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Leucine, a branched-chain amino acid that must be supplied in the daily diet, plays
an important role in controlling protein synthesis and regulating cell metabolism in
various cell types. In pancreatic b cells, leucine acutely stimulates insulin secretion by
serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase
to enhance glutaminolysis. Leucine has also been shown to regulate gene
transcription and protein synthesis in pancreatic islet b cells via both
mTOR-dependent and -independent pathways at physiological concentrations.
Long-term treatment with leucine has been shown to improve insulin secretory
dysfunction of human diabetic islets via upregulation of certain key metabolic
genes. In vivo, leucine administration improves glycemic control in humans and
rodents with type 2 diabetes. This review summarizes and discusses the recent
findings regarding the effects of leucine metabolism on pancreatic b-cell function.
© 2010 International Life Sciences Institute

INTRODUCTION

Branched-chain amino acids, including leucine, isoleu-
cine, and valine, are essential amino acids that cannot be
manufactured in humans or other vertebrates and thus
must be obtained through the daily diet. Branched-chain
amino acids, particularly leucine, play a critical role in
controlling protein synthesis by modulating translation
initiation in various cells. Leucine is well known to
acutely stimulate insulin secretion from pancreatic b cells
by serving as both metabolic fuel and allosteric activator
of glutamate dehydrogenase (GDH).1–3 Recent reports
indicate that leucine or its transaminated product
a-ketoisocaproate (KIC) might impact insulin secretion
via direct inhibition of b-cell ATP-regulated potassium
(KATP) channel currents.4 In the past decade, leucine had
been demonstrated to activate the mammalian target of
rapamycin (mTOR), a serine and threonine protein
kinase that regulates protein synthesis and cell metabo-
lism in pancreatic b cells.5 To date, leucine has been
proven to stimulate gene transcription and protein syn-

thesis in pancreatic islets or other cell types by both
mTOR-dependent and -independent pathways.6–9 We
have recently shown that long-term treatment with
leucine augments glucose-stimulated insulin secretion in
INS-1 cells, rat and human islets by upregulating certain
metabolic genes via a rapamycin-insensitive mecha-
nism.10,11 In vivo, leucine administration acutely elevates
circulating insulin in humans, rodents, and mammals,
and improves glycemic control in db/db mice or high-fat-
diet-induced diabetic mice.12–14 A mixture of leucine, iso-
leucine, and valine acutely elevates circulating insulin
levels and enhances glucose clearance after glucose load
in healthy human subjects.13,15 Increased dietary leucine
intake ameliorates diet-induced obesity, hyperglycemia,
and hypercholesterolemia in human subjects and rodents
via multiple mechanisms.12,16–18 Leucine administration
also increases protein synthesis in muscle, adipose, and
liver via multiple mechanisms.8,19 Overall, leucine plays
an important role in glucose homeostasis by exerting
acute and chronic effects on pancreatic b cells, liver,
muscle and adipose. In this review, recent findings
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regarding the effects of leucine on pancreatic b function
will be briefly summarized and discussed.In particular, the
therapeutic potential of some metabolic genes regulated
by leucine signaling pathways in the treatment of islet
dysfunction and type 2 diabetes will also be discussed.

LEUCINE ACUTELY STIMULATES INSULIN SECRETION
FROM PANCREATIC b CELLS

Leucine or its metabolic intermediates regulates KATP

channel activity

Leucine stimulates insulin secretion from pancreatic b
cells via two main mechanisms. One is in the direction of
deamination to yield KIC,20 and the other is to enhance
glutaminolysis by allosterically activating GDH, a key
enzyme controlling the oxidation of glutamate.21 In the
first case, it is believed that leucine or KIC regulates KATP

channel activity4 and results in an increase of free cyto-
solic Ca2+, which then triggers insulin secretory granules
exocytosis via mechanisms involving the activation
of some protein kinases and protein acylation.22,23

Leucine has been shown to be a more potent insulin
secretagogue than its non-metabolic analog, 2-
aminobicyclo(2,2,1)heptane-2-carboxylic acid (BCH).24

Interruption of pyruvate cycling inhibits insulin secretion
stimulated by leucine in the presence of glutamine in rat
islets and INS-1 cells.25 Controversially, it has also been
reported that KIC may more potently stimulate insulin
secretion from islet b cells than leucine at an equal molar
concentration.26,27 Recently, we found that leucine and
KIC show distinct effects on stimulation of insulin secre-
tion from pancreatic islet cells. We observed that glucose
completely blocks the effects of leucine, but not those of
KIC on stimulation of insulin secretion from islet b
cells.20 Branstrom et al.4 demonstrate that KIC closes the
ATP-sensitive K+ channel and induces the depolarization
of plasma membrane of db/db mouse islet cells via a
direct action, whereas leucine fails to do so. In addition,
there is a subset of leucine-sensitive hyperinsulinemic-
hypoglycemic children who have mutations in the sulfo-
nylurea receptor 1 (SUR1) subunit of KATP channel but
have no mutations in GDH.28,29 Moreover, a recent study
indicates that glutaminolysis stimulated by BCH is
enhanced in SUR1 knockout and glyburide-treated wild-
type islets.30 Controversially, Ball et al.31 report that long-
term treatment with 100 mM glyburide, a potent inhibitor
of SUR1, significantly inhibits leucine-stimulated, but not
glucose-stimulated, insulin secretion in the BRIN-BD11
cell line. Rabaglia et al.32 demonstrate that methyl-leucine
or aminooxyacetate, inhibitors of branched-chain amino
transferase, blocks KIC-stimulated insulin secretion in
diabetes-susceptible BTBR mouse islets, which supports
the suggestion that that conversion to leucine plays an

important role in KIC-stimulated insulin secretion.20

However, it should be noted that further oxidation of KIC
to yield ATP may also play important roles in leucine- or
KIC-stimulated insulin secretion.20 We have previously
demonstrated that glucose and KIC cause a significant
increase in unesterified arachidonic acid accumulation in
pancreatic islet cells, whereas mannose, fructose, and
glyceraldehyde have no significant effects on cellular
unesterified arachidonic acid accumulation concomitant
with their failure to stimulate insulin secretion.33 Consis-
tent with these observations, diabetic Goto-Kakizaki rat
islets have a deficient insulin response to leucine, which
has been proposed to be due to decreased generation of
acetyl-CoA from KIC oxidation.34 Recently, MacDonald
et al.35,36 reported that KIC alone fails to stimulate insulin
secretion in cultured rat islets and INS-1832/13 cells.

Allosteric activation of GDH by leucine

There are two GDH isoenzymes in human tissues. One is
encoded by the GLUD1 gene with ubiquitous expression
(housekeeping gene), and the other is encoded by the
GLUD2 gene with specific expression in neural tissues.37

The GDH isotype in pancreatic b cells is encoded by the
GLUD1 gene. GDH is the key enzyme controlling amino
acids and ammonia metabolism in pancreatic b cells,
liver, and brain.38 Mature human GLUD1-derived GDH
without the leader peptide (55 amino acids) contains 505
amino acid residues,39 which form one catalytic domain at
the N-terminus and one allosteric domain at the
C-terminus.39 Leucine and ADP potently activate GDH,
whereas valine, isoleucine, and methionine activate GDH
weakly. GDH is normally allosterically inhibited by GTP
and ATP. It was reported decades ago that a non-
metabolic analog of leucine, BCH, significantly stimulates
insulin secretion from pancreatic b cells.2,40 Selective acti-
vation of GDH is the main or the only mechanism by
which BCH stimulates insulin secretion from b cells
because it cannot be metabolized.2,40 Selective inhibition
of GDH activity by polyphenols extracted from green tea
or 5′-deoxypyridoxal inhibits BCH- or leucine-
stimulated, but not glucose-stimulated, insulin secretion
from pancreatic islet cells.41,42 Interruption of pyruvate
cycling inhibits BCH-stimulated insulin secretion in the
presence of glutamine in rat islets and INS-1 cells.25 Alu-
minum has also been shown to inhibit human GDH
activity by inducing conformational change of the pro-
tein.43 BCH and other non-metabolic analogs of leucine
are very useful for studying the acute effects of leucine on
stimulation of insulin secretion involving selective acti-
vation of GDH in pancreatic b cells. We have previously
demonstrated that leucine-mediated glutaminolysis via
GDH activation may play a critical role in interprandial
insulin release when blood glucose falls below 5 mM. This
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basal insulin release accounts for about half of the daily
required insulin secretion from b cells.44 Overexpression
of GDH significantly enhances insulin secretion by
glutamine stimulation alone (2.7-fold) or glutamine plus
BCH (about 6-fold) in pancreatic b cells. Interestingly,
although insulin secretion at low glucose is not affected
by GDH overexpression, high glucose-stimulated insulin
secretion is significantly potentiated by GDH overexpres-
sion in rat islets.45 Consistently, deletion of GDH partially
abolishes glucose-stimulated insulin secretion in pancre-
atic b cells.46 These observations suggest that GDH may
also function as a rate-limiting enzyme in the process of
glucose-induced insulin secretion in pancreatic b cells
beyond its well-established role as a glutamate sensor.45

Hyperinsulinemia is the most common cause of
persistent hypoglycemia in infants and children. Recent
discoveries show that the disorders of KATP channel, gain-
of-function mutations in glucokinase (GK) and GDH are
associated with hyperinsulinemic hypoglycemia of
infancy (HHI).47–49 In 1998, Stanley et al.39 first demon-
strated that hyperinsulinism-hyperammonemia syn-
drome is caused by mutations in the glutamate
dehydrogenase gene. The authors identified five muta-
tions in glutamate dehydrogenase, which are His454Tyr,
Ser445Leu, Gly446Ser, Gly446Asp, and Ser448Pro,
respectively, from eight patients with hyperinsulinism-
hyperammonemia syndrome. Sequence comparison
revealed that all of these mutations are located in a
narrow region near the GTP-binding domain of GDH.39

These mutant GDH proteins show a similar basal enzyme
activity and sensitivity to ADP activation, whereas they
are insensitive to GTP inhibition in comparison with
wild-type GDH protein. Clearly, the activity of these
mutant GDHs may increase in response to amino acid
stimulation. Actually, hypoglycemia of patients with
hyperinsulinism-hyperammonemia syndrome will be
precipitated after a protein meal or amino acids
load.39,50,51 Transgenic (TG) mice specifically expressing
human His454Tyr GDH in pancreatic islet driven by the
rat insulin promoter show hypoglycemia as compared
with control mice expressing wild-type human GDH in
islets. In vitro, His454Tyr TG mouse islets secrete more
insulin in response to leucine or amino acid mixture in
the presence of 2 mM glutamine than control mouse
islets due to increased glutamine oxidation.52 In contrast,
glucose-stimulated insulin secretion is inhibited in
His454Tyr TG mouse islets when compared with control
islets.52 Moreover, although mutation of Arg 443 in the
regulatory domain of human GDH to Ser significantly
impairs its basal enzyme activity, leucine at the concen-
trations of 0.3–6.0 mM activates the mutant enzyme
activity up to 20-fold in the presence of 0.025–0.1 mM
ADP.53 Recently, Kapoor et al.54 identified another three
mutations in GDH, which are N410D, D451V, and P436L,

respectively. Interestingly, although P436L GDH is asso-
ciated with loss of GTP inhibition like other
mutants,39,50,51 the patients with heterozygous P436L
GDH have hyperinsulinism and normal serum ammonia
concentration.54

All of these studies indicate that GDH plays a crucial
role in regulating insulin secretion from pancreatic b cells
in response to glutamine, leucine, glucose, or other fuels.
Activating mutations of GDH are predominantly associ-
ated with hyperinsulinism-hyperammonemia syndrome.
Discoveries and development of selective inhibitors
of GDH have shed new light on the treatment of
hyperinsulinism-hypoglycemia syndrome involving
gain-of-function mutations in the GDH gene.41,55 In islet
b cells of db/db mice, KIC fails to elevate cellular NADH
and Ca2+, whereas glucose potently increases both of
them.56 On the contrary, KIC induces hypersecretion of
insulin in islets of insulin-resistant BTBR mice.32 These
observations suggest that dysregulation of leucine-
metabolic-linked insulin secretion may be involved in the
progression of islet b-cell dysfunction and type 2 diabe-
tes. In isolated perfused chicken pancreas, 20 and 40 mM
L-leucine or 10–40 mM KIC alone fails to stimulate
insulin secretion, while they evoke a slight biphasic
insulin release in the presence of 14 mM glucose; this
suggests that leucine may stimulate insulin secretion dif-
ferently in chickens and mammals.57

In summary, leucine is likely to exert its acute effects
on stimulation of insulin secretion from pancreatic islets
through combined mechanisms involving regulation of
both ATP production and KATP activity. In the former
case, the leucine-mediated increase in ATP production is
achieved through its metabolic oxidation and allosteric
activation of GDH that enhances glutaminolysis.

LEUCINE REGULATION OF GENE TRANSCRIPTION AND
PROTEIN SYNTHESIS IN PANCREATIC b CELLS

mTOR-dependent signaling

Mammalian target of rapamycin (mTOR) is a serine and
threonine kinase that regulates protein translation via
activation of the 70-kDa ribosomal protein S6 kinase
(p70S6K) and the eukaryotic translation initiation factor
4E-binding protein-1 (4EBP1).9,58 The effect of mTOR on
enhancement of protein synthesis can be blocked by
rapamycin, a widely used immunosuppressant. Recently,
a number of studies have revealed that branched-chain
amino acids play an important role in the regulation of
protein synthesis by activating mTOR in pancreatic b
cells.5,7,9,58 Leucine and KIC significantly stimulate the
phosphorylation of p70S6K and enhance protein synthesis
in pancreatic b cells in a rapamycin-sensitive and insulin-
independent manner at physiological concentrations
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ranging from 0.4 mM to 4 mM.9,58,59 Similarly, isoleucine
and valine also activated p70S6K in these studies.9,58,59 In
contrast, BCH fails to activate mTOR and p70S6K at the
concentrations ranging from 0.2 mM to 10 mM.58 These
results indicate that leucine activates mTOR signaling
pathway by a metabolic-linked mechanism, in which
GDH activation is unlikely involved. Protein-energy mal-
nutrition has been reported to inhibit pancreatic b-cell
replication in the fetal rodent pancreas by an unknown
mechanism.60,61 Since leucine diversely and nonspecifi-
cally stimulates protein synthesis in pancreatic b cells via
an mTOR-dependent mechanism, certain important
transcriptional regulator(s) might be degraded under
low-leucine condition, resulting in consequential inhibi-
tion of gene transcription and b-cell replication observed
in these studies.60,61

A recent study reveals that the inhibition of AMPK
activity by glucose and amino acids may be involved in
nutrient-stimulated mTOR activation but not in insulin
secretion in pancreatic b cells.62 Consistently, activation
of AMPK by 5-aminoimidazole-4-carboxamide-1-beta-
D-ribonucleoside (AICAR) inhibits leucine-induced
increases in mTOR activity and protein synthesis in rat
skeletal muscle under in vivo conditions.63 Importantly,
leucine has also been shown to enhance protein synthesis
by mTOR-mediated activation of p70S6K and 4EBP1 in
other tissues, such as liver, muscle, adipose, and
myoblast.6,64–71

mTOR-independent signaling

We recently demonstrated that long-term culture with
leucine upregulates certain metabolic genes via an
unknown mechanism.10,11 Rapamycin at a concentration
of 10 nM fails to block the induction of these metabolic
genes by leucine at 10 mM. Rapamycin was used at a
concentration of 10 nM in these studies10,11 because long-
term treatment with rapamycin greater than 10 nM sig-
nificantly induces apoptosis of pancreatic b cells.72

Although the rapamycin concentration tested in our
studies is lower than that used in other studies in which
the acute effects of leucine on mTOR activation have been
evaluated,9,58 we still cannot rule out the possibility that
leucine regulates gene expression or protein synthesis via
a rapamycin-insensitive signaling pathway in pancreatic
islet cells. In support, Talvas et al.73 report there is a lack of
regulation of mTOR activity in response to leucine
deprivation in C2C12 myotubes, suggesting that the
activation of p70S6K may be achieved through an mTOR-
independent mechanism. The authors further show that
the availability of eIF4E with eIF2a phosphorylation is
not determinant for decreasing global protein synthesis
in leucine deprivation condition. As extensively reviewed
and discussed by Yoshizawa,8 rapamycin attenuates but

does not prevent the leucine-induced enhancement of
protein synthesis or eIF4F complex formation. It has been
proposed that leucine regulates muscle protein synthesis
through both an insulin- and mTOR-dependent signal-
ing pathway involving 4EBP1 and p70S6K phosphoryla-
tion, and an insulin- and mTOR-independent pathway
involving enhanced eIF4F complex formation.8 In addi-
tion, Blomstrand et al.6 also report that branched-chain
amino acids, in particular leucine, can stimulate phospho-
rylation of p70S6K and enhance protein synthesis in
muscle by a mechanism involving both mTOR-
dependent and -independent pathways. Lee et al.74 report
that leucine increases 3H-thymidine incorporation and
cell proliferation in chicken hepatocytes through a
mechanism involving both the PKC/ERK1/2 signaling
pathway and the mTOR-dependent signaling pathway.
Rapamycin fails to block swelling-independent proteoly-
sis inhibition by leucine in perfused rat livers, suggesting
that at least rapamycin-sensitive mTOR activation is not
involved in this process.75 Islets isolated from mice fed a
low-protein (LP) diet for 8 weeks have lower expression
levels of insulin receptor substrate-1 (IRS-1) and p70S6K

than those from mice fed a normal-protein (NP) diet.
Glucose- and leucine-stimulated insulin secretion are sig-
nificantly impaired in islets of LP-diet-fed mice when
compared with control islets.76 Overall, it is likely that
leucine also regulates gene transcription and protein syn-
thesis in pancreatic b cells by mTOR-independent signal-
ing pathway(s).

LEUCINE REGULATION REVEALS THAT ATP SYNTHASE
FUNCTIONS AS A RATE-LIMITING ENZYME IN THE

PROCESS OF INSULIN SECRETION

Given the well-established facts that leucine nonspecifi-
cally enhances protein synthesis via mTOR-dependent
and/or -independent mechanisms, it is reasonable to
speculate that the protein expression of some transcrip-
tion regulators or important metabolic enzymes might be
upregulated by long-term treatment of leucine in pancre-
atic b cells. Thus, leucine may exert a long-term impact on
insulin secretion and cell function of pancreatic b cells by
regulating gene expression. To test this hypothesis, a
genome-wide screening of 40,000 genes in RINm5F cells
treated with leucine using microarray analysis was per-
formed by our laboratory. The microarray analysis results
show that treatment with 10 mM leucine for 24 h upregu-
lates the ATP synthase b subunit (ATP-b) mRNA level by
3.2-fold. In contrast, the expression of other subunits of
mitochondrial ATP synthase complex is not affected by
leucine treatment.10,11 The effect of long-term treatment
with leucine on upregulation of ATP-b mRNA and
protein levels is further confirmed in rat islets, INS-1 cells
and human islets. Leucine regulation, siRNA knockdown
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and plasmid overexpression experiments indicate that
ATP synthase (ATP-b) may function as a rate-limiting
enzyme in the process of insulin secretion upon GK acti-
vation,10,11 which is consistent with the previous observa-
tions that overexpression of GK alone fails to augment
insulin secretion in INS-1 cells.77,78 However, it should be
noted that the enhancement of insulin secretion in rat
and human islets by long-term leucine treatment in our
studies is likely due to the change of a bunch of metabolic
genes including ATP-b.11 Consistently, mitochondria
have been reported to set the limit of fuel-induced insulin
secretion in pancreatic islets.79 Our findings contradict a
previous report that 24-h culture with 20 mM leucine
impairs glucose-induced insulin secretion and increases
the ADP level in rat islets. However, the lack of change in
the ATP level and glucose utilization and oxidation
observed in this study is difficult to explain.80 Moreover,
Zhang et al.81 report that chronic exposure to leucine
downregulates the expression of PDX-1, GK, and GLUT2
in rat insulinoma b cells, resulting in decreased insulin
content and glucose-induced insulin secretion at high
glucose. Martens et al.82 demonstrate that treatment with
10 mM leucine for 72 h significantly reduces apoptosis of
rat islet b cells concomitant with decreased levels of reac-
tive oxygen species (ROS). Given that all of the catalytic
sites of F1 ATP synthase are located either exclusively on
the b subunits or at interfaces between b and a (ATP-a)
subunits,83,84 reduced expression of ATP-b or ATP-a will
definitely impair ATP synthesis in mitochondria. It has
been reported that reduced cellular ATP content is asso-
ciated with decreased expression of ATP-b or ATP-a in
various tissues of diabetic humans and rodents.85,86

Recently, ATP-b was shown to be expressed in the plasma

membrane of various cell types and be a putative receptor
for enterostatin, a pentapeptide secreted by stomach and
pancreas.87,88 Incubation with enterostatin for 60 min sig-
nificantly stimulated the translocation of ATP-b to the
plasma membrane of INS-1 cells by 3.5-fold,89 which may
have reduced mitochondrial ATP-b content and thus
impaired ATP synthesis. This observation may partially
explain the previous observations that enterostatin inhib-
its fuel-stimulated insulin secretion from pancreatic b
cells.90–92 Chronic exposure to free fatty acids (FFAs) also
stimulates the translocation of ATP-b to the plasma
membrane of INS-1 cells,89 which may also contribute to
the deleterious effects of FFAs on pancreatic b cells.93

Pancreatic b-cell dysfunction is a decisive cause of
type 2 diabetes. Obesity-related hyperglycemia, hyperlipi-
demia, and excessive circulating inflammatory cytokines
are the most important physiological factors causing
b-cell dysfunction. In the past decade, increasing evi-
dence has suggested that inhibition of ATP synthesis in
mitochondria is the central event during the progression
of b-cell dysfunction (Figure 1). Long-term lipid or gly-
cemic stress activates uncoupling protein 2 (UCP2)
expression in islet b cells, which initially prevents cells
from being damaged by lipotoxic or glucotoxic insult by
decreasing the proton potential (Dy) between intermem-
brane space and inner membrane of the mitochon-
dria.94,95 However, mitochondrial ATP synthesis and
insulin secretion from pancreatic islet b cells will be
inhibited by an increase in UCP2 expression.96,97 Genipin,
a UCP2 inhibitor, acutely reverses obesity- and high
glucose-induced b-cell dysfunction in isolated pancreatic
islets.97 Köhnke et al.98 report that a combination of fatty
acids and glucose at high concentrations downregulates

Hyperlipidemia UCP2 ≠ Destroys H+

gradient

Inflammatory 

cytokines
iNOS ≠ Inhibits 

ETC

Hyperlipidemia/

hyperglycemia

ATPb Ø

Oxidative 

stress ≠ 

ATPs 

activity Ø 

ATP content Ø

Insulin secretion Ø

Apoptosis ≠  ROS ≠

ATP synthesis Ø

Plasma membrane 

Figure 1 Association of reduced ATP synthesis in mitochondria with obesity-induced pancreatic b-cell dysfunction.
Decrease in ATP synthesis is the central event in the progression of islet dysfunction under insulin-resistant conditions.
Abbreviations: UCP2, uncoupling protein 2; iNOS, inducible nitrogen synthase; ATPb, ATP synthase b subunit; ATPs, ATP
synthase complex; ROS, reactive oxygen species; ETC, electron transport chain.
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ATP-b expression in INS-1 cells and reduces cellular ATP
content. The authors further propose that the decreased
rate of ATP synthesis in mitochondria resulting from
downregulation of ATP-b plays a crucial role in fatty acid-
and glucose-induced b-cell dysfunction.98 Other alterna-
tive mechanisms through which fatty acids induce
pancreatic b-cell dysfunction and apoptosis include acti-
vation of PKR-like ER kinase (PERK) and microRNAs,
oxidative stress, and excessive accumulation of cellular
ceramide.99,100 Chronic exposure to excessive proinflam-
matory cytokines including IL-1b,TNF-a, and INF-g acti-
vates inducible nitrogen synthase in pancreatic islet b cells,
which produces excessive nitric oxide. Nitric oxide binds
to complex IV of the mitochondrial respiratory chain and
inhibits the formation of proton gradient in pancreatic
b-cell mitochondria. Thus, inhibition of ATP synthesis is
likely to be involved in cytokine-induced pancreatic b-cell
dysfunction and apoptosis.101,102 Chronic exposure of islet
b cells to high glucose will both upregulate GK gene
expression and allosterically activate GK activity, resulting
in sequential increases in glucose oxidation, electron
transport rate in the electron transport chain, and mito-
chondrial Dy.103,104 It has been reported that high mito-
chondrial Dy is the primary cause of excessive production
of ROS in pancreatic b cells under hyperglycemic and
hyperlipidemic conditions.105,106 Consistently, although
glucose oxidation is increased, cellular ATP content under
glucose stimulation is significantly reduced in b-cell lines
overexpressing GK. Moreover, cells overexpressing GK
produce more ROS concomitant with increased apoptotic
cells under the stimulation of high glucose.107 In contrast,
PPAR-g agonists have been shown to protect b cells from
fatty acid-induced oxidative stress and cell apoptosis by
increasing cellular ATP content and decreasing ROS lev-
els.108 Similarly, transgenic mice specifically overexpress-
ing GK in liver show impaired glucose tolerance after the
age of 6 months.109 These results indicate that long-term
activation of GK alone enhances glucose oxidation and
elevates mitochondrial Dy,which results in excessive ROS
production. Increasing the mitochondrial proton leak
rate, either by ATP synthesis10,11,82 or UCP2-mediated heat
production106,110 will be important for maintaining normal
mitochondrial Dy and preventing excessive ROS produc-
tion in pancreatic islet b cells under hyperglycemic and
hyperlipidemic conditions (Figure 1).Clearly, leucine may
also attenuate glucotoxicity by inhibiting ROS production
via an increase in ATP synthesis10,11 or other unknown
mechanisms.82

To date, the mechanism by which leucine upregulates
GK and ATP-b remains unknown. However, recent
studies have suggested the leucine signaling pathway may
have crosstalk with some transcriptors or nuclear recep-
tors including PDX-1,111 LXR,112 and PPARg113–115 in the
upregulation of GK and ATP-b.

Overall, the decrease in the mitochondrial ATP syn-
thesis rate is associated with progression of pancreatic
islet dysfunction and type 2 diabetes. Elevation of the
cellular ATP synthesis rate by leucine-mediated upregu-
lation of ATP-b or other metabolic enzymes may repre-
sent a potential intervention strategy for the treatment of
islet dysfunction and type 2 diabetes.

CONCLUSION

Leucine plays important roles in the regulation of insulin
secretion and cell metabolism of pancreatic b cells via
acute and chronic effects (Figure 2). Allosteric regulation
of GDH activity by leucine and/or other molecules has
been demonstrated to be a potential intervention strategy
for some insulin secretion disorders. In addition, further
studies on the distinct mechanism(s) by which leucine
regulates the expression of key metabolic genes in pan-
creatic b cells will shed new light on the prevention and
treatment of islet dysfunction and type 2 diabetes.
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