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Abstract

Introduction: The nicotine metabolite ratio and nicotine equivalents are measures of metabolism 
rate and intake. Genome-wide prediction of these nicotine biomarkers in multiethnic samples will 
enable tobacco-related biomarker, behavioral, and exposure research in studies without measured 
biomarkers.
Aims and Methods: We screened genetic variants genome-wide using marginal scans and ap-
plied statistical learning algorithms on top-ranked genetic variants, age, ethnicity and sex, and, in 
additional modeling, cigarettes per day (CPD), (in additional modeling) to build prediction models 
for the urinary nicotine metabolite ratio (uNMR) and creatinine-standardized total nicotine equiva-
lents (TNE) in 2239 current cigarette smokers in five ethnic groups. We predicted these nicotine 
biomarkers using model ensembles and evaluated external validity using dependence measures 
in 1864 treatment-seeking smokers in two ethnic groups.
Results: The genomic regions with the most selected and included variants for measured bio-
markers were chr19q13.2 (uNMR, without and with CPD) and chr15q25.1 and chr10q25.3 (TNE, 
without and with CPD). We observed ensemble correlations between measured and predicted 
biomarker values for the uNMR and TNE without (with CPD) of 0.67 (0.68) and 0.65 (0.72) in the 
training sample. We observed inconsistency in penalized regression models of TNE (with CPD) 
with fewer variants at chr15q25.1 selected and included. In treatment-seeking smokers, predicted 
uNMR (without CPD) was significantly associated with CPD and predicted TNE (without CPD) with 
CPD, time-to-first-cigarette, and Fagerström total score.
Conclusions: Nicotine metabolites, genome-wide data, and statistical learning approaches devel-
oped novel robust predictive models for urinary nicotine biomarkers in multiple ethnic groups. 
Predicted biomarker associations helped define genetically influenced components of nicotine 
dependence.
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Implications: We demonstrate development of robust models and multiethnic prediction of the 
uNMR and TNE using statistical and machine learning approaches. Variants included in trained 
models for nicotine biomarkers include top-ranked variants in multiethnic genome-wide studies 
of smoking behavior, nicotine metabolites, and related disease. Association of the two predicted 
nicotine biomarkers with Fagerström Test for Nicotine Dependence items supports models of nico-
tine biomarkers as predictors of physical dependence and nicotine exposure. Predicted nicotine 
biomarkers may facilitate tobacco-related disease and treatment research in samples with gen-
omic data and limited nicotine metabolite or tobacco exposure data.

Introduction

Cigarette smoking remains the largest modifiable cause of mortality 
in the United States, responsible for one-third of cancer and car-
diovascular disease and most pulmonary disease mortality.1 Tobacco 
control and cessation therapies have reduced smoking prevalence 
67% over the last 50 years in the United States; yet, in 2018, there 
were 34 million adult cigarette smokers, with numerous use dispar-
ities by demographic, economic, and health conditions.1

Nicotine (NIC) is the tobacco constituent responsible for sustained 
tobacco use.2 The nicotine metabolite ratio (NMR, the ratio of trans-
3′-hydroxycotinine, 3HC, to cotinine, COT) is a biomarker of CYP2A6 
metabolic activity. The ratio of these two nicotine metabolites is meas-
ured via laboratory analysis of blood, saliva, or urine.3,4 Total nicotine 
equivalents (TNE) is a biomarker of nicotine consumption, defined here 
as the molar sum of the urinary concentrations of total NIC, total COT, 
total 3HC, and nicotine N-oxide, NNO (“total” refers to the molecule 
and its glucuronides).5 In addition to serving as a biomarker of nicotine 
metabolism and consumption,6 the NMR is associated with the efficacy 
of multiple tobacco cessation therapies with potential use for personal-
izing treatment for tobacco use disorder,7 while TNE is associated with 
smoking behaviors and toxicant exposures that may account for some 
lung cancer risk disparities by race or ethnicity.8,9

Predictive genetic modeling of nicotine biomarkers promises 
to provide genetic signatures supporting disease, mechanistic, and 
treatment research. Prediction models aggregate genetic information 
into useful metrics, for example, a genetic score predicting lapse and 
response to bupropion treatment of tobacco use disorder.10 Genetic 
modeling of the NMR is supported by significant twin and locus 
specific heritability estimates.11,12 There are no heritability estimates 
of TNE. Heritability estimates of cigarettes per day (CPD), a less 
precise measure of consumption, are significant in twin and genome-
wide approaches13–15 but lower than NMR estimates.

Predictive genetic modeling of nicotine metabolism and initial 
applications have encompassed laboratory studies, research co-
horts, and cessation trials; modeling focused first on candidate gene 
variants and then leveraged variants from genome-wide analyses. 
Predictive genetic models of CYP2A6-mediated nicotine metab-
olism have been developed that account for approximately 38% to 
62% of NMR variance.16–18 Herein, we describe the development 
and internal validation of prediction models of two urinary nico-
tine biomarkers in current smokers from five ethnic groups19 fol-
lowed by prediction and external validation in treatment-seeking 
smokers from two ethnic groups.20,21 We relate findings to prior 
analyses and review prospects for translation. Our genome-wide 
modeling (variant selection, model training, and prediction) of nico-
tine biomarkers addresses four current research gaps: (i) multiethnic 
modeling of a NMR, (ii) modeling the urinary NMR (uNMR) versus 
the NMR, (iii) including statistical learning approaches in modeling 

of the uNMR, and (iv) modeling of the TNE in any ancestry using 
any approach.

Materials and Methods

Ethical Approval
Written informed consent was obtained from all participants. The 
research described herein received approvals from the Institutional 
Review Boards of BioRealm, the Oregon Research Institute, the 
University of Hawaii, and the NIH Joint Addiction, Aging, and 
Mental Health Data Access Committee.

Participants, Measured Biomarkers, and Nicotine 
Dependence Measures
We utilized participant data from two multiethnic studies in this sec-
ondary data analysis: current smokers from the Multiethnic Cohort 
(MEC) study, initially assembled in 1993 at the University of Hawaii 
Cancer Center and Department of Preventive Medicine, University 
of Southern California, to study diet and cancer; treatment-seeking 
smokers recruited by the University of Wisconsin Transdisciplinary 
Tobacco Use Research Center (UW-TTURC), at the Center for 
Tobacco Research and Intervention, established in 1992 to study 
nicotine dependence and deliver smoking cessation treatments. MEC 
and UW-TTURC participants were not compensated for providing 
biospecimens and data used herein.

We studied MEC current smokers who provided (2004–2006) 
blood and urine samples and epidemiologic data to enable re-
search on genomics and tobacco exposures.22 Urinary total and free 
NIC, COT, and 3HC, and NNO, were measured.22 We analyzed 
the natural log-transformed uNMR (defined as the ratio of total 
3HC and COT) and the square root-transformed TNE (creatinine-
standardized molar sum of total NIC, total COT, total 3HC, and 
NNO). Selection of variants and training of biomarker models were 
performed with MEC participant data.

We studied a subset of UW-TTURC smokers recruited and ran-
domized (2000–2010) into three smoking cessation trials,23–25 who 
provided baseline demographic and behavioral data and a blood 
sample for research on genetics and nicotine addiction (dbGaP 
phs000404.v1.p1).20 The UW-TTURC dataset included four self-
administered nicotine dependence measures: the Fagerström Test of 
Nicotine Dependence (FTND),26 the Tobacco Dependence Screener,27 
the Nicotine Dependence Syndrome Scale (NDSS),28 and the 
Wisconsin Inventory of Smoking Dependence Motives (WISDM).29 
Prediction of biomarkers and external validation with dependence 
measures were performed in UW-TTURC participant data.

See Supplementary Material for details on MEC metabolite and 
genomic data and UW-TTURC demographic, dependence, and gen-
omic data.
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Variable Selection Phase
The first phase of our modeling process used a marginal scan to 
examine each genetic variant through a model of the form:

Yi = Xt
iβ + Sijα0 + Ptiα+ εi, (1)

where Yi is the biomarker level for the ith individual; Xi is a vector 
of confounding variables with corresponding regression coef-
ficients β; Sij is the genetic variant with 𝛼 0 as the corresponding 
regression coefficient; Pi  is a vector of principal components 
computed on the genotype design matrix, α is the corresponding 
vector of regression coefficients, and ɛi is the usual error term. 
We included age, sex, ethnicity, BMI, and the first 50 principal 
components of the genotype design matrix as confounding vari-
ables. The first 50 principal components of the genotype design 
matrix is a conservative approach to account for genetic related-
ness and ancestry among the study participants; that is, the first 
50 principal components explain 72% of principal component 
variance. Given its utility in prediction models of TNE,9 we con-
sidered CPD (“with CPD”) as a candidate predictor of the nico-
tine biomarkers in a second series of models. The model depicted 
in (1) was fit for each genetic variant in the MEC participant data 
with Smokescreen database annotation, and p-values for the test 
of H0 : α0 = 0 versusH1 : α0 �= 0 were computed. This phase was 
completed by selecting 200 genetic variants based on the smallest 
p-values to move into the training phase.

Training Phase
The second phase of our modeling process makes use of a suite of 
penalized regression and machine learning techniques. The selected 
techniques represent the most common, adopted, and validated 
techniques in the literature. The set of penalized regression models 
consisted of the LASSO, elastic net, adaptive LASSO, and the adap-
tive elastic net.30–33 The penalty parameters in these techniques were 
selected to minimize the Bayesian information criterion. In each 
elastic net model, we considered five settings (ie, 0.20, 0.35, 0.5, 
0.65, and 0.8) for the penalty mixing parameter; in each adaptive 
method, we considered five weighting schemes based on a priori fits. 
This led to a total of 36 fitted regression models. We also trained 
three machine learning algorithms: a regression tree,34 selected for 
the minimum number of splits and maximum depth of the tree via 
fivefold cross validation; bagging,35 selected for the number of trees; 
and gradient boosting machine,36,37 selected for step size of each 
boosting step, maximum depth of tree, minimum sum of instance 
weight (Hessian) needed in a child, subsample ratio of the training 
instance, and subsample ratio of columns when constructing each 
tree via fivefold cross validation. In each model, the predictor vari-
ables were the selected genetic variants, age, sex, and ethnicity, with 
CPD added in an additional set of models.

Prediction Phase
The third phase of our modeling process leveraged the 39 trained 
models to perform prediction. We formed the following predictions:

Y
( j)
i = gj(Di; θj), for j = 1, ..., 39, (2)

where Y
( j)
i  denotes the predicted nicotine biomarker level for the 

ith subject in the UW-TTURC data, Di denotes the demographics 
and genotypes available on the ith subject, gj(.; .)denotes the form 
of the jth model, and θj denotes the set of trained parameters for the 

jth model. These predictions were used to construct an ensemble-
based prediction. Briefly, ensemble methods obtain better predictive 
performance by aggregating over the predictions of multiple statis-
tical and machine learning algorithms. In our application, as is the 
common approach, we used the following predictive aggregation:

Y ∗
i =

1
39

39∑
j=1

Y
( j)
i

 
(3)

In this analysis, genotypes from selected variants were extracted 
from African American and White UW-TTURC participants (dbGaP 
phs000404.v1.p1) and cross-referenced to the Smokescreen data-
base38 by chromosome and position. Dosages were transformed as 
needed to count Smokescreen alternate alleles. Modeling analyses 
used the R programming language.17 Variants selected in analyses of 
MEC participant data but not available in UW-TTURC participant 
data were not used in prediction.

Variant Annotation
Variant annotation (GRCh37/hg19 assembly) used the Ensembl 
Variant Effect Predictor.39 Variant-related gene associations with 
smoking-related phenotypes were from the NHGRI-EBI GWAS 
catalog.40

Measured and Predicted Biomarker Demographic 
Differences
We estimated significant differences in covariate-adjusted measured 
biomarkers in African American and White MEC participants and 
in predicted biomarkers in UW-TTURC participants by sex and by 
ethnicity.

Predicted Biomarkers and Nicotine Dependence 
Measures
Predicted uNMR and predicted TNE were individually included in 
linear regression of each score of the four nicotine dependence meas-
ures. Each model was adjusted for age, sex, and ethnicity. Regressions 
were also performed to evaluate interactions with ethnicity and with 
sex to evaluate potential moderation by demographics.9

Results

There were 2239 MEC participants in five ethnic groups with bio-
marker and genotype data available for modeling. There were 1864 
UW-TTURC participants in two ethnic groups with genome-wide 
data available for prediction and 1800–1862 participants with nico-
tine dependence data for validation.20 Participant age and sex dis-
tributions reflect study designs. Ethnicity distributions reflect study 
designs, recruitment locations and selection of African American and 
White treatment-seeking smokers for prediction. CPD distributions 
reflect study design and trial recruitment criteria. See Table 1.

Measured Nicotine Biomarkers
The two biomarkers (without or with CPD) in African American 
and White MEC participants were significantly positively related 
to each other in a linear model, adjusting for age, sex, and ethni-
city (p-values < .001). We observed statistically significant higher 
levels of covariate-adjusted uNMR without CPD in female versus 
male participants (p < .001) but no significant differences between 
African American and White participants. There were no significant 
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differences in covariate-adjusted uNMR with CPD by sex or eth-
nicity. We observed statistically significant higher levels in female 
participants and lower levels in African American participants of 
covariate-adjusted TNE without CPD, than in male or White par-
ticipants, respectively (p-values < .001). We observed statistically 
significant differences in covariate-adjusted TNE with CPD by sex 
(p-values < .001) but not by ethnicity. See Table 2 and Supplementary 
Tables 1A and 1B.

Genome-Wide Variant Selection
The number of variants in all genome-wide analyses in MEC partici-
pants was N = 542 732. See Table 3 and Supplementary Tables 2A, 
2B, 3A, and 3B for selected variant details.

The genome-wide analysis of measured covariate-adjusted 
uNMR without CPD identified N  =  122 genome-wide significant 
(p-values < 5E−8) associations at chr19q13.2 and associations 
(p-values < 6.3E-7) at chr19q13.2 and on N = 11 additional auto-
somes among the top 200 variants. The most significant marginal 
result genome-wide was rs56113850 (C allele, β  =  0.40, p  =  5  × 
4E-48), in the fourth intron of CYP2A6.

The primary genome-wide analysis of measured covariate-
adjusted TNE without CPD identified variant associations (p-values 
< 2.6E–7) on all autosomes among the top 200 variants. The re-
gion with the most variants selected (31 variants) was chr15q25.1, 
and the most significant marginal result variant in this region was 
rs2036527 (A allele, β = 0.57, p = 1.4E-5), proximal of CHRNA5. 
The region with the top-ranked variant in the genome-wide analyses 
of TNE (rs56113850, C allele, β = 0.43, p = 2.6E-7) was chr19q13.2 
with 20 variants selected.

Results of genome-wide analysis of the uNMR with CPD were 
nearly identical to the analysis without CPD, for example, 87% of 
selected variants in both uNMR analyses were found at chr19q13.2. 
The genome-wide analysis of TNE with CPD exhibited reduced mar-
ginal significance (p-values < 3.4E-6), reduced numbers of variants in 
the chr15q25.1 and chr19q13.2 regions, and a different region with 
the most variants selected (chr10q25.3).

Model Training, Variants, Covariates, and 
Associated Genes
See Table 3 and Supplementary Tables 2A, 2B, 3A, and 3B for variant 
and annotated gene details.

As expected, most variants included in the uNMR models without 
CPD and associated protein-coding genes (43/63 variants and 10/19 
genes) were located on chr19q13.2. Clinical covariates included in 
38 trained uNMR models included age (22 models), sex (27 models), 
and ethnicity (38 models). Several chr19q13.2 SNPs were trained in 
the two machine learning models reviewed (Supplementary Figures) 
with rs56113850 included in all models reviewed. In one machine 
learning method (Supplementary Figure 1), Japanese American eth-
nicity dichotomized uNMR, with chr19q13.2 variants defining the 
remaining tree structure.

Training TNE models without CPD resulted in 124 included vari-
ants located on all autosomes. Included variants were found most 
often on chromosomes 1, 8, 11, and 15. The regions with the largest 
number of included variants were chr15q25.1 (eight variants) and 
chr19q13.2 (six variants). Clinical covariates included in 38 trained 
TNE models reviewed included age (1 model), sex (37 models), and 
ethnicity (38 models). In one machine learning model (Supplementary 
Figure 2), a chr15q25.1 variant dichotomized TNE, sex dichotom-
ized lower values, and Latino ethnicity and a chr22q13.2 variant 
trichotomized higher values. Included variants were annotated to 53 
protein-coding genes distributed over all autosomes. Thirty-six of 
47 annotated protein-coding genes have GWAS catalog associations 
with smoking-related behaviors, diseases, or traits, and five have as-
sociations with kidney function (data not shown).

In uNMR models without and with CPD, most (58 of 63) included 
variants were identical, and there were only minor differences in the fre-
quency of variant inclusion of trained models. In uNMR models with 
CPD, CPD was included in 36 of 38 trained models reviewed, and age 

Table 2. Measured (MEC) and Predicted (UW-TTURC) Nicotine 
Biomarkers by Sex and Ethnicity, African American and White

Biomarker

Female Male
African 

American White

Mean (SE) Mean (SE) Mean (SE) Mean (SE)

Measured N = 500 N = 301 N = 364 N = 437

uNMRa 1.48b (0.03) 1.36b (0.04) 1.45 (0.04) 1.40 (0.04)
uNMRCPD 1.20 (0.06) 1.09 (0.06) 1.44 (0.07) 1.32 (0.07)
TNEc 8.03b (0.12) 7.71b (0.13) 7.27b (0.12) 8.32b (0.11)
TNECPD 7.43b (0.18) 6.42b (0.18) 6.99 (0.20) 7.42 (0.20)
Predicted N = 1090 N = 774 N = 260 N = 1604
uNMR 1.46 (0.01) 1.45 (0.01) 1.52b (0.01) 1.45b (0.01)
TNE 8.46b (0.04) 7.91b (0.04) 7.43b (0.06) 8.36b (0.03)

For measured nicotine biomarker values by sex, values are adjusted by age 
and ethnicity (and CPD, where indicated), and ethnicity strata values are ad-
justed by age and sex (and CPD, where indicated). For predicted nicotine 
biomarker values, age, sex, and ethnicity (and CPD, where indicated) were 
included in the models. CPD = cigarettes per day; MEC = Multiethnic Cohort; 
TNE  =  total nicotine equivalents; uNMR  =  urinary nicotine metabolite 
ratio; UW-TTURC = University of Wisconsin Transdisciplinary Tobacco Use 
Research Center.
aNatural log transformed, no units.
bp < .001.
cSquare root transformed, nmol/mg creatinine.

Table 1. Samples Included in Nicotine Biomarker Modeling and 
Prediction

Characteristic MEC UW-TTURC

Participant N 2239 1864
Age,a mean (SD) 63.9 (7.2)b 43.4 (11.3)b

Female N (%) 1199 (53.6%)b 1090 (58.5%)b

Ethnicity N (%)   
 African American 364 (16.3%) 260 (14.0%)
 Native Hawaiian 311 (13.9%) —
 Japanese American 674 (30.1%) —
 Latinos 453 (20.2%) —
 White 437 (19.5%) 1604 (86.0%)
Cigarettes per day b b

 1–10 1168 (52.2%) 99 (5.3%)
 11–20 870 (38.9%) 988 (53.1%)
 21–30 119 (5.3%) 533 (28.6%)
 ≥31 82 (3.5%) 242 (13.0%)

Ethnicity proportions not tested. MEC  =  Multiethnic Cohort; 
UW-TTURC  =  University of Wisconsin Transdisciplinary Tobacco Use 
Research Center.
aMEC age at biospecimen collection; UW-TTURC age at baseline interview.
bp < .001.
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and sex were included in three and nine additional models. However, 
in TNE models with CPD, the number of included variants increased 
and the frequency of variant inclusion in trained models decreased. 
In TNE models with CPD, CPD was included in all 38 models re-
viewed, age and ethnicity and were included in six additional and 
eight fewer models, respectively.

Training and Internal Validation of Nicotine 
Biomarker Models
For each of the 39 models, we evaluated the final form of the model 
via standard model diagnostic techniques, for example, residual plots. 
From these diagnostics, we discovered no evidence that the assumed 
forms of the models were invalid. To assess model fit, the correlation 
between measured and fitted nicotine biomarkers was computed for 
each model and biomarker in the MEC participant data. The ensemble 
values of these correlations, r, and variance explained (r2) for uNMR 
and TNE without CPD were 0.6695 (0.4482) and 0.6450 (0.4160), 
and for uNMR and TNE with CPD, 0.6760 (0.4570) and 0.7162 
(0.5129), respectively (see Supplementary Table 4 for correlation es-
timates across all 39 models). For three of four sets of models, these 
values indicate good fit and do not point to overfitting issues. For the 
models of TNE with CPD, individual penalized regression model cor-
relations dropped from ~0.73 to ~0.42 as penalty parameters increased 
(Supplementary Table 4), reflecting the loss of variants correlated 
with CPD. The similar correlation values across penalized regression 
models for three of four analyses supports equal weighting for each 
contributing model in constructing our ensemble-based estimators.

Predicted Biomarkers in the UW-TTURC
Given minimal differences in model and ensemble correlations 
between the two analyses for the uNMR, and evidence for 

confounding in penalized regression TNE models with CPD, we 
focus further reporting on predicted biomarkers modeled without 
CPD to emphasize the utility of genome-wide models for nicotine 
biomarkers.

Using the ensemble-based models without CPD generated in the 
MEC, predictions were obtained for both nicotine biomarkers for 
all UW-TTURC participants (Table 2). Predicted uNMR and pre-
dicted TNE in participants were significantly related to each other 
(β(SE) = 0.017(.005), p < .001). Predicted uNMR was significantly 
higher in African American than White participants (p < .001), 
but there was no significant difference in predicted uNMR by sex 
(p  =  0.28). Predicted TNE was significantly larger in female than 
male participants and significantly smaller in African American than 
White participants (p-values < .001).

Predicted uNMR and Nicotine Dependence
Predicted uNMR was positively associated with FTND CPD 
(p =  .002), WISDM Automaticity (p =  .049), and NDSS Tolerance 
(p  =  .022) (Table 4). In additional analyses, interactions of eth-
nicity and of sex with predicted uNMR (ethnicity p  =  .041, sex 
p  =  .024) were observed with NDSS Continuity and of sex with 
predicted uNMR (p =  .045) were observed with NDSS Stereotypy 
(Supplementary Table 5).

Predicted TNE and Nicotine Dependence
Predicted TNE was positively associated with FTND total score 
(p  =  .027), CPD (p  =  .014), and time-to-first-cigarette (p  =  .022); 
with WISDM Tolerance (p = .042) and NDSS Stereotypy (p = .003) 
(Table 4). In additional analyses, interaction of ethnicity with pre-
dicted TNE (p  =  .0036) was observed with NDSS Stereotypy 
(Supplementary Table 5).

Table 3. Variants Selected and Includeda in Penalized Regression Models, by Chromosome, MEC

Cb

uNMR uNMRCPD TNE TNECPD

Selected Included Selected Included Selected Included Selected Included

1 4 3/3 4 3/4 25 12/22 24 15/22
2 4 3/4 5 3/5 4 4/4 4 4/4
3 5 4/4 3 3/3 5 5/5 3 3/3
4 0 —/— 0 —/— 10 9/10 13 12/13
5 3 3/3 4 4/4 8 6/7 17 11/14
6 0 —/— 0 —/— 6 6/9 9 9/9
7 1 1/1 1 1/1 5 5/5 9 9/9
8 3 1/1 3 1/1 24 14/23 25 17/23
9 0 —/— 0 —/— 4 4/4 5 4/5

10 1 1/1 1 1/1 16 8/13 16 10/13
11 1 1/1 0 —/— 14 11/14 20 10/19
12 0 —/— 0 —/— 3 3/3 3 3/3
13 1 1/1 1 1/1 2 2/2 6 6/6
14 0 —/— 1 1/1 1 1/1 1 1/1
15 1 1/1 1 1/1 34 9/29 7 4/7
16 1 1/1 1 1/1 1 1/1 3 3/3
17 0 —/— 0 —/— 3 3/3 4 3/4
18 0 —/— 0 —/— 4 4/4 4 4/4
19 175 43/151 174 43/148 20 6/18 15 7/12
20 0 —/— 0 —/— 7 7/7 7 6/6
21 0 —/— 0 —/— 1 1/1 0 —/—
22 0 —/— 0 —/— 3 3/3 5 5/5

CPD = cigarettes per day; MEC = Multiethnic Cohort; TNE = total nicotine equivalents; uNMR = urinary nicotine metabolite ratio.
aThe number of variants included in trained models/number of variants available.
bChromosome.
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Discussion

Genome-Wide Variant Selection, Model Training, and 
Explanatory Power
Our analyses describe the first genome-wide selection, training, and 
prediction (genome-wide modeling) of the uNMR using statistical and 
machine learning techniques, and the first genome-wide modeling of 
TNE using any technique, as far as we are aware. These analyses dem-
onstrate internal validity in current smokers and external validity in 
treatment-seeking smokers with prior genome-wide, biomarker, and 
nicotine dependence findings. We modeled the two nicotine biomarkers 
throughout the analysis workflow without and with self-reported CPD 
coded as in the FTND, as CPD has previously been identified as a sig-
nificant predictor of TNE and the NMR. Inclusion of CPD in modeling 
of TNE resulted in selection and inclusion of CPD in all models re-
viewed, reductions in the significance of variants selected, and reduced 
numbers of variants included from regions strongly associated with the 
TNE. Modeling of the uNMR with CPD had very limited effects on the 
selection and inclusion of variants or on the predictive validity of the 
models. We concentrate discussion on the results of modeling the two 
biomarkers without CPD.

As expected from prior genome-wide studies, most variants 
selected and included in uNMR modeling were from the chr19q13.2 
CYP2A6 region. We previously identified rs56113850 in the MEC 
as the top-ranked variant for uNMR in all ethnic groups tested,19 
and as a cis expression Quantitative Trait Locus (cis eQTL) for 
CYP2A6.41 rs56113850 was top ranked in genome-wide studies of 
the NMR in smokers of European ancestry.12,13 However, nearly a 
third (31%) of variants included in our uNMR models were located 
in non-chr19q13.2 genomic regions. Four of six non-chr19q13.2 

protein-coding genes with variants included in uNMR models have 
associations with smoking-related behaviors and disease in the 
GWAS catalog (data not shown), adding to the non-chr19q13.2 
genes with variants included in models of nicotine metabolism.17

Variant selection and inclusion in TNE modeling was more poly-
genic than for the uNMR, consistent with our understanding of nico-
tine pharmacology6 and dominant nicotine-related loci characterized 
in genome-wide studies.42 We previously identified rs2036527 (in-
cluded in seven penalized regression TNE models), as top ranked 
in genome-wide studies of CPD and of lung cancer in African 
Americans.43,44 This variant was identified as the top-ranked variant 
in genome-wide studies of blood-based COT and of COT + 3HC 
levels in European ancestry smokers and a cis eQTL for CHRNA5 
and other chr15q25.1 genes.13 However, among chr15q25.1 vari-
ants, only rs55676755 was included in all penalized regression 
models of TNE. Association of rs55676755 with pulmonary disease 
and function in multiethnic genome-wide studies45 supports inclu-
sion of rs55676755 in our multiethnic TNE models.

We and others identified the chr19q13.2 region variant 
rs12459249 (included in six penalized regression models of TNE) as 
the top-ranked variant in genome-wide analyses of the laboratory-
based NMR in three ethnicities41 and the blood-based NMR in 
African American smokers.46 Among six chr19q13.2 region in-
cluded variants, only rs56113850 and rs73038469 were included 
in all penalized regression models. Both variants are cis eQTLs for 
protein-coding and noncoding genes in multiple tissues and cis QTLs 
for methylated cytosine–guanine dinucleotides, supporting possible 
functional roles in gene regulation.13 While multiple chr19q13.2 vari-
ants were included in models for each biomarker, only rs56113850 
was included in models of both biomarkers.

The explanatory power of the models in our uNMR ensemble 
is comparable to those of the in vivo NMR model ensemble we de-
veloped based on CYP2A6–CYP2B6 and related regulatory gene 
variants (uNMR r2  =  0.36–0.77 vs. NMR r2  =  0.37–0.62).17 Our 
analysis goals here were to estimate ensemble values for nicotine bio-
marker models; for the uNMR ensemble, the r2 was 0.45. Another 
genetic model, based on the plasma COT/(NIC + COT) ratio, had a 
comparable r2 = 0.52.16 Twin heritability estimates of the NMR are 
greater than those of the uNMR,11 providing another perspective 
for model comparisons. Estimates of genetic constructs for NMRs 
12,13,18,19 involve different study designs, ancestries, and validation 
procedures, making direct comparisons of explanatory power diffi-
cult. Our findings of variants in annotated genes with GWAS catalog 
associations with kidney function in trained TNE models suggest 
that our models incorporate the greater mechanistic complexity of a 
urinary biomarker.

Biomarkers, Demographics, and Dependence
These are the first analyses to relate predicted uNMR and predicted 
TNE to each other, to ethnicity and sex, to major FTND items, and 
to WISDM and NDSS subscales. Predicted uNMR and TNE in 
treatment-seeking smokers were significantly associated with each 
other as were measured uNMR and TNE in current smokers.19 
Significant differences for both measured and predicted TNE by 
ethnicity and by sex were observed in the expected directions for 
creatinine-standardized TNE.47

Prior findings provide support for the associations with nicotine 
dependence measures we observed using predicted nicotine bio-
markers. A  systematic review found measured NMRs significantly 
correlated with CPD in 9 of 15 studies overall and in 3 of 4 using the 

Table 4. Predicted Biomarkers and Nicotine Dependence 
Measures, UW-TTURC

Dependence

N

uNMR TNE

Measure Coefficient SE Coefficient SE

FTND      
 Total 1843 0.129 0.195 0.099a 0.045
 CPD 1862 0.211b 0.068 0.039a 0.016
 TTFC 1861 −0.008 0.078 0.041a 0.018
WISDM      
 Automaticity 1800 0.297a 0.151 −0.011 0.035
 Loss of control 1800 −0.021 0.127 0.033 0.029
 Craving 1800 −0.156 0.120 0.025 0.028
 Tolerance 1800 0.147 0.127 0.060a 0.029
 Total PDM 1800 −0.003 1.183 −0.065 0.273
NDSS      
 Drive 1809 −0.062 0.096 0.005 0.022
 Priority 1820 0.019 0.097 −0.033 0.022
 Tolerance 1814 0.239a 0.104 0.032 0.024
 Continuity 1815 0.033 0.094 0.015 0.022
 Stereotypy 1813 −0.012 0.096 0.066b 0.022
 NDSS-T 1800 0.008 0.086 0.022 0.020

CPD  =  cigarettes per day; FTND  =  Fagerström Test of Nicotine Dependence; 
NDSS  =  Nicotine Dependence Syndrome Scale; NDSS-T = NDSS Total; 
TNE = total nicotine equivalents; Total PDM = sum of four Primary Dependence 
Motives; TTFC = time-to-first-cigarette; uNMR = urinary nicotine metabolite ratio; 
UW-TTURC = University of Wisconsin Transdisciplinary Tobacco Use Research 
Center; WISDM = Wisconsin Inventory of Smoking Dependence Motives.
ap < .05.
bp < .005.
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measured uNMR.48 Predictive genetic models of two NMRs have 
shown significant associations with CPD in ordinal and continuous 
coding.11,16,18 Measured TNE (24 hour urine, molar sum of NIC, 
COT, 3HC, and glucuronides, unadjusted for creatinine) was signifi-
cantly associated with CPD, time-to-first-cigarette, and total FTND 
score in current smokers.49

The associations of predicted nicotine biomarkers with compo-
nents of the WISDM and NDSS measures we observed are novel. 
However, prior associations of smoking constructs provide support 
for the observed associations. For example, WISDM Automaticity 
and Tolerance and NDSS Stereotypy and Tolerance correlations 
with the FTND and CPD were among the largest correlations of 
13 WISDM and 5 NDSS subscales tested in treatment-seeking 
smokers from 2 UW-TTURC cessation trials.21 NDSS Stereotypy and 
Tolerance were significantly correlated with multiple physical de-
pendence variables in daily smokers recruited for laboratory studies 
of smoking cessation medications.28

Strengths and Limitations
Use of a MEC for modeling nicotine biomarkers will support 
translation to studies of smokers of multiple ethnicities in behav-
ioral, disease, and treatment research. Further research is needed 
to assess performance of multiethnic models in specific ethnic 
populations.

Our uNMR genome-wide variant selection and model training 
included multiple variants at and outside the chr19q13.2 region. 
Selection and training of models predicting the uNMR in larger sam-
ples may clarify the role of non-chr19q13.2 genes in nicotine me-
tabolism and clearance. Genome-wide modeling and comparison of 
NMR and uNMR models may provide clues to differences in model 
explanatory power17 and reduced correlation between measured 
blood NMR and uNMR.50

Our TNE genome-wide variant selection and model training in-
cluded top-ranked variants at chr15q25.1 and chr19q13.2 identified 
in recent genome-wide studies of smoking behaviors, nicotine me-
tabolites, and related disease. Research in additional cohorts with di-
verse smoking behavior and measured metabolite data may elucidate 
how behavior, metabolite source, measurement, and standardization 
influence model development and power.

Conclusions

Concordances observed between our nicotine biomarker modeling 
and recent genome-wide studies support our goal of developing 
robust genome-wide prediction models for nicotine biomarkers. 
Meta-analysis of larger and more diverse samples with respect to 
participant ancestries, behaviors, biomarkers, and clinical data will 
improve the predictive power of models and enable out-of-sample 
model validations. The associations we observed between predicted 
urinary biomarkers and measures of dependence are supported by 
prior analyses of biomarkers, dependence measures, and models of 
predicted NMR with similar measures. Availability of smoking ces-
sation trial data will provide an opportunity to characterize relations 
between genetically determined components of dependence and ces-
sation outcomes and assess translational relevance.
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