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ABSTRACT

The rapid rise of arthropods during the Cambrian quickly established some clades, such as the euarthropod
stem-group called Radiodonta, as the dominant and most diverse predators in marine ecosystems. Recent
discoveries have shown that the size and dietary ecology of radiodontans are far more diverse than

previously thought, but little is known about the feeding habits of juveniles. Here, we document a very small

(~18-mm-long), near-complete specimen of the radiodontan Lyrarapax unguispinus from the early
Cambrian Chengjiang Biota of China. This specimen is the smallest radiodontan individual known,
representing a juvenile instar. Its adult-like morphology—especially the fully developed spinose frontal

appendages and tetraradial oral cone—indicates that L. unguispinus was a well-equipped predator at an early

developmental stage, similar to modern raptorial euarthropods, such as mantises, mantis shrimps and

arachnids. This evidence, coupled with the basal phylogenetic position of radiodontans, confirms that

raptorial feeding habits in juvenile enarthropods appeared early in the evolutionary history of the group.
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INTRODUCTION

Many Cambrian members of the iconic euarthro-
pod stem-group known as radiodontans (Anomalo-
caris and kin) have been viewed as giant apex preda-
tors ever since their true body plan was revealed
over 30 years ago [ 1-3]. However, more recent find-
ings have shown that the body size of some early
Palaeozoic radiodontans can range from 4 cm to
over 200 cm in length [4-6] and that the highly
variable frontal appendage morphologies are sugges-
tive of a range of feeding modes, from shell-crushing
to filter-feeding [6-11]. Lyrarapax from the early
Cambrian Chengjiang Biota of China represents
the smallest radiodontan taxon, with previously re-
ported body sizes ranging from 4 to 8 cm in length
[4,5]. Until now, the frontal appendage morphol-
ogy of the type species, Lyrarapax unguispinus was
only known from a single, incomplete appendage
[4,5], but the preserved details imply a predatory
function. The juvenile specimen of L. unguispinus de-
scribed here not only provides novel information
on the frontal appendages and feeding mode in this
taxon, but sheds new light on the morphology of the

mouth apparatus and the phylogenetic concept of
the Radiodonta.

RESULTS AND DISCUSSION
General morphology

The small specimen (total body length: 18 mm) of
L. unguispinus documented here (Figs 1-3 and Sup-
plementary Fig. 1, available as Supplementary Data
at NSR online), from the lower Cambrian (Series
2, Stage 3) Yu'anshan Member, Chiungchussu For-
mation of Yunnan Province in China, is relatively
complete and shows features not seen in the type
specimens [4,5], including a fully articulated frontal
appendage (FA) and a sclerotized oral cone; see
Supplementary Data at NSR online, for a detailed
description and taxonomic discussion. The FA com-
prises 12 podomeres (P1-12): P2-6 bear complex
endites of alternating sizes, but no dorsal spines;
P7-11 are devoid of endites, but have stout dor-
sal spines; and P12 has a short, robust distal claw
(Fig. 2 and Supplementary Fig. 1a, available as Sup-
plementary Data at NSR online). Of note is the
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Figure 1. Juvenile specimen of Lyrarapax unguispinus. (a) and (b) Part of a near-complete specimen (XDMU-133) and inter-
pretative drawing. (c) and (d) Counterpart (mirrored) and interpretative drawing. Scale bar in (a) is 2 mm and applies to all
images. af, anterior flange; as, anterior sclerite; cr, caudal rami; es, eye stalk; ey, eye; fa, frontal appendage; fg, foregut;
Is, lateral sclerite; mhg, undifferentiated midgut-hindgut; nm, neck muscle; oc, oral cone; sr, strengthening rays; tf, trunk
flap; tm, trunk muscle. Colours: dark grey, cephalic sclerites; dark purple, foregut; green, frontal appendages; light purple,
undifferentiated midgut-hindgut; pink, muscle blocks; yellow, oral cone.

hypertrophied endite on P2 that hosts at least seven
anterior auxiliary spines (Fig. 2c). The oral cone
consists of many circumoral plates, including four
large, perpendicularly arranged plates with surfi-
cial nodes (Fig. 3a and b). This tetraradial arrange-

ment of large, node-bearing plates intercalated be-
tween a series of smaller plates is very similar to
the Peytoia/Hurdia-like oral cone recently described
from the early Cambrian Guanshan Lagerstitte of
China [12].
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Figure 2. Frontal appendage of Lyrarapax unguispinus. (a) and (b) Photographs of part and counterpart. (c) and (d) Back-
scattered electron micrographs of part and counterpart, showing the anterior sclerite (as), auxiliary (arrowheads) and dorsal
(Ds) spines, endites (E), distal claw (dc) and podomere (P) boundaries. All scale bars: 1 mm.

Significance of the oral cone

The presence of a tetraradial oral cone in L. un-
guispinus has important implications for radiodon-
tan systematics. Previously documented specimens
of Lyrarapax from the Chengjiang Biota do not
display a plated mouth apparatus, but rather a se-
ries of concentric ridges and furrows [4,5]. Based
on the occurrence of this feature in one specimen
of each species (L. unguispinus and L. trilobus), a
lack of circumoral plates was interpreted as a mor-
phological characteristic of Lyrarapax, rather than
a taphonomic artefact [S]. This prompted a revised
generic diagnosis, and also challenged the original
concept of the Radiodonta [3,5]. The oral cone
in the new specimen of L. unguispinus (Fig. 3a
and b) indicates that its absence in other speci-
mens of Lyrarapax is indeed preservational. The
displacement or lack of other external, sclerotized
features (e.g. FAs) suggests that the previously illus-
trated Lyrarapax specimens represent carcasses that
have suffered from some preferential decay of ar-
ticulating membrane and post-mortem disturbance
[13-15]; exuvia can be ruled out, as all specimens
preserve internal labile tissues. Thus, an alternative
interpretation of the oral structures previously de-

scribed for L. unguispinus (Figs la—d, f in [4]) and
L. trilobus (Figs 1.3, 1.5, 2.2, 2.3 in [S]) is that
they represent soft tissues—possibly the pharynx
and its musculature—internally located behind the
oral cone; the ‘triangular areas’ seen in the holo-
type (Fig. 1f in [4]) may represent impressions of,
or even attachment points for, the large plates of
the oral cone. Moreover, isolated radiodontan oral
cones have been found in most Cambrian Konservat-
Lagerstitten [9,12,16], demonstrating that they were
often disarticulated from the body during ecdysis
or after death, and later subjected to biostratinomic
sorting.

The discovery of a sclerotized oral cone in
Lyrarapax demonstrates that the presence of ra-
dial circumoral plates remains a consistent trait
of the Radiodonta (particularly as a single coher-
ent unit) and indeed a characteristic feature of
lower stem-group euarthropods [17,18] and other
ecdysozoans [19]. Also, our phylogenetic analysis
of radiodontans based on an updated version of
a recent dataset [6] (available as Supplementary
Data at NSR online) retrieves Lyrarapax nested
within a monophyletic Amplectobeluidae (Supple-
mentary Fig. 2, available as Supplementary Data at
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Figure 3. Mouth apparatus and gut of Lyrarapax unguispinus. (a) and (b) Oral cone showing tetraradial arrangement of large
plates. (a) Detail showing clear impressions of large and small plates. (b) Outlines of preserved plates and nodes. (c) and
(d) Complete gut with impressions of segment boundaries (arrowheads) in the foregut and possible midgut digestive glands
(asterisks); (c) part and (d) counterpart (mirrored). All scale bars: 1 mm. an, anus; fg, foregut; Ip, large plate; m, mouth; mhg,
undifferentiated midgut-hindgut; no, node; oc, oral cone; sp, small plate.

NSR online). The tetraradial arrangement appears to
be plesiomorphic for Radiodonta, and the presence
ofnode-bearing platesis a synapomorphy of Anoma-
locarididae + Amplectobeluidae [12,20].

Raptorial feeding in adult and juvenile
radiodontans

Of the diverse radiodontan FA morphologies
[5,6,8,10], those of amplectobeluids appear the
best suited for grasping and manipulating prey,
characterized by a proximal hypertrophied en-
dite and a series of robust dorsal spines distally
[4,5,8,20-22] (Supplementary Fig. 3, available as
Supplementary Data at NSR online). Lack of an
articulation joint at the base of the hypertrophied
endite indicates that it may have functioned as the
rigid part of a ‘claw’, with the more flexible portion

of the FA represented by the distal podomeres, thus
permitting pincer-like capture of prey [2,8]. The
stout, curved dorsal spines on the distal podomeres,
when curled inwards, would have aided in securing
the prey [8]. Also, the combination of a ‘dorsal kink’
in the proximal portion of the FAs (Fig. 4b and
Supplementary Fig. 3, available as Supplementary
Data at NSR online) and reduced head sclerites may
have afforded the raptorial appendages a greater
range of motion and degree of flexibility for striking
and seizing prey [23]. As described above, the FA of
L. unguispinus shows a pronounced morphological
and therefore functional differentiation along its
proximo-distal axis. The proximal podomeres are
armed with complex endites, the smaller of which
would have converged towards the serrated margin
of the hypertrophied spine during flexion (Fig. 2 and
Supplementary Fig. 1a, available as Supplementary
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Figure 4. Reconstructions of Lyrarapax unguispinus. (a) Complete body in dorsal view. (b) Frontal appendage in lateral view,
showing the spinosity pattern along the proximo—distal axis and dorsal kink (arrow). A more proximal, long podomere is
suggested based on the morphology of Amplectobelua symbrachiata. (c) Artistic representation of the animal.

Data at NSR online). This likely resulted in crushing
or slicing of prey before ingestion; the similar
FAs of Amplectobelua stephenensis may have had a
comparable function [8]. In contrast, the endites of
A. symbrachiata are more simple and slender and,
while the FA of this species would have undoubt-
edly been used to grab prey, mastication was likely
performed separately by gnathobase-like structures
[20]. Amplectobeluid FAs may have been able
to apply considerable force, as evidenced by the
darker pigmentation of their spines in Chengjiang
specimens (e.g. Supplementary Fig. 3a, available as
Supplementary Data at NSR online; Figs 3.2, 3.4
in [S]; Fig. 1A in [20]). This darker colouration is
often indicative of a local thickening of the cuticle,
as recently demonstrated for the gnathobases of
the Cambrian durophagous euarthropod Sidneyia
inexpectans [24]. However, forceful capture may
have caused occasional damage, as seen in A.
symbrachiata FAs where the more delicate (non-
hypertrophied) endites have broken off in some
cases [20,21].

This raptorial feeding mode in Lyrarapax and
Amplectobelua seems to extend to juveniles as well.
Immature specimens of L. unguispinus (Figs 1 and 2)
and A. symbrachiata (Fig. 3Ain [2]; Fig. 125in [25];
extended data Fig. 1b-d in [4]) show that the FAs
have distinct adult-like morphologies. Also, the pres-
ence of large eyes, well-developed body flaps and an
enlarged gut in juveniles [2,25] (Figs 1, 3¢, 3d and

Supplementary Fig. 1c—e, available as Supplemen-
tary Data at NSR online) suggests that Lyrarapax
and Amplectobelua were already highly mobile visual
predators during the early stages of post-embryonic
development. It is possible that similar predatory
modes occur among juveniles of some other ra-
diodontans, such as Anomalocaris, given the compa-
rable set of traits in adults [17,26,27], but this can
only be confirmed by studying juvenile specimens.

Despite the lack of suitable modern analogues
for reaffirming the proposed functional morphology
and feeding ecology of radiodontans [28], there ex-
ist several predatory euarthropod groups that hunt
using enlarged, spinose raptorial appendages. These
include terrestrial clades such as the amblypygids
(whip spiders) [29,30], uropygids (whip scorpions)
[30] and mantodeans (mantises) [31], as well as the
marine stomatopod crustaceans (mantis shrimps)
[32-35] (Supplementary Figs 4 and S, available as
Supplementary Data at NSR online). Interestingly,
the highly specialized morphology of grasping ap-
pendages develops very early during the ontogeny of
these taxa.

Perhaps the most striking resemblance to ra-
diodontan FAs are the pedipalps of uropygids [30]
(Supplementary Fig. S, available as Supplementary
Data at NSR online), which provide one of the best
modern analogues for understanding the functional
morphology of the FAs of Lyrarapax throughout
ontogeny. Both adult and juvenile uropygids use
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their large, curved raptorial pedipalps to catch and
hold prey, with the various stout spines on the tar-
sus, tibia and patella acting like prehensile pincers,
while the opposing gnathobases on the proximal
trochanters crush and masticate the victim [30]. The
robust construction of the pedipalps affords uropy-
gidsavaried diet [30,36], butjuveniles seem to avoid
prey with hard exoskeletons [30]. This may have also
been the case in Lyrarapax and Amplectobelua, al-
though the reinforced spines in immature FAs may
have allowed juveniles to manipulate hard (possi-
bly even biomineralized) food items. So, while the
FAs of amplectobeluid radiodontans may have func-
tioned in a similar way to the pedipalps of uropy-
gids, consumption of the prey was clearly differ-
ent. Uropygids use their chelicerae to tear tissue
from the prey before passing it to the preoral cav-
ity, where it is liquefied by digestive fluids [30]. For
radiodontans, there is still debate as to whether the
oral cone performed an additional masticatory role
or was used to ingest food via suction [16,28]; also,
A. symbrachiata would have used its gnathobase-like
structures to initially process food before passing it
to the mouth opening [20]. However, given the vari-
able morphologies of the oral cone (as corroborated
by FAs), it is likely that the assorted radiodontan
species used this structure in different ways [12,16].

The variety of radiodontan feeding structures
clearly points to these stem-group euarthropods
having played key, often high-tier, trophic roles
within early Palaeozoic food webs, including the
consumption of zooplankton, as well as nektonic
and benthic fauna [6,8,10-12,16,20,37,38]. While
certain taxa such as Anomalocaris [27] can still
be considered giant apex predators of their time
and capable of consuming large prey, the juveniles
of some radiodontans like Lyrarapax (Fig. 4 and
Supplementary Fig. 6, available as Supplementary
Data at NSR online) demonstrate that predation
in the water column was occurring on a variety of
scales during the Cambrian [10,37,39-41]. On the
smaller scale of prey, taxa such as Tamisiocaris were
likely microphagous suspension feeders of plank-
ton (>0.5 mm in size) [10], whereas juvenile am-
plectobeluids were probably capable of feeding on
very small (<S5-mm) benthic and nektonic prey
items, possibly including sclerotized taxa or biomin-
eralized forms such as trilobites, molluscs and bra-
chiopods. The consistent raptorial feeding habits
of both juvenile and adult Lyrarapax contrast with
the example of another early Cambrian euarthro-
pod: the megacheiran Leanchoilia illecebrosa, where
it is thought that juveniles and adults occupied sep-
arate ecological niches due to differing appendage
morphologies [42]. Hence, the predatory lifestyles
of certain radiodontan offspring adds further tier-

ing complexity to Cambrian marine food webs, and
would have likely placed extra selective pressures
on animal communities, particularly small benthic
and nektonic prey [28,37]. Intense predation occur-
ring on all scales during the early phase of animal
evolution was undoubtedly a critical driver behind
the morphological and ecological innovations aris-
ing throughout the Cambrian [28].

SUPPLEMENTARY DATA

Supplementary data are available at NSR online.
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