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Review Article

Neural mechanisms underlying nicotine addiction:
acute positive reinforcement and withdrawal

Shelly S. Watkins, George F. Koob, Athina Markou

The neurobiology of nicotine addiction is reviewed within the context of neurobiological and behavioral theories
postulated for other drugs of abuse. The roles of various neurotransmitter systems, including acetylcholine,
dopamine, serotonin, glutamate, gamma-aminobutyric acid, and opioid peptides in acute nicotine reinforcement
and withdrawal from chronic administration are examined followed by a discussion of potential neuroadapta-
tions within these neurochemical systems that may lead to the development of nicotine dependence. The link
between nicotine administration, depression and schizophrenia are also discussed. Finally, a theoretical model
of the neurobiological mechanisms underlying acute nicotine withdrawal and protracted abstinence involves
alterations within dopaminergic, serotonergic, and stress systems that are hypothesized to contribute to the
negative affective state associated with nicotine abstinence.

Introduction

Evidence indicates that people smoke primarily to
experience the psychopharmacological properties of
nicotine and that the majority of smokers eventually
become dependent upon nicotine (Balfour, 1984; Stoler-
man, 1991). The high addictive potential of nicotine is
indicated by the vast number of people who habitually
smoke, an estimated 25% of the US population (Sub-
stance Abuse and Mental Health Services Administra-
tion, 1993). Tobacco smoking is the leading, avoidable
cause of disease and premature death in the US,

responsible for over 500,000 deaths annually and
contributing to about 40 diseases (United States Depart-
ment of Health and Human Services, 1988). In view of
the pervasiveness of tobacco use and the far-reaching
costs to smokers and society, there has been increased
interest in elucidating the actions of nicotine within the
central nervous system that lead to acute positive
reinforcement and potential neuroadaptations which
mediate the development of dependence and withdrawal
symptoms.

In humans, nicotine produces positive reinforcing
effects including mild euphoria (Pomerleau & Pomerleau,
1992), increased energy, heightened arousal, reduced
stress and anxiety, and appetite suppression (Benowitz,
1996; Stolerman & Jarvis, 1995). Cigarette smokers
report that smoking produces arousal, particularly with
the first cigarette of the day, and relaxation when under
stress (Benowitz, 1988). A nicotine abstinence syndrome
after chronic nicotine exposure has been characterized in
both humans (Hughes, Gust, Skoog, Kennan, & Fenwick,
1991; Shiffman & Jarvik, 1976) and rats (Epping-Jordan,
Watkins, Koob, & Markou, 1998b; Hildebrand, Nomikos,
Bondjers, Nisell, & Svensson, 1997; Malin et al., 1992;
Malin, Lake, Carter, Cunningham, & Wilson, 1993; Malin
et al., 1994; Watkins, Stinus, Koob, & Markou, 2000), and
has both somatic and affective components. In humans,
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acute nicotine withdrawal is characterized by somatic
symptoms, such as bradycardia, gastrointestinal dis-
comfort, and increased appetite leading to weight gain, as
well as affective symptoms including depressed mood,
dysphoria, irritability, anxiety, frustration, increased
reactivity to environmental stimuli, and difficulty concen-
trating (American Psychiatric Association, 1994; Hughes
et al., 1991). The enduring symptoms of nicotine
withdrawal (protracted abstinence) include continued
affective changes, such as depressed mood (Hughes et al.,
1991), with abstinent smokers often reporting powerful
cravings for tobacco (Hughes, Hatsukami, Pickens,
Krahn, Malin, & Luknic, 1984). While the somatic
symptoms of drugs of abuse are unpleasant and annoying,
it has been hypothesized that avoidance of the affective
components of drug withdrawal, including those asso-
ciated with nicotine withdrawal, plays a more important
role in the maintenance of nicotine dependence than the
somatic symptoms of withdrawal (Koob, Markou, Weiss,
& Schulteis, 1993; Markou, Kosten, & Koob, 1998).

The acute positive reinforcing effects of drugs are
critically important in establishing self-administration
behavior, but the mechanisms underlying the transition
from initial drug use to drug dependence are not clear. It
has been hypothesized that the transition to drug
dependence involves neuroadaptations within brain cir-
cuitries that produce positive reinforcement (Koob &
Bloom, 1988). These neuroadaptations may contribute to
a negative affective state upon drug termination. One
mechanism of perpetuating drug dependence would be
continued drug use to avoid a negative affective state
through negative reinforcement processes (Koob, 1996).
Accordingly, the perpetuation of nicotine dependence is
hypothesized to be facilitated by the avoidance of certain
withdrawal symptoms through further nicotine admin-
istration. Thus, investigation of the neurobiology of
nicotine withdrawal may be critical to our understanding
of the development and maintenance of nicotine
dependence.

The present review will first focus on the neurobiol-
ogy of acute nicotine reinforcement, followed by a
discussion of alterations in systems that may modulate
symptoms of nicotine withdrawal, and then present a
theoretical model of the neurobiological mechanisms
that may underlie acute nicotine withdrawal and vulnera-
bility to relapse. The intent of this review is to provide a
bridge between psychology and neuroscience by examin-
ing the neurobiological substrates for the behavioral
phenomena associated with nicotine reinforcement and
withdrawal within the context of neurobiological and
behavioral theories postulated for addiction to other
major drugs of abuse.

Neurobiology of the acute rewarding effects of
nicotine

Animal studies of the neurobiological bases of nicotine
reinforcement using intravenous self-administration
have yielded information about the neurochemical sys-

tems likely to be involved in mediating the acute
positive reinforcing effects of nicotine. Nicotine acti-
vates nicotinic acetylcholine receptors in the mesocorti-
colimbic dopaminergic system that projects from the
ventral tegmental area (VTA) to the nucleus accumbens
and the prefrontal cortex (Corrigall, Coen, & Adamson,
1994; Corrigall, Franklin, Coen, & Clarke, 1992;
Nisell, Nomikos, & Svensson, 1995; Pontieri, Tanka,
Orzi, & Di Chiara, 1996). Non-dopamine neurochem-
ical pathways also may modulate nicotine reinforce-
ment processes. Nevertheless, the preponderance of
data to date indicates that other neurochemical systems
involved in nicotine reinforcement interact with the
midbrain dopamine system. These systems include the
cholinergic, glutamatergic, gamma-aminobutyric acid
(GABA), and opioid peptide systems. Dopamine-inde-
pendent positive reinforcing effects of nicotine remain
to be demonstrated.

Acetylcholine

Nicotine produces its central and peripheral actions by
binding to the nicotinic acetylcholine receptor (nAChR)
complex. Sixteen nAChR subunits have been identified
based on molecular composition ( a 1– a 9; b 1– b 4; Arne-
ric, Sullivan, & Williams, 1995; Wonnacott, 1997) with
the neuronal nicotinic subunits including a 2– a 8 and
b 2– b 4. It has been shown that all high affinity binding
sites for nicotine include the b 2 subunit (Picciotto et al.,
1995), and that nicotine-induced dopamine release is
dependent on the b 2 subunit (Picciotto et al., 1998). For
example, mutant mice lacking the b 2 subunit will not
self-administer nicotine (Picciotto et al., 1998), indicat-
ing that the b 2 subunit is critically involved in nicotine
reinforcement. The most widely expressed subtypes of
the nAChR in the brain contain a 4, b 2, or a 7 subunits
(Flores, Rogers, Pabreza, Wolfe, & Kellar, 1992; Wada et
al., 1989; Zoli, Lena, Picciotto, & Changeux, 1998).
Various nAChR a and b subunit combinations, including
the a 4b 2 subtype, are present throughout the mesolimbic
pathway including the VTA, prefrontal cortex, amygdala,
septal area, and nucleus accumbens (Marks et al., 1992;
Sargent, 1993; Wada et al., 1989). These nAChRs
provide potential binding sites through which nicotine
may activate neurons within these structures to stimulate
the release of several neurotransmitters.

Evidence suggests that cholinergic input to the
mesolimbic dopamine pathway may provide a system
through which nicotine may increase dopamine release.
Administration of the non-competitive nAChR antago-
nist, mecamylamine, or the competitive nAChR antago-
nist, dihydro- b -erythroidine (DH b E) blocked nicotine
self-administration in the rat, indicating that activation
of nAChRs is involved in the reinforcing actions of
nicotine (Corrigall & Coen, 1989; Corrigall et al.,
1994; Watkins, Epping-Jordan, Koob, & Markou,
1999). Further, immuno-cytochemical studies indicated
that the VTA receives cholinergic innervation from the
pedunculopontine nucleus, with nAChRs found in both
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the VTA and the pedunculopontine nucleus (Bolam,
Francis, & Henderson, 1991). Stimulation of chol-
inergic neurons within the pedunculopontine tegmental
nucleus by exogenously administered nicotine leads to
release of endogenous acetylcholine which excites
dopamine neurons in the substantia nigra and VTA, and
this activation is blocked by mecamylamine (Clarke,
Hommer, Pert, & Skirboll, 1987). The finding that
partial lesions of the pedunculopontine nucleus failed to
block nicotine self-administration (Corrigall et al.,
1994) indicates that cholinergic input may not be
required for the reinforcing actions of nicotine because
exogenously administered nicotine may directly stim-
ulate nAChRs within the VTA. Nevertheless, complete
lesions of the pedunculopontine nucleus may be
required to determine the functional role of the ped-
unculopontine nucleus to the VTA connection in acute
nicotine reinforcement (Figure 1).

Dopamine

Stimulation of dopamine systems appears to be of
critical importance for the acute positive reinforcing
properties of nicotine. Experimental evidence indicates
that nicotine induces dopamine release partly by bind-
ing directly to nAChRs located within the mesolimbic
system, specifically within the VTA (Nisell, Nomikos,
& Svensson, 1994). In the rat brain, nAChRs have been
identified on the cell bodies and dendrites of dopamine
neurons in the ventral tegmental area, as well as their
terminal fields in the nucleus accumbens (Clarke &

Pert, 1985; Schwartz, Lehmann, & Kellar, 1984; Swan-
son, Simmons, Whiting, & Lindstrom, 1987; Wada et
al., 1989). The presence of nAChRs throughout the
dopamine neuron suggests that any of these sites could
mediate the effect of nicotine on the mesolimbic
dopamine system. It has been hypothesized, however,
that nAChRs in the VTA play a more important role
than those in the nucleus accumbens in mediating the
effects of nicotine on dopamine release (Nisell et al.,
1994). Systemic administration of nicotine has been
shown to produce a dose-dependent increase in extrac-
ellular dopamine levels in the shell of the nucleus
accumbens, a neurochemical effect shared by other
drugs that also serve as positive reinforcers (Nisell,
Marcus, Nomikos, & Svensson, 1997; Pontieri et al.,
1996; Pontieri, Passarelli, Calo, & Caronti, 1998).
Nevertheless, direct continuous infusion of nicotine in
the VTA produced a longer lasting increase in dopa-
mine release in the nucleus accumbens than nicotine
infused into the nucleus accumbens (Nisell et al.,
1994). In addition, infusion of mecamylamine into the
VTA blocked the systemically administered nicotine-
induced dopamine release in the nucleus accumbens,
while infusion of mecamylamine directly into the
nucleus accumbens failed to block dopamine release
(Nisell et al., 1994). Further, nicotine-induced dopa-
mine release from terminals in the nucleus accumbens
is not affected by tetrodotoxin, a compound that
prevents the generation of action potentials by blocking
sodium channels (Giorguieff-Chesselet, Kemel,
Wandscheer, & Glowinski, 1979; Rapier, Lunt, &
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Figure 1. Schematic drawing of pathways partly mediating nicotine-induced positive reinforcement. Nicotine binding sites (nAChRs)
are represented in the pedunculopontine nucleus, raphe nuclei, ventral tegmental area, and the nucleus accumbens. Depicted
projections to the mesolimbic dopamine system include glutamatergic and GABAergic input, serotonergic afferents from the raphe
nuclei, and cholinergic afferents from the pedunculopontine nucleus. Abbreviations: DA, dopamine; nAChR, nicotinic acetylcholine
receptor; NMDA, N-methyl-D-aspartate; NAcc, nucleus accumbens; VTA, ventral tegmental area.
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Wonnacott, 1990) suggesting that nAChRs on dopa-
mine terminals do not significantly contribute to nic-
otine-induced dopamine release (Benwell, Balfour, &
Lucchi, 1993).

The role of nAChRs in the VTA in the positive
reinforcing effects of nicotine is further suggested by the
finding that infusions of the competitive nAChR antago-
nist dihydro- b -erythroidine, directly into the VTA, but
not the nucleus accumbens, produced a significant
decrease in nicotine self-administration behavior (Corri-
gall et al., 1994). Further, 6-hydroxydopamine lesions of
the nucleus accumbens, or systemic administration of
selective D1 (SCH23390) or D2 (spiperone) dopamine
receptor antagonists attenuated nicotine self-administra-
tion (Corrigall & Coen, 1991; Corrigall et al., 1992).
Taken together, the results of the above neurochemical
and behavioral studies offer support for the hypothesis
that nicotine exerts its primary reinforcing action by
activating dopamine neurons along the mesolimbic
dopamine pathway.

In the context of nAChR activation and nicotine
reinforcement, it is important to consider that nAChR
activation in the VTA is followed by receptor desensiti-
zation (Pidoplichko, DeBiasi, Williams, & Dani, 1997).
Receptor desensitization and recovery occurred at differ-
ent rates, suggesting that within the VTA, there are
multiple types of nAChRs with different activation and
desensitization profiles (Pidoplichko et al., 1997). Smok-
ers report the first cigarette of the day as the most
pleasurable (Russell, 1989), possibly because of nic-
otine-induced activation of recovered nAChRs in the
VTA leading to greater dopamine release than later in the
day. Throughout the day smokers maintain a steady
blood nicotine level (Benowitz, 1996), and are exposed
to nicotine concentrations which cause nAChR desensiti-
zation in the VTA (Pidoplichko et al., 1997). If different
nAChRs in the VTA have different sensitivities to
nicotine, as suggested above, it may be that once a
steady-state of nicotine is reached, periodic re-admin-
istration of nicotine engages nAChRs only activated by a
high nicotine doses (Dani & Heinemann, 1996). Activa-
tion of these receptors would also cause dopamine
release, thus contributing to the maintenance of cigarette
smoking throughout waking hours. Nonetheless, the
maintenance of smoking behavior in dependent organ-
isms, despite the development of nAChR desensitization
within the VTA, may indicate the involvement of parallel
reward systems in the positive reinforcing actions of
nicotine which extend beyond the mesolimbic dopamine
pathway. Few, if any, studies to date have explored the
neurobiology of the positive reinforcing actions of
nicotine in dependent animals.

Glutamate–dopamine interactions

Increasing evidence supports a role for excitatory
amino acids in the effects of drugs of abuse (for a
review, see Trujillo & Akil, 1995). Most relevant to the

present review are the indications of an excitatory role
of N-methyl-D-aspartate (NMDA) receptors in the VTA
on nicotine-induced increases in nucleus accumbens
dopamine. Acute administration of nicotine activates
nAChRs located pre-synaptically on glutamatergic ter-
minals, leading to increased evoked glutamate release
(Gray, Rajan, Radcliffe, Yakehiro, & Dani, 1996;
McGehee, Heath, Gelber, Devay, & Role, 1995). In
turn, through excitatory actions at NMDA receptors on
VTA dopaminergic neurons, glutamate increases the
burst firing of these neurons and subsequent dopamine
release in the nucleus accumbens (Chergui et al., 1993;
Hu & White, 1996; Kalivas, Churchill, & Klitenick,
1993). Most importantly, blockade of NMDA receptors
with 2-amino-5-phosphonopentanoic acid injected
directly into the VTA dose-dependently attenuated the
nicotine-induced dopamine release in the nucleus
accumbens (Schilstrom, Nomikos, Nisell, Hertel, &
Svensson, 1998). Systemic administration of another
NMDA antagonist, MK-801 (dizocilpine), also blocked
nicotine-induced dopamine release in the nucleus
accumbens (Sziraki, Sershen, Benuck, Hashim, & Laj-
tha, 1998). These data indicate that activation of
excitatory nAChRs on glutamatergic terminals also may
contribute to the acute reinforcing properties of
nicotine.

Gamma-aminobutyric acid (GABA)–dopamine
interactions

GABAergic neurotransmission significantly modulates
dopaminergic neurotransmission at the level of both the
VTA and the nucleus accumbens (Churchill, Dilts, &
Kalivas, 1992; Heimer, Zahm, Churchill, Kalivas, &
Wahltmann, 1991; Kalivas et al., 1993). There are
GABAergic inhibitory afferents to dopaminergic ventral
tegmental neurons (Walaas & Fonnum, 1980; Yim &
Mogenson, 1980), inhibitory GABAergic interneurons
within the VTA, and medium spiny GABAergic neurons
in the nucleus accumbens that also inhibit mesolimbic
dopamine release (Kalivas et al., 1993). In addition,
enhancement of GABAergic neurotransmission through
administration of gamma-vinyl GABA (GVG), an indi-
rect GABA agonist (an irreversible inhibitor of GABA
transaminase), abolished nicotine-induced dopamine
increases in the nucleus accumbens and the reinforcing
effects of nicotine as reflected in the conditioned place
preference paradigm (Dewey, Brodie, Gerasimov, Horan,
Gardner, & Ashby, 1999). Taken together, these findings
provide support for the hypothesis that GABAergic
mechanisms may be involved in modulating nicotine
reinforcement.

Opioid peptide–dopamine interactions

Nicotine also affects the release of endogenous opioid
peptides (Boyadjieva & Sarkar, 1997; Pomerleau &
Pomerleau, 1984; Pomerleau & Rosecrans, 1989).
Within the mesolimbic dopamine system, systemic
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nicotine administration increases tissue levels of opioid
peptides in the nucleus accumbens (Houdi, Pierzchala,
Marson, Palkovits, & VanLoon, 1991; Pierzchala, Houdi,
VanLoon, 1987). A high density of m -opioid receptors
has been identified in the nucleus accumbens and it has
been suggested that these receptors are occupied by
endogenous opioid ligands released by nicotine (Daven-
port, Houdi, & VanLoon, 1990; Tempel & Zukin, 1987).
Outside the mesolimbic dopamine system, nicotine
stimulates nAChRs within the hypothalamus and induces
the release of the pro-opiomelanocortin peptide group
that includes the precursor to b -endorphin (Pomerleau,
1998). The b -endorphin system has been hypothesized to
be involved in mood regulation, psychomotor stimula-
tion, analgesia, reproduction, and temperature regulation
(Cesselin, 1995; Terenius, 1992). Further, increased
b -endorphin release is thought to decrease the response
to stress, conserve energy, and facilitate relaxation (for
reviews, see Cesselin, 1995; Henry, 1986; Herz, 1997;
Terenius, 1992). It remains to be determined if activation
of the hypothalamic b -endorphin system is involved in
mediating the positive reinforcing effects of nicotine.
Thus, the positive reinforcing properties of nicotine
could be hypothesized to be modulated by activation of
enkephalin neurons along parallel reward systems to the
dopamine system (i.e., dopamine-independent systems)
(Houdi et al., 1991; Pomerleau & Pomerleau, 1984).
Nevertheless, pharmacological studies in humans inves-
tigating the effects of naloxone, an opioid receptor
antagonist on smoking behavior, have yielded incon-
sistent results (Karras & Kane, 1980; Nemeth-Coslett &
Griffiths, 1986).

Serotonin

Evidence for the involvement of the serotonergic system
in the positive reinforcing effects of nicotine is limited.
Various subtypes of high-affinity nicotinic acetylcholine
receptors which are activated by a low dose of nicotine
have been identified in both the median raphe nucleus
and the hippocampus (Alkondon & Albuquerque, 1993;
Benwell, Balfour, & Anderson, 1988; Li, Rainnie,
McCarley, & Greene, 1998; Marks et al., 1992). These
receptors may provide a potential site of action for
nicotine within the serotonergic system. Acute systemic
administration of a high nicotine dose increased the
release of serotonin in the frontal cortex of rats (Ribeiro,
Bettiker, Bogdanov, & Wurtman, 1993); however, it is
not known whether this effect is involved in the positive
reinforcing effects of nicotine because this dose was
significantly higher than that normally experienced by
smokers. Subsequent studies using doses of nicotine that
more closely approximate those of cigarette smokers
provide little support for a role of the serotonin system in
acute nicotine reinforcement. For example, administra-
tion of either ICS 205–930 or MDL 72222, two selective
5-HT3 receptor antagonists, had no effect on intravenous
nicotine self-administration in the rat (Corrigall & Coen,

1994). Furthermore, in a rat model of oral nicotine self-
administration, administration of ipsapirone, a 5-HT1A

agonist, had no effect on nicotine intake (Mosner,
Kuhlman, Roehm, & Vogel, 1997). Nonetheless, neu-
roanatomical data suggest that both the VTA and the
nucleus accumbens receive inputs from serotonergic
neurons originating in the raphe nuclei (Steinbusch,
1981), thus providing a potential substrate for inter-
actions between the serotonergic and dopaminergic
systems. The functional role of serotonin in mediating
the positive reinforcing or rewarding effects of nicotine
is unclear and thus, further research is needed to explore
this issue.

The extended amygdala

Structures and connections

It has been hypothesized that the reinforcing and
withdrawal effects of various drugs of abuse may be
modulated by neurochemical processes in specific basal
forebrain areas that interface classical limbic structures
with the extrapyramidal motor system (Koob, 1996;
Koob et al., 1993). Recent anatomical and functional
analyses suggest that the reinforcing action of drugs may
involve neuroanatomical substrates which extend beyond
the pathway from the VTA to the nucleus accumbens
(Alheid & Heimer, 1988; Koob et al., 1993). The central
nucleus of the amygdala, the bed nucleus of the stria
terminalis, and a transition area in the posterior part of
the shell of the nucleus accumbens are components of a
large forebrain structure termed the ‘extended amygdala’
(de Olmos et al., 1985; Heimer, Alheid, & Zabaorszky,
1985; Heimer & Alheid, 1991). The anatomical concept
of the extended amygdala is based upon observations
that the components of these brain regions have similar
cell morphology, immunohistochemistry, and common
afferent and efferent projections (Heimer & Alheid,
1991). Components of the extended amygdala receive
afferent connections from limbic areas, the hippo-
campus, basolateral amygdala, midbrain, and lateral
hypothalamus. The efferent connections include the
ventral pallidum, VTA, and projections to the brainstem
and lateral hypothalamus (Heimer & Alheid, 1991).
These projections to and from the extended amygdala
provide the necessary connections to modulate drug
reward as well as neuroadaptive changes proposed to
occur with chronic drug exposure (Koob, Sanna, &
Bloom, 1998; Figure 2).

The extended amygdala and reinforcement

While little is known about the role of the extended
amygdala in nicotine reinforcement, several studies have
investigated the role of these structures in reinforcement
associated with another psychomotor stimulant drug,
cocaine. Lesions of dopamine neurons in the VTA or
nucleus accumbens or administration of dopamine recep-
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tor antagonists into areas associated with the extended
amygdala, such as the shell of the nucleus accumbens,
the central nucleus of the amygdala, or the bed nucleus of
the stria terminalis, decreased the reinforcing efficacy of
self-administered cocaine (Caine, Heinrichs, Coffin, &
Koob, 1995; Caine & Koob, 1994; Epping-Jordan,
Markou, & Koob, 1998a; Roberts & Koob, 1982;
Roberts, Koob, Klonoff, & Fibiger, 1980). Like cocaine,
nicotine may exert similar effects on specific compo-
nents of the extended amygdala. Nicotinic acetylcholine
receptor genes have been located in neurons throughout
the rat amygdala, including the central nucleus of the
amygdala (Wada et al., 1989), indicating potential
functional nAChRs within these areas. Further, activa-
tion of the immediate early gene c-fos, a marker of
neuronal activation, and decreased dopamine release
have been measured in the central nucleus of the
amygdala during precipitated nicotine withdrawal (Pan-
agis et al., 1998), suggesting that alterations occur within
the extended amygdala during chronic nicotine exposure.
Taken together, the ability of both cocaine and nicotine
to increase dopamine release specifically in the shell and
not the core of the nucleus accumbens (Nisell et al.,
1994; Pontieri et al., 1996), and the expression of
nicotinic receptor genes in the central nucleus of the
amygdala (Wada et al., 1989) leave open the possibility
of a potential role of the extended amygdala in the
reinforcing effects of nicotine.

24 NICOTINE ADDICTION

Figure 2. Schematic drawing of a midsagittal view of the human brain. Boxed terms indicate the components of the extended
amygdala (shell of the nucleus accumbens, bed nucleus of the stria terminalis, central nucleus of the amygdala). Darkened lines indicate
the mesolimbic dopamine projection from the ventral tegmental area to the nucleus accumbens and prefrontal cortex.

Nicotine withdrawal: theoretical framework for
neurochemical adaptations

Solomon and Corbit (1974) elaborated on an opponent
process theory of motivation wherein affective, emo-
tional, or hedonic states are neutralized by changes
within brain systems that modulate these emotional
processes. It is hypothesized that specific brain sys-
tems are automatically recruited whenever significant
departures from normal affect occur as a consequence
of stimulation, and act to decrease the intensity of the
subjective experience. The opponent process is
hypothesized to be indirectly activated by stimulation
of positive affective or positive hedonic states and acts
to oppose the initial effect (Solomon & Corbit, 1974).
Application of this theory to the development of drug
dependence may involve postulated changes in neu-
rochemical systems that oppose the initial reinforcing
effects of a drug leading to a dependent state. Specifi-
cally, the same neuronal substrates involved in the
acute, positive reinforcing properties of a drug are
hypothesized to be compromised during chronic expo-
sure as well as recruitment of neuronal substrates not
involved in the acute reinforcing effects of drugs.
These alterations are hypothesized to contribute to the
negative motivational and affective states during with-
drawal (Koob & Bloom, 1988; Koob & LeMoal,
1997).
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Nicotine withdrawal phenomena

The nicotine withdrawal syndrome in both human and
non-human animals includes somatic and affective
symptomatology (see introduction). The somatic syn-
drome associated with nicotine withdrawal has been
modeled in rats (Epping-Jordan et al., 1998b; Hildebrand
et al., 1997; Malin et al., 1992; 1993; 1994; Watkins et
al., 2000), but overt somatic withdrawal signs may not
reflect the affective or motivational state of the animal.
Affective changes are difficult to assess in animals;
nevertheless, intracranial self-stimulation has been
shown to be a valid and reliable measure of changes in
reward associated with acute drug exposure (Baldo, Jain,
Veraldi, Koob, & Markou, 1999; Bauco & Wise, 1994;
Huston-Lyons & Kornetsky, 1992; Kornetsky & Espo-
sito, 1981; Moolten & Kornetsky, 1990; Stellar & Rice,
1989) and withdrawal from several drugs of abuse,
including cocaine, amphetamine, morphine, ethanol, and
most recently, nicotine (Epping-Jordan et al., 1998b;
Leith & Barrett, 1976; Lin, Koob, & Markou, 1999;
Markou & Koob, 1991; Schulteis, Markou, Cole, &
Koob, 1995; Schulteis, Markou, Gold, Stinus, & Koob,
1994). Another common effect of withdrawal from many
drugs of abuse is reduced dopamine output in the nucleus
accumbens (Rossetti, Hmaidan, & Gessa, 1992). In
studies employing in vivo microdialysis, extracellular
dopamine levels in the nucleus accumbens decreased
30–40% during spontaneous cocaine withdrawal (Weiss,
Markou, Lorang, & Koob, 1992), approximately 50%
during spontaneous morphine withdrawal (Crippens &
Robinson, 1994), 25% during precipitated morphine
withdrawal (Spanagel, Almeida, Bartl, & Shippenberg,
1994), and 64% during spontaneous ethanol withdrawal
(Weiss et al., 1996). Recently, a decrease of 25% in
extracellular dopamine levels in the nucleus accumbens
was measured during mecamylamine-precipitated nic-
otine withdrawal in rats chronically exposed to nicotine
(Hildebrand, Panagis, Svensson, & Nomikos, 1999).
Microdialysis measures of dopamine levels during
spontaneous nicotine withdrawal have not been reported,
although tissue levels of dopamine in the nucleus
accumbens were reduced approximately 32% compared
to saline controls (Fung, Schmid, Anderson, & Lau,
1996).

Molecular adaptations during chronic nicotine
exposure

The effects of nicotine on central nAChRs are complex
and have been described as ‘paradoxical’ in that chronic
nicotine exposure leads to receptor desensitization and
inactivation which is followed by an upregulation in
nicotinic receptors (Bhat, Marks, & Collins, 1994; Marks
et al., 1992; Wonnacott, 1990). Acute administration of
nicotine stimulates the nAChR which leads to a brief
opening of the ion channel (receptor activation), but then
transiently becomes unresponsive to further exposure to

agonists (receptor inactivation and desensitization;
Corringer, Bertrand, Bohler, Edelstein, Changeux, &
Bertrand, 1998). Consequently, chronic exposure to
nicotine leads to an increase in the number of nAChRs
(receptor upregulation; Collins, Bhat, Pauly, & Marks,
1990; Perry, Davila-Garcia, Stockmeier, & Kellar, 1999;
Wonnacott, 1990). Even though this nicotinic receptor
activation, desensitization, and upregulation can be
viewed as a neuronal response to maintain the baseline
level of synaptic activity within cholinergic and other
neurotransmitter systems during chronic nicotine expo-
sure (Dani & Heinemann, 1996; Reitstetter, Lukas, &
Gruener, 1999), it is not clear if upregulation reflects an
increase in functional receptors (Wonnacott, 1997).
Moreover, nAChRs may exist in many different func-
tional states within the brain (Changeux, Devillers-
Thiery, & Chemouilli, 1984; Reitstetter et al., 1999), thus
maximizing function. The a 2, a 4, and a 7 subunits
become inactive and desensitized in the chronic presence
of nicotine, while the a 3 and a 6 subunits do not show
inactivation (Olale, Gerzanich, Kuryatov, Wang, &
Lindstrom, 1997), suggesting that some subunits show a
greater sensitivity to nicotine than others. Injection of
a 3 b 2 or a 4 b 2 subunit RNAs in oocytes followed by
subsequent nicotine administration indicated that a 4b 2
nicotinic receptors desensitize more quickly and recover
more slowly than a 3 b 2 receptors (Hsu, Amin, Weiss, &
Wecker, 1996). Thus, a differential effect of chronic
nicotine exposure on release of various neurotransmitter
systems may be explained by the balance of receptor
density, desensitization, and functionality.

During nicotine abstinence, such changes in nAChR
function may mediate some of the negative affective
states and somatic symptoms associated with nicotine
withdrawal. For example, during nicotine abstinence that
leads to decreased plasma nicotine levels, the previously
desensitized or inactive nAChRs may begin to recover to
functional states at different rates depending on the brain
region or receptor subtype. During chronic nicotine
exposure, upregulation of nAChRs also may occur along
non-reward-related cholinergic pathways such that dur-
ing abstinence, the recovery of nAChRs in reward and
non-reward circuits may contribute to negative affective
or somatic withdrawal symptoms (Dani & Heinemann,
1996). Thus, the development and perpetuation of
nicotine addiction may involve self-medication to effec-
tively control the number of functional nAChRs along
pathways affected by nicotine (Dani & Heinemann,
1996; Koob et al., 1998).

Neurochemical adaptations

Dopamine

Recent evidence supports the hypothesis that neu-
roadaptations in the dopaminergic system occur with
chronic nicotine exposure. For example, after chronic
exposure to nicotine, decreases in extracellular dopamine
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levels in the nucleus accumbens and the central nucleus
of the amygdala have been measured during mecamyla-
mine-precipitated nicotine withdrawal (Hildebrand,
Nomikos, Hertel, Schilstrom, & Svensson, 1998; Hildeb-
rand et al., 1999; Panagis et al., 1998). Further, during
spontaneous nicotine withdrawal, decreased tissue levels
of dopamine in the nucleus accumbens have been
reported (Fung et al., 1996).

A possible explanation for the reduction in dopamine
release during chronic nicotine exposure involves puta-
tive nicotinic receptor desensitization leading to
decreased neuronal firing.

Decreased neuronal firing in the VTA has been
reported during continuous chronic nicotine infusion
(6 mg/kg/day, nicotine base, for 12 days; Rasmussen &
Czachura, 1995). During spontaneous nicotine with-
drawal, neuronal firing in the VTA returned to baseline
levels 2 days after termination of chronic nicotine, while
the firing of substantia nigra neurons, unaffected during
chronic nicotine exposure, increased over baseline levels
on days 2, 3, and 4 after termination of chronic nicotine
(Rasmussen & Czachura, 1995). The differing effects of
chronic nicotine and withdrawal on the firing rate of
VTA and substantia nigra neurons may indicate distinct
nAChR subtypes in these brain regions. It also has been
reported that after chronic nicotine infusion (4 mg/kg/
day, nicotine base, for 7 days), a subsequent acute
nicotine challenge potentiated the increase in nicotine-
induced dopamine release compared to the increase
measured after an acute nicotine challenge without
previous nicotine exposure (Marshall, Redfern, & Won-
nacott, 1997). The acute challenge, however, was given
approximately 20 h after termination of chronic nicotine
exposure, potentially allowing the recovery of desensi-
tized nAChRs. Taken together, these findings indicate
that alterations within dopaminergic systems occur
during chronic nicotine exposure. Nevertheless, the
putative role of nAChR desensitization remains to be
determined.

Further evidence indicates that intracranial self-stim-
ulation reward thresholds are elevated in rats during
spontaneous or precipitated nicotine withdrawal
(Epping-Jordan et al., 1998b; Watkins et al., 2000). This
alteration in brain reward function also may reflect
alterations in dopaminergic systems. Brain stimulation
reward has been shown to depend on continued activa-
tion of pedunculopontine cholinergic neurons that termi-
nate on dopamine neurons in the VTA (Yeomans &
Baptista, 1997; Yeomans, Mathur, & Tampakeras, 1993).
It has been proposed that myelinated axons of the medial
forebrain bundle (an area supporting high rates of self-
stimulation behavior) projecting from the lateral hypo-
thalamus to the pedunculopontine nucleus activate
cholinergic neurons which then activate dopamine neu-
rons in the VTA by stimulating both nicotinic and
muscarinic receptors (Yeomans & Baptista, 1997). It
may be that after nAChR desensitization and upregula-
tion in the absence of sufficient agonist to stimulate the
receptors, there is reduced cholinergic activation of

dopamine neurons. Thus, a reduction in cholinergic input
to dopamine neurons along the reward pathway may
result in decreased brain reward function. Nevertheless,
these proposed neuroadaptations involving dopamine
may only partly contribute to nicotine withdrawal
symptomatology. Alterations in glutamatergic, GABAer-
gic, opioid peptide and serotonin systems also may
contribute to the negative affective aspects of nicotine
withdrawal.

Glutamate–dopamine interactions

Recent evidence indicates a role of a subset of glutama-
tergic receptors in the increases in the acoustic startle
response, a measure of reactivity to environmental
stimuli, associated with nicotine withdrawal (Helton,
Tizzano, Monn, Schoepp, & Kallman, 1997; Wiley,
1998). Metabotropic glutamate receptors include Group
I, II, and III receptor families, which modulate synaptic
function through second messenger systems (Pin &
Duvoisin, 1995). Group II receptors are most likely pre-
synaptic, based on the finding that activation of these
receptors leads to decreased glutamatergic neurotrans-
mission in limbic areas, such as the hippocampus and the
amygdala (Battaglia, Bruno, Ngomba, Di Grezia,
Copani, & Nicoletti, 1998; Pin & Duvoisin, 1995). The
pre-synaptic Group II metabotropic glutamate receptor
agonist LY354740 completely blocked the increased
startle response induced by nicotine withdrawal (Helton
et al., 1997). This attenuation of a nicotine-withdrawal
symptom is presumably mediated by reversing an over-
excitation of the glutamatergic system resulting from
chronic nicotine administration. This hypothesis is
supported by evidence indicating the Group II metabo-
tropic glutamate receptor agonist DCG-IV protected
against glutamate over-excitation (Bruno et al., 1995;
Buisson, Yu, & Choi, 1996; Miyamoto, Ishida, &
Shinozaki, 1997). Taken together, these findings indicate
that glutamate systems are involved in neuroadaptations
to chronic nicotine exposure. Nevertheless, the above
results may not accurately predict what the effects of the
same glutamate receptor agonist would be on other
measures of nicotine withdrawal, such as threshold
elevations. If decreased mesolimbic dopamine neuro-
transmission during nicotine withdrawal (Hildebrand et
al., 1998, 1999; Panagis et al., 1998) partly mediates the
threshold elevations associated with withdrawal
(Epping-Jordan et al., 1998b), and glutamate positively
modulates mesolimbic dopaminergic neurotransmission
in the VTA and nucleus accumbens, then it would be
predicted that decreased glutamatergic neurotransmis-
sion would exacerbate rather than reverse nicotine
withdrawal symptoms.

There is also evidence that glutamate is involved in
some behavioral changes and neuroadaptations occurring
with chronic nicotine administration, although these
phenomena may not be directly related to withdrawal
symptomatology. Examples of neuroadaptations to
chronic nicotine exposure include the development of
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sensitization and tolerance to nicotine. Sensitization to a
drug has been defined as a long-lasting increment in
response occurring upon repeated presentation of a
stimulus (Segal & Mandell, 1974). In rats, locomotor
activity has been used as a behavioral measure of
sensitization to nicotine. In nicotine-naive rats, acute
administration of nicotine decreased exploratory loco-
motor activity, whereas repeated administration of nic-
otine produced a rapid tolerance to the locomotor-
depressant effects, followed by an increase in locomotor
activity (Clarke & Kumar, 1983; Stolerman, Bunker, &
Jarvik, 1974; Stolerman, Fink, & Jarvik, 1973). Moreo-
ver, sensitization to the locomotor activating effects of
nicotine develops after repeated administration (Clarke
& Kumar, 1983; Benwell & Balfour, 1992). Co-
administration of NMDA receptor antagonists, such as
the non-competitive antagonist MK-801 (dizocilpine) or
the competitive antagonist D-CPPene, with nicotine
reduced the development of tolerance to the locomotor
depressant effect of nicotine, attenuated the development
of tolerance to the aversive stimulus effects of nicotine as
measured by conditioned taste aversion, and prevented
sensitization to the locomotor activating effects of
nicotine (Shoaib, Benwell, Akbar, Stolerman, & Balfour,
1994; Shoaib, Schindler, Goldberg, & Pauly, 1997;
Shoaib & Stolerman, 1996). Furthermore, pretreatment
with the non-competitive NMDA receptor antagonist
MK-801 reduced nicotinic receptor upregulation during
chronic exposure suggesting a neuroadaptation that may
account for the lack of development of the behavioral
adaptations (Shoaib et al., 1997).

Gamma-aminobutyric acid (GABA)–dopamine
interactions

Although there is some evidence for the role of GABA
neurotransmission in the acute neurochemical and
behavioral effects of nicotine (see above), there is little
evidence indicating a potential role of GABAergic
neurotransmission in nicotine withdrawal. Based on the
finding that activation of GABA receptors in the VTA
has an inhibitory effect on mesolimbic dopamine neuro-
transmission, it may be hypothesized that enhancement
of GABAergic neurotransmission during nicotine with-
drawal may facilitate withdrawal symptoms.

Opioid peptides

Another proposed neuroadaptation to chronic nicotine
administration involves opioid peptide systems. Recent
examination of the nicotine withdrawal syndrome in rats
suggests that opioid systems may play a role in nicotine
dependence, although the findings are inconsistent. In
rats, the somatic signs of nicotine withdrawal resemble
those seen in opiate withdrawal, including the symptoms
of abdominal constrictions, facial fasciculation, and
ptosis. This syndrome has been observed after sponta-
neous nicotine withdrawal, as well as withdrawal
precipitated by the nicotinic acetylcholine receptor

antagonists mecamylamine or chlorisondamine (Epping-
Jordan et al., 1998b; Hildebrand et al., 1997, Malin et
al., 1992, 1993, 1994; Watkins et al., 2000) and dihydro-
b -erythroidine (Malin, Lake, Upchurch, Shenoi, Rajan,
& Schweinle, 1998; however, see Epping-Jordan et al.,
1998b). Interestingly, the somatic signs of nicotine
withdrawal also have been precipitated by the opiate
antagonist naloxone in nicotine-dependent rats (Malin et
al., 1993; however, see Watkins et al., 2000), or dansyl-
RFamide, an analog of neuropeptide FF, an anti-opiate
peptide (Malin et al., 1996). Moreover, acute injections
of morphine, an opiate agonist, reversed the somatic
signs of nicotine withdrawal (Malin et al., 1993). A
recent study has failed to replicate these findings and
indicated that doses of naloxone as high as 8 mg/kg did
not induce a differential number of somatic signs of
nicotine withdrawal or threshold elevations in nicotine-
dependent and control subjects (Watkins et al., 2000).
The reason for this discrepancy is unclear at this point.
Nevertheless, administration of a low naloxone dose
(0.12 mg/kg), but not low nAChR antagonist doses,
induced conditioned place aversions in nicotine-treated
rats suggesting that conditioned place aversions are
mediated by reduced opioid neurotransmission, and not
reduced cholinergic neurotransmission (Watkins et al.,
2000). Human studies of the effects of naloxone on
smoking behavior have yielded inconsistent results
(Karras & Kane, 1980; Nemeth-Coslett & Griffiths,
1986). In terms of withdrawal in humans, administration
of naloxone to nicotine-dependent humans produced
dose-dependent increases in self-reported affective and
somatic signs of nicotine withdrawal, suggesting that
long-term exposure to nicotine is associated with altera-
tions in endogenous opioid peptide systems (Krishnan-
Sarin, Rosen, & O’Malley, 1999). Thus, it may be
hypothesized that during chronic nicotine exposure there
is a release of opioid peptides (Boyadjieva & Sarkar,
1997; Pomerleau & Pomerleau, 1984; Pomerleau &
Rosecrans, 1989) which leads to a downregulation of
m -opioid receptors or opioid receptor transduction mech-
anisms. During nicotine abstinence (i.e., in the absence
of an agonist), this downregulation of m -opioid receptors
or opioid receptor transduction mechanisms may con-
tribute to some, but not all, aspects of nicotine
withdrawal.

Serotonin (5-HT1A ) receptor function

As discussed above, the acute effects of nicotine on the
serotonin system are unclear. Nevertheless, evidence
suggests a role of altered serotonin neurotransmission in
nicotine withdrawal. Chronic nicotine treatment pro-
duced a selective decrease in the concentration of 5-HT
in the hippocampus (Benwell & Balfour, 1979), provid-
ing evidence for a neuroadaptation to nicotine. The site
of action for these alterations in serotonin processes may
include the median raphe nucleus, the hippocampus, and
potentially the amygdala. Increases in the number of
hippocampal 5-HT1A receptors have been measured in
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chronic smokers. This receptor upregulation may reflect
a reduction in the activity of serotonergic neurons within
the median raphe nucleus which innervates the hippo-
campus, the amygdala and several other forebrain
structures (Benwell, Balfour, & Anderson, 1990). The
behavioral or affective consequences of this neuroa-
daptation are unclear, but considering the findings that
serotonin deficits have been implicated in depression and
anxiety (Coppen, 1967; Delgado, Charney, Price, Agha-
janian, Landis, & Heninger, 1990; Delgado et al., 1991;
Markou et al., 1998; Young, Smith, Pihl, & Ervin, 1985),
it may be hypothesized that during chronic nicotine
exposure and nicotine withdrawal, the decreases in
serotonin function play a role in the onset of negative
affective symptoms, such as depressed mood, impulsiv-
ity and irritability.

A hypothesized mechanism of action for the nicotinic-
serotonergic interaction begins with nicotine stimulating
nAChRs located in the somatodendritic region in the
median raphe nucleus and the terminal fields in the
forebrain to facilitate serotonin release. The released
serotonin would then stimulate post-synaptic 5-HT1A

receptors located throughout the hippocampus, amyg-
dala, and other sites to modulate some of its positive
effects on mood. With chronic nicotine treatment, the
nicotinic receptor desensitization would lead to an
upregulation in both pre-synaptic nicotinic and post-
synaptic 5-HT1A receptors to maintain baseline func-
tional activity within the terminal regions. During
nicotine abstinence, as the previously desensitized nico-
tinic receptors begin to recover to the pre-nicotine
functional state, the absence of nicotine to stimulate
these receptors combined with the upregulated post-
synaptic 5-HT1A serotonergic receptors may be hypothe-
sized to contribute to decreased serotonergic function
leading to the depressed mood often reported during
nicotine withdrawal (Hughes et al., 1991). An additional
hypothesis involves an effect of nicotine on 5-HT1A

raphe autoreceptors.
Other brain sites where alterations in serotonin

function could modulate the depressed mood associated
with nicotine withdrawal include serotonin projections to
the hypothalamus. The hypothalamus also contains post-
synaptic 5-HT1A receptors, as well as nAChRs located
on pre-synaptic 5-HT terminals (Schwartz et al., 1984).
The lateral hypothalamus has significant projections to
and from components of the extended amygdala (Heimer
et al., 1991; Usuda, Tanaka, & Chiba, 1998). Thus,
alterations in serotonin function within the hypothalamus
could also be hypothesized to modulate some of the
changes in reward processes measured by intracranial
self-stimulation of the lateral hypothalamus.

A different type of alteration in serotonin function
may underlie the increased reactivity to environmental
stimuli observed during nicotine withdrawal. Increased
startle reactivity has been measured in rats during
nicotine withdrawal (Helton, Modlin, Tizzano, & Ras-
mussen, 1993; Rasmussen, Czachura, Kallman, & Hel-
ton, 1996). In rats withdrawing from nicotine, pre-

treatment with the 5-HT1A antagonists NAN-190,
LY206130, or WAY-100635 significantly reduced the
withdrawal-induced increase in the startle response
(Rasmussen, Kallman, & Helton, 1997). The exact
mechanism and site of action for this reduction in startle
reactivity is unknown. Nevertheless, it is hypothesized
that the increased startle response observed during
nicotine withdrawal is due to a decrease in the avail-
ability of synaptic serotonin because serotonin has an
inhibitory influence on startle (Geyer, Peterson, & Rose,
1980; Geyer, Puerto, Menkes, Segal, & Mandell, 1976).
Antagonism of 5-HT1A autoreceptors in the raphe nuclei
then would lead to an increase in serotonin release,
effectively attenuating nicotine withdrawal, reflected in
decreased startle reactivity. Interestingly, however,
administration of p-MPPI, a 5-HT1A receptor antagonist,
did not reverse either threshold elevations or the somatic
signs of nicotine withdrawal (Harrison et al., 1999).
These results, taken together, indicate that different
symptoms of nicotine withdrawal may be mediated by
different neurobiological alterations within the ser-
otonergic system.

Corticotropin-releasing factor (CRF)

Alterations in brain stress systems also may contribute to
the negative affective symptoms associated with nicotine
withdrawal. Specifically, overactivity of the stress hor-
mone corticotropin-releasing factor (CRF) may underlie
the symptoms of anxiety, increased stress, and irritability
often reported by abstinent smokers. The hypothesis that
CRF is activated during nicotine withdrawal is based on
the observation that acute withdrawal from nicotine can
produce an increase in circulating corticosterone (Ben-
well & Balfour, 1979) and that CRF has been shown to
be increased during withdrawal from chronic administra-
tion of other major drugs of abuse, including cocaine,
ethanol, and cannabinoids (Baldwin, Rassnick, Rivier,
Koob, & Britton, 1991; Rodriguez de Fonseca, Carrera,
Navarro, Koob, & Weiss, 1997; Sarnyai, Biro, Gardi,
Vecsernyes, Julesz, & Telegdy., 1995).

28 NICOTINE ADDICTION

Nicotine and depression

During the last 20 years, an association has been
observed between withdrawal from smoking and neg-
ative affect, including anxiety, frustration, anger, and
depressed mood (Pomerleau, Adkins, & Pertschuk, 1978;
Waal-Manning & de Hamel, 1978). The relationship
between depressed mood and smoking is suggested by
estimates indicating that up to 60% of smokers have a
history of clinical depression (Glassman, Stetner, &
Walsh, 1988; Hughes, Hatsukami, Mitchell, & Dahlgren,
1986). Epidemiological results from a sample of 3213
respondents demonstrated that the incidence of Major
Depressive Disorder among smokers was twice that of
non-smokers (Glassman et al., 1990). Moreover, smok-
ers who had a history of clinical depression were half as
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likely to succeed in quitting smoking than smokers
without depressive histories (14% versus 28%) (Glass-
man et al., 1990). Prospective studies also showed that
non-smokers scoring high on a depression inventory
were more likely to be smokers 14 months later than
individuals who scored low on this inventory (Breslau,
Kilbey, & Andreski, 1993). From most of the studies
reviewed above, it is unclear whether individuals who
suffer from depressive symptomatology are more likely
to initiate smoking or whether depressive symptoms are
induced or exacerbated by long-term smoking (Markou
et al., 1998). As discussed above, nicotine has been
hypothesized to produce an initial increase in ser-
otonergic function, an effect that may be particularly
reinforcing for individuals who suffer from chronically
low levels of serotonin contributing to depressed mood.
This effect on serotonin, however, is transient and
nicotine’s antidepressant actions may involve the recruit-
ment of other neurochemical systems to alleviate depres-
sion, such as suppression of corticotropin-releasing
factor, increased opioid activity, or increased dopaminer-
gic function. Whatever the mechanism for the anti-
depressant actions of nicotine, smokers who report
‘negative affect’ as a reason for smoking are likely to fail
at smoking cessation (Pomerleau et al., 1978).

Recognition of the role of negative affect in smoking
behavior has led to the use of antidepressant drugs to
aid in smoking cessation programs. Early studies with
the tricyclic antidepressant doxepin, which inhibits the
reuptake of serotonin, norepinephrine, and to a lesser
extent, dopamine (Stahl, 1997), showed promise as an
aid to smoking cessation (Edwards, Murphy, Downs,
Ackerman, & Rosenthal, 1989), but no further studies
on doxepin have been reported. Investigation of another
tricyclic antidepressant, nortriptyline, as an adjunct to
smoking cessation indicated some effectiveness in pro-
moting cessation. Results from a double-blind, placebo-
controlled study showed that 14% of patients who
received 75 mg of nortriptyline per day for 2 months
were still abstinent after 6 months (Prochazka, Weaver,
Keller, Fryer, Licari, & Lofaso, 1998). Self-reported
withdrawal symptoms including irritability, anxiety, and
difficulty concentrating were significantly reduced by
day 8 of treatment in patients who received nortripty-
line compared to placebo (Prochazka et al., 1998).
Interestingly, selective serotonin reuptake inhibitors
appear not to affect smoking behavior in heavy smok-
ers (Sellers, Naranjo, & Kadlec, 1987), suggesting that
serotonin is probably only one of several neuro-
transmitters involved in nicotine dependence. Most
recently, the effects of a sustained-release form of
buproprion on smoking cessation have been investi-
gated. Buproprion is a weak inhibitor of norepinephrine
and dopamine uptake but does not affect serotonin
reuptake (Ascher et al., 1995). Results from two
double-blind, placebo-controlled studies indicated that
23–30% of subjects who received 300 mg of bupro-
prion per day for approximately 2 months were still
abstinent after 1 year, values almost twice that of

subjects receiving placebo (Hurt et al., 1997; Jorenby et
al., 1999). Thus, preliminary results from clinical trials
using antidepressants as an adjunct to smoking cessa-
tion suggest that dopamine and norepinephrine func-
tion, perhaps more so than serotonin, modulate some of
the negative affective changes associated with nicotine
withdrawal.

Nicotine and schizophrenia

Schizophrenia presents another promising area of
research into the complex action of nicotinic receptor
function in affective abnormalities seen in psychiatric
populations. Patients with schizophrenia have the highest
incidence of smoking, with some estimates exceeding
90%, compared to 25% of the general population
(Glassman, 1993; Hughes et al., 1986). Individuals with
schizophrenia commonly smoke high-tar cigarettes and
extract more nicotine from cigarettes than smokers
without schizophrenia (Hughes et al., 1986; Olincy,
Young, & Freedman, 1997). The high rate of cigarette
smoking among schizophrenia patients has been sug-
gested to reflect an attempt to reduce neuroleptic-
induced side-effects (Jarvik, 1991). Results from studies
on smoking and the side-effects of antipsychotics have
been mixed, with a few reports of diminished neu-
roleptic-induced dyskinesias among schizophrenia
patients who smoke (Decina, Caracci, Sandik, Berman,
Mukherjee, & Scapicchio, 1990; Goff, Henderson, &
Amico, 1992; Sandyk, 1993), with other reports of
increased tardive dyskinesia among smokers (Wirshing,
Engle, Levin, Cummings, & Rose, 1989; Yassa, Lal,
Korpassy, & Ally, 1987), and still other findings
indicating no difference between smokers and non-
smokers (Menza, Grossman, Van Horn, Cody, & For-
man, 1991). From anecdotal reports, only a small
percentage of schizophrenia patients report smoking to
reduce the side-effects of antipsychotic medications
(Dalack & Meador-Woodruff, 1996).

Another hypothesis involves the negative symptoms
of schizophrenia, symptoms which include anhedonia
(i.e., diminished interest or pleasure), avolition (i.e., lack
of motivation), and affective flattening (American Psy-
chiatric Association, 1994). It may be hypothesized that
schizophrenia patients attempt to self-medicate their
negative symptoms by smoking, symptoms which tend
to be most resistant to currently available antipsychotic
treatments (Jibson & Tandon, 1998; Krystal, D’Souza,
Madonick, & Petrakis, 1999; Marder, Wirshing, & Van
Putten, 1991; Moller, 1998; Wirshing et al., 1989). As
noted above, nicotine increases burst firing of dopamine
neurons along the mesocorticolimbic pathway resulting
in a net increase in extracellular dopamine in both the
nucleus accumbens and the prefrontal cortex (Grenhoff,
Aston-Jones, & Svensson, 1986; Nisell et al., 1995; Pich,
Pagliusi, Tessari, Talabot-Ayer, Hooft van Huijsduijnen,
& Chiamulera, 1997; Svensson, Grenhoff, & Engberg,
1990). Schizophrenia patients exhibit a reduction in
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metabolic activity in the prefrontal cortex, known as
hypofrontality, which has been hypothesized to be
associated with the negative symptoms of schizophrenia
(Weinberger, Berman, & Ilowsky, 1988). The increased
dopamine release in the prefrontal cortex may be
hypothesized to lead to a reduction in the negative
symptoms of schizophrenia and as such, the high
incidence of smoking among schizophrenia patients may
reflect an attempt at self-medication (Markou et al.,
1998; Svensson et al., 1990).

Deficits in inhibitory mechanisms which regulate the
processing of sensory information are also character-
istic of patients with schizophrenia. Individuals with
schizophrenia exhibit disrupted prepulse inhibition of
the acoustic startle reflex that reflects a sensorimotor
gating deficit (Geyer & Braff, 1987). Such sensory
gating deficits may be reversed by nicotine administra-
tion through tobacco smoking. It has been shown that
acute or chronic administration of nicotine improves
prepulse inhibition of the acoustic startle response
under baseline conditions in rats (Acri, Brown, Saah, &
Grunberg, 1995; Curzon, Kim, & Decker, 1994). Fur-
ther, animal models of the sensorimotor gating response
indicate that alterations in dopamine neurotransmission
may modulate sensory processing deficits (Swerdlow,
Braff, & Geyer, 1990; Swerdlow, Braff, Geyer, &
Koob, 1986; Swerdlow, Caine, & Geyer, 1992; Swer-
dlow & Geyer, 1993). In rats, depletion of dopamine in
the prefrontal cortex or the nucleus accumbens reduced
prepulse inhibition of the acoustic startle response, an
effect similar to the sensorimotor gating deficit seen in
patients with schizophrenia (Bubser & Koch, 1994;
Geyer & Braff, 1987; Swerdlow & Geyer, 1998). While
the above studies suggest that a reduction in dopamine
mediates some alterations in sensorimotor gating, evi-
dence indicates that alterations in nicotinic receptor
function also may contribute to sensory gating deficits
(see below).

Another measure of sensory gating is the P50 or N40
auditory event-related potential in humans and rats,
respectively (Freedman, Adler, Myles-Worsley, Naga-
moto, Miller, Kisley, McRae, Cawthra, & Waldo,
1996). Rats raised in social isolation showed abnormal
sensory gating, as reflected in both prepulse inhibition
and N40 event-related potentials, similar to deficits
exhibited by patients with schizophrenia (Geyer, Wilk-
inson, Humby, & Robbins, 1993; Stevens, Johnson, &
Rose, 1997). The abnormal N40 auditory gating in
socially isolated rats was temporarily reversed by acute
administration of nicotine (Stevens et al., 1997), sug-
gesting that activation of nAChRs by nicotine tran-
siently normalizes sensory gating. Similarly, patients
with schizophrenia fail to suppress the P50 auditory
event-related potential to repeated stimuli, which
appears to be correlated with decreased vigilance and
distractibility (Adler, Pachtman, Franks, Pecevich,
Waldo, & Freedman, 1982; Clementz, Geyer, & Braff,
1997; Cullum et al., 1993; Griffith, O’Neill, Petty,
Garver, Young, & Freedman, 1998). Similar to studies

in rats, nicotine administration also transiently reversed
the P50 deficits seen in patients with schizophrenia
(Adler, Hoffer, Wiser, & Freedman, 1993). The failure
to suppress the P50 response in patients with schizo-
phrenia may be related to alterations in nAChR func-
tion, specifically activity of a 7 nicotinic receptors in
the hippocampus. Post-mortem brain analyses revealed
that schizophrenics have reduced numbers of a 7 nico-
tinic receptors in the hippocampus (Freedman, Hall,
Adler, & Leonard, 1995). Within the hippocampus,
nicotine has been shown to induce glutamate release
through activation of a 7 nicotinic receptors (Gray et
al., 1996), thus leading to the hypothesis that enhanced
hippocampal glutamate release modulates sensory gat-
ing (Dalack, Healy, & Meador-Woodruff, 1998). It has
been postulated that initial auditory stimulation acti-
vates a 7 nicotinic receptors in the hippocampus to
release glutamate (Leonard et al., 1996). Glutamate
then would activate receptors on GABA interneurons to
release GABA and inhibit hippocampal neurons, thus
reducing activation by further auditory stimulation
(Leonard et al., 1996). Accordingly, it has been sug-
gested that smoking facilitates activation of a 7 nico-
tinic receptors to effectively normalize attentional pro-
cessing in patients with schizophrenia (Dalack et al.,
1998). Similar to all other nAChRs, a 7 receptors are
activated by nicotine or acetylcholine and then become
desensitized to further stimulation (Seguela, Wadiche,
Dineley-Miller, Dani, & Patrick, 1993). Interestingly,
the finding of decreased a 7 receptor expression in the
hippocampus of schizophrenia smokers suggests that
the a 7 receptor may not upregulate in the presence of
chronic nicotine. Thus, the neuropharmacological basis
of increased smoking among schizophrenic patients
may be hypothesized to also involve stimulation of
nAChRs composed of a and b subunits in addition to
a 7 receptor activation.

Neurobiology of acute and protracted nicotine
abstinence–synthesis

A large proportion of smokers, at some point in their
smoking career, have tried to quit, albeit unsuccessfully.
Only 10–20% of those who attempt to quit are still
abstinent after 1 year. The determining factors for relapse
include craving for nicotine and negative emotional
states including depressed mood and psychosocial stress
(Doherty, Kinnunen, Militello, & Garvey, 1995; Swan,
Ward, & Jack, 1996). Interestingly, the best predictor of
relapse between 4 and 12 months of abstinence was
smoking at least one cigarette between the quitting day
and 4 months (Nides et al., 1995). This finding suggests
that a heightened sensitivity to the reinforcing value of
nicotine persists into periods of protracted abstinence.
These powerful reinforcing effects could be especially
detrimental for anyone attempting to quit smoking, in
that a single relapse episode may progress rapidly to a
full relapse.
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From the data reviewed above, it is possible to
develop a preliminary hypothesis of the neurobiological
mechanisms underlying acute nicotine withdrawal.
Based on the evidence of decreased dopamine in both
the nucleus accumbens and the central nucleus of the
amygdala during precipitated nicotine withdrawal (Hil-
debrand et al., 1998; Panagis, Hildebrand, Svensson, &
Nomikos, 1998), it may be hypothesized that adapta-
tions of dopamine function in components of the
extended amygdala partly modulate the depressed mood
and dysphoria associated with acute nicotine with-
drawal. These affective changes may be the best
predictors of relapse to cigarette smoking. Alterations
in serotonin function also are proposed to be involved
in affective as well as sleep- and appetite-related
changes during acute nicotine withdrawal.

It has been suggested that long-term drug exposure
contributes to a change in hedonic set point which may
increase the positive reinforcing efficacy of the drug
(Koob & LeMoal, 1997). Thus, the neuroadaptations
proposed to occur with long-term, chronic nicotine
exposure would be hypothesized to play a role in
protracted abstinence from nicotine by contributing to a
heightened sensitivity to the positive reinforcing effects
of nicotine. As discussed above, one of the effects of
nicotine withdrawal is decreased dopamine neurotrans-
mission within the mesolimbic dopamine system. The
initial decrease in dopamine is hypothesized to mod-
ulate some of the negative affective symptoms asso-
ciated with acute nicotine withdrawal; however, the
role of adaptive mechanisms within the mesolimbic
dopamine system during protracted abstinence is
unknown.

While the proposed long-term alterations in the
dopaminergic reward system may contribute to an
increased sensitivity to nicotine during protracted absti-
nence, the effects, even during acute withdrawal, are
not dramatic. Other neuropharmacological mechanisms
such as alterations in opioid peptide function, serotonin,
and even glutamate may be speculated to have a role.
Evidence suggests that stress systems in the brain also
may play a major role in vulnerability to relapse.
Potential recruitment of systems such as corticotropin-
releasing factor have been hypothesized to extend into
periods of protracted abstinence, thus contributing to an
increased stress response and anxiety during abstinence
(Kreek & Koob, 1998). Increased corticotropin-releas-
ing factor function has been measured in the amygdala
during withdrawal from opiates, cocaine, ethanol, and
cannabinoids and may modulate the stress response
during abstinence (Heinrichs, Menzaghi, Schulteis,
Koob, & Stinus, 1995; Koob, Heinrichs, Menzaghi,
Merlo Pich, & Britton, 1994; Pich et al., 1996; Richter
& Weiss, 1999). As such, activation of brain stress
systems may contribute to negative symptoms of with-
drawal. It also has been suggested that an overactive
stress response may make an individual vulnerable to
relapse (Kreek & Koob, 1998). While the effects of
acute nicotine and withdrawal on corticotropin-releas-

ing factor function are unclear, one can speculate that
acute nicotine decreases corticotropin-releasing factor,
contributing to a sense of relaxation and calm, whereas
nicotine withdrawal is characterized by increased corti-
cotropin-releasing factor function, contributing to an
increased stress response during abstinence. It is further
hypothesized that increased corticotropin-releasing fac-
tor function persists into protracted nicotine abstinence,
thus contributing to an increased vulnerability for
relapse. An individual with a heightened corticotropin-
releasing factor-induced stress response may be more
likely to revert to previously learned coping patterns
(i.e., smoking to facilitate relaxation).

To summarize, the transition from occasional or
recreational drug use to dependence may involve
‘affective habituation’ or a change in hedonic set point,
such that abstinence leads to negative affective con-
sequences, thus contributing to the maintenance of drug
dependence through negative reinforcement processes
(Koob, 1996; Koob & Le Moal, 1997). Furthermore,
the change in hedonic set point may be reflected in an
increase in drug taking behavior (Ahmed & Koob,
1998). For nicotine, the transition from occasional
cigarette smoking to chronic, dependent use in humans
may involve an increase in hedonic set point requiring
increased nicotine intake to reach the desired level of
stimulation. The underlying mechanisms for alterations
in hedonic processes that occur with chronic nicotine
exposure are hypothesized to involve decreased dopa-
mine, serotonin, and opioid peptide function, and
activation of corticotropin-releasing factor function
within the extended amygdala. These neurochemical
alterations would require increased nicotine intake to
reach and maintain a certain level of hedonic function
within the midbrain reward pathways while concur-
rently avoiding the onset of affective withdrawal symp-
toms. During abstinence, the increase in hedonic set
point is hypothesized to persist, and with the experi-
ence of the negative affective symptoms of withdrawal,
the abstinent smoker would be especially vulnerable to
relapse.

Based on the current knowledge of the neurobiology
of nicotine withdrawal and the proposed neuroadapta-
tions occurring in the presence of chronic nicotine,
several avenues of pharmacological treatment of nic-
otine dependence warrant consideration. As discussed
above, a negative affective state may be the best
predictor of relapse to cigarette smoking and pharmaco-
logical therapies designed to alleviate negative affect
induced by nicotine withdrawal should be explored.
Serotonergic dysfunction has been hypothesized to
partially modulate negative affect during withdrawal,
but additional studies are needed to fully explore the
role of serotonin in nicotine withdrawal. It also has
been suggested that decreased dopamine function may
underlie some of the negative affective symptoms of
nicotine withdrawal. Therefore, the development of
therapeutic compounds that target the mesolimbic dopa-
mine system as an aid to smoking cessation should be
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examined. Another promising treatment approach to aid
in smoking cessation is regulation of stress systems
involving corticotropin-releasing factor. Antagonists of
corticotropin-releasing factor receptors may help reduce
the symptoms of anxiety, frustration, and irritability
associated with nicotine withdrawal which would likely
contribute to significantly higher success rates of absti-
nence. Finally, further exploration into glutamate path-
ways involved in nicotine withdrawal symptoms could
serve as the basis for the development of NMDA or
metabotropic glutamate receptor compounds which may
help to alleviate some of the impairment in cognitive
abilities associated with nicotine withdrawal. Overall,
from the above review and hypotheses, the focus of
neuropharmacological research for the development of
novel pharmacotherapies for nicotine addiction should
involve manipulations of central serotonergic, dopami-
nergic, corticotropin-releasing factor, and glutamatergic
systems.

Conclusions

In conclusion, the positive reinforcing effects of nicotine
appear to be modulated through direct and indirect
stimulatory actions on the mesolimbic dopamine system
via actions on glutamatergic, GABAergic, opioid pep-
tide, and serotonergic systems. In the presence of chronic
nicotine, neurochemical adaptations occur to mediate the
symptoms of nicotine withdrawal. The neurobiology of
acute nicotine withdrawal and protracted abstinence is
proposed to involve alterations within dopaminergic,
serotonergic, opioid peptide, and possibly corticotropin-
releasing factor systems, which are hypothesized to
contribute to the negative affective state associated with
nicotine abstinence. While the hypothesized underlying
neurobiological mechanisms mediating the negative
affective aspects of nicotine withdrawal are mostly
speculative, these hypotheses have heuristic value.
Future experiments exploring these hypotheses will yield
important information about the central actions of
nicotine and advance our knowledge of the neural
mechanisms involved in nicotine dependence and with-
drawal, and the role of cholinergic neurotransmission in
depression and schizophrenia. Thus, such investigations
may aid the development of new pharmacological agents
for smoking cessation, depression, and schizophrenia.
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