed for the current study, there was poor intra-
observer agreement (72% concordant between previous 
and current interpretation), with a kappa statistic of 0.0727 
(P  =  .48), indicating tremendous uncertainty in radio-
graphic diagnosis based on cMRI alone.

Multiparametric Radiomics and Feature Selection

The initial radiomic feature space consisted of 139 vari-
ables. We performed tSNE analysis to explore the 

  
Table 1. Patient and Treatment Characteristics

Total  
N = 135

JH  
N = 82

WF  
N = 53

P values  
JH vs WF

Male (%) 50 (37.0) 30 (36.6) 20 (37.7) 1

Pathology/N (%)    .01

 RN 37 (27.4) 30 (36.6) 7 (13.2)  

 TP 78 (57.8) 41 (50.0) 37 (69.8)  

 Mixed 20 (14.8) 11 (13.4) 9 (17.0)  

Primary histology    .06

 NSCLC 41 (30.4) 28 (34.1) 13 (24.5)  

 Breast 36 (26.7) 16 (19.5) 20 (37.7)  

 Melanoma 27 (20.0) 21 (25.6) 6 (11.3)  

 SCLC 12 (8.9) 6 (7.3) 6 (11.3)  

 Other 19 (14.1) 11 (13.4) 8 (15.1)  

Tumor Characteristics

Lesion location (%)    .009

 Frontal 34 (25.2) 29 (35.4) 5 (9.4)  

 Parietal 33 (24.4) 16 (19.5) 17 (32.1)  

 Temporal 24 (17.8) 14 (17.1) 10 (18.9)  

 Occipital 15 (11.1) 9 (11.0) 6 (11.3)  

 Cerebellar 29 (21.5) 14 (17.1) 15 (28.3)  

Post-op cavity 37 (27.4) 34 (41.5) 3 (5.7) <.001

Lesion volume/cm3 3.3  
[0.04–52.8]

3.7  
[0.04–36.4]

2.5  
[0.18–52.8]

.72

Radiation Parameters

Prior WBRT 37 (27.4) 15 (18.3) 22 (41.5) .005

WBRT dose/Gy 35 [25–40] 35 [25–37] 35 [30–40] .08

SRS technique    <.001

 Robotic 58 (43.0) 58 (70.7) 0 (0.0)  

 Cobalt-60 61 (45.2) 8 (9.8) 53 (100.0)  

 LINAC 16 (11.9) 16 (19.5) 0 (0.0)  

SRS marginal dose/Gy 20 [10–25] 20 [14–25] 18 [10–22] .05

SRS fractions 1 [1–5] 1 [1–5] 1 [1–1] <.001

SRS prescription isodose line (%) 63 [42–95] 68.5 [50–95] 50 [42–80] <.001

Days from SRS to surgery 307 [21–1351] 278 [21–1351] 321 [65–1226] .32

Summary statistics are presented as number (percentage) for categorical variables, and median [range] for continuous variables.
JH, Johns Hopkins cases; LINAC, linear accelerator; NSCLC, non-small cell lung cancer; RN, radiation necrosis; SCLC, small cell lung cancer; SRS, 
stereotactic radiosurgery; TP, tumor progression; WBRT, whole brain radiotherapy; WF, Wake Forest cases.
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heterogeneity within the combined dataset. As shown in 
Figure 2, JH (open dots) and WF (closed dots) cases clearly 
separated into 2 groups with different group means (rep-
resented by the smaller dots in the center of the ellipses). 
RN (individual lesions represented by circles and 95% con-
fidence intervals [CI] of the mean represented by white 
ellipses) and TP (triangles, with gray ellipses representing 
95% CIs) did not clearly separate. Supplementary Figure 
S1 shows the heatmap and hierarchical clustering of all 
normalized radiomic features (x-axis) and cases (y-axis) by 
diagnosis and institutional origins. Some radiomic features 
(marked by the yellow boxes) were strongly associated 
with institutional origin rather than diagnosis, suggesting 
that case origin may be a significant confounding factor for 
diagnoses. Those features that strongly correlated with in-
stitutional origins were excluded from further feature se-
lection (Supplementary Table S3, features labeled with *).

After recursive elimination, RTS-2 included one mpRad 
feature (mpRad Minimum) and eight single radiomic fea-
tures (4 T1c and 4 T2-FLAIR). Table 2 compares the current 
radiomic signature (RTS-2) to the previously published 
signature (RTS-1), stratified by institutional origin and di-
agnosis. In addition to mpRad Minimum, new features in 
RTS-2 included T1c Cluster Tendency, T2-FLAIR Informational 
Measure of Correlation 2, and T2-FLAIR Short and Long Run 
High Gray-Level Emphasis, all of which showed significant 
or near significant association with diagnosis (Table 2). 
Among the 6 features from RTS-1 that were not selected 
for RTS-2, 5 (T1c NGTDM Texture Strength, T1c Grey Level 

Nonuniformity, T1c Run Percentage, T2-FLAIR NGTDM 
Texture Strength, T2-FLAIR NGTDM Coarseness) showed 
significant or near significant association with institutional 
origin, suggesting that case origin may be a confounding 
factor for RTS-1. Since no mpRad features were included 
in the previous study, RTS-1 with or without mpRad 
Minimum was tested separately for its predictive perfor-
mance and compared with RTS-2.

Distinguishing Tumor Progression from Radiation 
Necrosis Using Radiomics-Based ML

Figure 3 and Supplementary Table S4 summarize the pre-
dictive performance of RTS-2, in comparison with RTS-1 
and RTS-1 plus mpRad Minimum. The AUCs of all models 
were plotted in Figure 3A (training) and 3B (validation). 
RTS-2 had higher median AUC in the training cohort than 
RTS-1 (P = .004) and RTS-1 plus mpRad Minimum (P = .004, 
Supplementary Table S5). In the validation cohort, RTS-2 
had more consistent performance (AUC range 0.59–0.73) 
than RTS-1 (0.57–0.80, F test for variance P =  .12). Figure 
3C (training) and 3D (validation) demonstrate the perfor-
mance of RTS-2-based models stratified by sampling tech-
niques to mitigate the effect of class imbalance. There was 
a trend of better performance for models using random 
oversampling compared to SMOTE in the validation co-
hort (P = .20, Figure 3D, Supplementary Table S5). Finally, 
using RTS-2 and random oversampling, the AUCs from 4 

  

T1 Post-contrast T2  FLAIR

Radiation necrosis

Entropy

Clonality

Tumor progression

T1  Post-contrast T2  FLAIR

Entropy

Clonality

Figure 1. Representative examples of radiation necrosis (Left) and tumor progression (Right) in metastatic brain lesions (boxes) treated with ster-
eotactic radiosurgery. The original T1 post-contrast and T2-FLAIR images are shown in the top row. Radiomic images of entropy (middle row) and 
mpRad clonality (bottom row) demonstrate heterogeneity of the lesions (line arrows) and surrounding edema (open arrows).
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ML algorithms (GLM, RF, RDA, and SVM) were compared 
in Figure 3E (training) and 3F (validation). The RF model 
showed a trend for better performance in both the training 
(AUC  =  0.77, 95% CI 0.66–0.88) and validation cohort 
(AUC = 0.71, 95% CI 0.51–0.91). Figure 4 shows the ROC 
curves of the final RF model. The sensitivity and specificity 
(for TP) were 67% and 86% in the training cohort, and 52% 
and 90% in the validation cohort, resulting in a positive 
likelihood ratio of 4.8 and 5.2, respectively.

Discussion

Distinguishing RN from TP represents a major clinical chal-
lenge in optimizing the management of patients with brain 
metastases treated with SRS. To address this challenge, we 
have employed novel mpRad for improved brain tissue 
characterization. This study represents the largest, multi-
institutional collection of cases of TP and RN, in which in-
dividual diagnoses were confirmed by surgical pathology. 

We demonstrated the feasibility of distinguishing TP from 
RN using advanced mpRad and ML techniques, and iden-
tified a new radiomic signature and predictive model with 
improved performance in a heterogeneous cohort of pa-
tients. Furthermore, we systematically evaluated ML al-
gorithms and adjusted for class imbalance to improve the 
rigor of feature selection and modeling. The final optimized 
classifier was able to identify TP with high specificity. Our 
methodology and results will further advance the utiliza-
tion of artificial intelligence and radiomics in radiation on-
cology and medicine in general.

Stereotactic radiosurgery provides excellent oncologic 
outcomes, with 12-month local control up to 75%–90% and 
preservation of neurocognitive functions in several large 
prospective randomized trials.30–32 However, radiation ne-
crosis can occur at a similar rate to local recurrence, in 
5%–25% of lesions.33,34 Recognized risk factors of RN in-
clude lesion size and SRS dose.35,36 A  large retrospective 
study showed a crude rate of RN of 25.8% at a median fol-
low-up of 17 months, 67% of which were symptomatic.35 
Another multi-institutional study of 1533 brain metastases 
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Figure 2. T-distributed stochastic neighbor embedding (tSNE) analysis showing separation of cases from the 2 institutions. The high-dimensional 
radiomic feature space containing 139 single and multiparametric features and 135 cases is represented in 2-dimensional space with arbitrary 
axes using the tSNE. Individual cases are represented by circles (radiation necrosis, RN, N = 37) and triangles (tumor progression, TP, N = 98). 
Institutional origins are represented by open (Johns Hopkins cases, JH) or closed (Wake Forest cases, WF) dots. Ellipses (RN, white; TP, gray) rep-
resent 95% confidence intervals of group means (smaller dots in the center of the ellipses).
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treated with single-fraction SRS showed a 2-year cumula-
tive incidence of only 8.9% for RN.36 The large variation in 
the reported rates of RN may be partly due to significant 
diagnostic uncertainty, especially without pathologic con-
firmation. In a report of 15 cases of imaging-diagnosed 
RN, only 7 cases were confirmed to be pure RN on histo-
pathology, while the remaining 8 cases represented tumor 
progression based on pathology.37 Our own data under-
lined such uncertainty, in that the intra-observer agreement 
of an experienced neuroradiologist reviewing the same 
images was only 72%, and the concordance between ra-
diographic and pathologic diagnoses was only 67%. Thus, 
better quantitative biomarkers are needed to improve the 
interpretation of cMRI changes after SRS.

Clinically, an integrated imaging approach using ad-
vanced MRI methods coupled with quantitative radiomic 
metrics would be a major advancement in providing op-
timal, individualized care for patients with brain metas-
tases. Imaging confirmation of TP may guide the use of 
repeat radiation without invasive diagnostic procedures 
and minimize the need for surgical intervention, which 
would improve patients’ quality of life.6–8 In this study, 
our best radiomic-based model demonstrates similar 
sensitivity to a neuroradiologist for identifying tumor 

progression (67% vs 69%), but with substantially higher 
specificity (86% vs 59%). The high positive likelihood 
ratio (4.8–5.2) of this model suggests that it may be able 
to identify a subset of patients for whom progression is 
more likely and repeat radiation can be safely delivered 
without the need for surgical confirmation. For those pa-
tients whose diagnoses remain ambiguous by imaging 
or who have significant symptom burden, surgical sam-
pling and pathologic confirmation should still be the gold 
standard for diagnosis, as there is concern about inadvert-
ently irradiating existing necrosis. Therefore, the radiomic 
tissue signature and machine learning model identified in 
this study may be useful in complementing radiologists’ 
interpretation and triaging patients for noninvasive versus 
invasive management pathways.

Various advanced imaging modalities, such as posi-
tron emission tomography (PET), MR perfusion and MR 
spectroscopy (MRS), have been investigated for distin-
guishing RN from TP.38–41 Recent studies combining PET 
and radiomics analysis have demonstrate encouraging 
results in single-institution studies with small patient 
cohorts, although these will require independent vali-
dation.42,43 However, there is currently no consensus on 
how to incorporate these imaging modalities into routine 

  
Table 2. Summary of Radiomic Features (mean ± standard deviation) in the 2 Radiomic Tissue Signatures (RTS)

RTS-1 RTS-2 JH vs WF RN vs TP

  JH  
N = 82

WF  
N = 53

P value RN  
N = 37

TP  
N = 98

P 
value

MpRad Minimum N Y 0.09 ± 0.06 0.08 ± 0.06 .392 0.11 ± 0.06 0.08 ± 0.07 .036

T1c Minimum Y Y 158.16 ± 
118.44

900.51 ± 
961.05

<.001 315.95 ± 
374.05

500.06 ± 
792.74

.178

T1c Cluster Tendency N Y 162.75 ± 
106.17

176.37 ± 
143.92

.529 141.47 ± 96.32 178.15 ± 
129.47

.12

T1c Fractal Dimension Y Y 1.41 ± 0.14 1.43 ± 0.11 .29 1.38 ± 0.15 1.43 ± 0.12 .047

T1c NGTDM Texture 
Strength

Y N 94.76 ± 72.32 70.81 ± 64.98 .053 114.64 ± 81.33 74.30 ± 62.58 .003

T1c NGTDM Coarseness Y Y 0.03 ± 0.02 0.02 ± 0.01 .004 0.03 ± 0.02 0.02 ± 0.02 .001

T1c Grey Level Nonuni-
formity

Y N 751.57 ± 
501.93

1441.08 ± 
991.96

<.001 688.53 ± 
474.12

1148.26 ± 
868.17

.003

T1c Run Percentage Y N 0.46 ± 0.15 0.64 ± 0.21 <.001 0.44 ± 0.16 0.56 ± 0.20 .002

T2-FLAIR Minimum Y Y 3487.84 ± 
2303.25

3250.70 ± 
1932.44

.603 4091.22 ± 
1875.55

3160.93 ± 
2267.18

.041

T2-FLAIR Kurtosis Y N 3.37 ± 1.22 3.67 ± 1.58 .285 3.11 ± 1.36 3.59 ± 1.31 .08

T2-FLAIR NGTDM Texture 
Strength

Y N 253.08 ± 
360.44

123.26 ± 
80.98

.043 328.66 ± 
496.18

172.32 ± 
189.14

.016

T2-FLAIR NGTDM 
Coarseness

Y N 0.04 ± 0.03 0.02 ± 0.01 .001 0.05 ± 0.04 0.03 ± 0.02 <.001

T2-FLAIR Informational 
Measure of Correlation 2

N Y 0.87 ± 0.07 0.91 ± 0.04 .002 0.86 ± 0.10 0.89 ± 0.05 .045

T2-FLAIR SRHGE N Y 0.02 ± 0.02 0.02 ± 0.03 .383 0.01 ± 0.01 0.02 ± 0.03 .114

T2-FLAIR LRHGE N Y 1475.00 ± 
1011.33

1870.48 ± 
852.17

.05 1418.46 ± 
637.62

1654.04 ± 
1081.33

.25

Y and N indicate features included or not included in each RTS, respectively. P values were from 2-sided T-tests.
JH, Johns Hopkins cohort; LRHGE, Long Run High Gray-Level Emphasis; MpRad, multiparametric radiomic feature; NGTDM, Neighborhood Greytone 
Difference Matrix; RN, radiation necrosis; SRHGE, Short Run High Gray-Level Emphasis; TP, tumor progression; WF, Wake Forest cohort.
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Figure 3. Comparisons of radiomic tissue signatures (RTS), sampling techniques and machine learning algorithms. RTS-1 with or without mpRad Minimum 
(MP), and RTS-2 were entered into supervised machine learning models using general linear model (GLM), random forest (RF), regularized discriminant anal-
ysis (RDA), and support vector machine (SVM) algorithms, with no oversampling, Synthetic Minority Oversampling Technique (SMOTE), or random oversam-
pling (Over) of RN cases. Each dot represents the area under the curve (AUC) of the receiver operating characteristics in the training (A, C and E) or testing (B, D 
and F) cohorts. Panels A and B compare RTS-1, RTS-1 with MP and RTS-2. Panels C and D compare RTS-2-based models with no oversampling (None), SMOTE 
or random oversampling (Over). The box plots indicate the median and interquartile range, while the whiskers mark min and max. Panels E and F compare AUCs 
(central dot, whiskers indicate 95% confidence intervals) of the 4 algorithms using RTS-2 and random oversampling.
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clinical practice.3 Furthermore, these techniques may 
not be widely available, and their interpretation may be 
subject to local technical expertise, variations in scan-
ning techniques, and radiologists’ experience. Several 
cMRI features have been proposed to distinguish tumor 
from treatment effect. A  retrospective study of 49 pa-
tients with 52 brain metastases treated by SRS showed 
that perilesional edema may differentiate TP from RN 
with positive predictive value of 92%, although this has 
not been independently validated.44 In another cohort of 
32 patients with growing lesions after SRS, lesion quo-
tient, or the ratio between the lesion seen on T2 images 
to the total enhancing area on T1 post-contrast images, 
was most effective in distinguishing TP from RN, with a 
sensitivity of 100% but specificity of only 32%.12 However, 
this feature failed to provide accurate diagnoses in an ex-
ternal validation cohort.14

In contrast to qualitative radiographic biomarkers, un-
biased quantitative metrics, such as radiomic features, 
may improve the diagnostic accuracy with cMRI.17,45–47 
Radiomics can extract the different contrast and inherent 
texture of MRI images, which may be related to the under-
lying biology of the tissue.20,47 Several machine learning 
algorithms, combined with radiomics, have been used to 
distinguish RN versus TP. Tiwari et al. described a proce-
dure of minimum redundancy and maximum relevance 
feature-selection and feed-forward selection in combina-
tion with SVM to distinguish RN and TP in a small cohort 
of patients (22 in training and 4 in validation cohort).23 
T2-FLAIR features showed an AUCs of 0.79 in the training 
dataset, but an accuracy of only 50% in the external 

validation set.23 Similarly, another single-institution study 
employed recursive feature elimination and SVM, re-
sulting in an AUC of >0.9. However, only 10% of the le-
sions in this cohort had pathologic confirmation, and 
there was no external validation.24 Finally, Zhang et  al. 
used concordance correlation coefficients for feature se-
lection and RUSBoost, a decision tree–based ensemble 
algorithm, to classify RN versus TP in a single-institution 
cohort of 87 patients with pathologic confirmation.25 The 
model produced an AUC of 0.73 by leave-one-out cross 
validation, but this study also did not contain an external 
validation set.25 None of the previous reports presented 
full radiomic images that could be compared to the 
mpMRI data in the current study.

Recently, a meta-analysis reviewed all published 
studies of conventional MRI radiomics in diagnosing pro-
gression of brain metastasis after treatment, and found 
that all studies to date were single-institution and most 
were without pathologic confirmation. Therefore, our 
study represents a major step forward in this area.48 Our 
study represents one of the largest reported collections 
(109 patients with 135 individual lesions from 2 inde-
pendent institutions) of pathologically confirmed radia-
tion necrosis. Given the heterogeneity of this combined 
dataset, we systematically evaluated several steps of the 
radiomics and machine learning process. First, we con-
ducted careful feature selection using t-tests and recur-
sive feature elimination, while excluding the features that 
may be confounded by case origin. Second, we incorpo-
rated the newly discovered mpRad features, and dem-
onstrated improved predictive performance compared 
to the previously published radiomic signature. Third, 
since RN represents a substantial minority, we deliber-
ately evaluated random oversampling and SMOTE during 
model optimization to circumvent the potential model 
instability caused by class imbalance. Finally, we com-
pared 4 supervised ML algorithms and demonstrated that 
a random forest model trained with RTS-2 and random 
oversampling achieved the highest AUC in the validation 
cohort. In summary, since no single algorithm can uni-
versally fit all situations and data types, our work adds 
tremendous insight into the complexity of the machine 
learning workflow and may help to improve radiomics-
based classification studies in the future.

One of the limitations of radiomics-based machine 
learning is the potential for model overfitting.16,21 This 
may be mitigated by careful feature selection and the use 
of external validation data. The heterogeneity within the 
combined radiomic dataset may be related to variations 
in treatment techniques, imaging parameters, and clin-
ical practice, such as the threshold to recommend surgery 
and the types of surgery performed. This inherent hetero-
geneity, evidenced by the clear segregation of cases with 
respect to institutional origins, may improve the external 
applicability of our results.

There are several potential caveats to our study. 
Despite the extensive effort to collect cases, our com-
bined dataset included only 109 patients, partly due to 
the fact that the vast majority of patients with imaging 
evidence of tumor growth did not require surgical in-
tervention. We considered it essential to include pa-
tients with pathologic confirmation, as standard MRI 
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Figure 4. Receiver operating characteristics (ROC) of the final 
random forest model (RTS-2 with random oversampling of minority 
cases for class imbalance) for distinguishing tumor progression from 
radiation necrosis in the training (solid line) and validation (dashed 
line) cohorts.
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diagnosis of necrosis versus progressive tumor is unre-
liable. However, there may be subtle differences in the 
imaging characteristics or tumor/host biology between 
patients with RN that require surgical intervention and 
those that do not. Lastly, differences in institutional prac-
tices may add unknown biases due to subtle differences 
in how patients are recommended for surgery between 
the 2 centers. Future validation of our results in an inde-
pendent dataset will be necessary, and requires multilat-
eral collaboration.

Conclusions

In a large, diverse patient cohort from 2 institutions, our 
data highlight the diagnostic uncertainty of radiation ne-
crosis in patients with brain metastases treated with ster-
eotactic radiosurgery. A  new radiomic tissue signature 
incorporating mpRad features demonstrated improved di-
agnostic accuracy over a previous signature using single 
radiomic features. Systematic evaluation of multiple steps 
in the radiomics and machine learning workflow resulted in 
improved model performance in the validation dataset. This 
model may be of important clinical utility by selecting for 
the patients who may benefit from salvage SRS without the 
need for surgical sampling. Our methodology and results 
should be validated prospectively in future clinical trials.
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