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Ethanol is widely consumed and is associated with an increasing global health
burden. Several reviews have addressed the effects of ethanol and its oxidative
metabolite, acetaldehyde, on the gastrointestinal (GI) tract, focusing on carcino-
genic effects or alcoholic liver disease. However, both the oxidative and the non-
oxidative metabolites of ethanol can affect the epithelial barrier of the small and
large intestines, thereby contributing to GI and liver diseases. This review outlines
the possible mechanisms of ethanol metabolism as well as the effects of ethanol
and its metabolites on the intestinal barrier. Limited studies in humans and sup-
porting in vitro data have indicated that ethanol as well as mainly acetaldehyde
can increase small intestinal permeability. Limited evidence also points to
increased colon permeability following exposure to ethanol or acetaldehyde. In
vitro studies have provided several mechanisms for disruption of the epithelial
barrier, including activation of different cell-signaling pathways, oxidative stress,
and remodeling of the cytoskeleton. Modulation via intestinal microbiota,
however, should also be considered. In conclusion, ethanol and its metabolites may
act additively or even synergistically in vivo. Therefore, in vivo studies investigating
the effects of ethanol and its byproducts on permeability of the small and large
intestines are warranted.
© 2013 International Life Sciences Institute

INTRODUCTION

Beverages containing ethanol (i.e., ethyl alcohol) are
widely consumed in many parts of the world, creating an
increasing global health burden. It has been estimated
that around two billion people drink ethanol on a regular
basis.1 Ethanol consumption has long been recognized as
a major cause of liver disease,2–4 but it can also affect the
gastrointestinal (GI) tract and is associated with the
development of oral, esophageal, and colorectal cancers.5

Ethanol as well as its metabolites can cause damage that
includes decreased intestinal motility and cytotoxic and
mutagenic effects.5–7 Another important effect is the

ethanol-induced disruption of the epithelial barrier of the
GI tract.8 Studies performed in humans,9,10 but mostly in
animals,11–13 have shown that both short- and long-term
ethanol administration can result in increased intestinal
permeability, which will ultimately enhance the translo-
cation of luminal antigens (e.g., bacteria and endotoxins)
into the portal circulation.14,15 This can activate Kupffer’s
cells, subsequently leading to cytokine release, which
results in hepatocellular injury and, consequently, alco-
holic liver disease (ALD).16,17 Data from human and
animal studies indicate that increased intestinal perme-
ability is also involved in inflammatory intestinal disor-
ders such as inflammatory bowel disease18 and irritable
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bowel syndrome.19 Finally, decreased epithelial barrier
function can result in increased susceptibility to carcino-
gens and may thereby contribute to the increased risk of
alcohol-related cancers of the GI tract.20–23

Studies on the effects of ethanol intake on the intes-
tinal epithelial barrier often focus on the small intestine,
but ethanol and its metabolites can also reach the large
intestine, depending on dosage, absorption, and metabo-
lism.24 Ethanol can be metabolized oxidatively and non-
oxidatively, resulting in acetaldehyde, fatty acid ethyl
esters (FAEEs), and phosphatidylethanol (PEth).25 Many
previous reviews have addressed the effects of ethanol
and its main metabolite, acetaldehyde, on the GI tract,
focusing on either carcinogenic effects or ALD. However,
reviews on the effects of ethanol and all its (oxidative and
nonoxidative) metabolites on small and large intestinal
barrier function, as well as possible mechanisms of action,
are limited.

This review aims to provide a broader understanding
of the effects of ethanol and its oxidative and nonoxida-
tive metabolites on intestinal barrier function. First,
ethanol absorption and metabolism will be discussed,
with a special focus on the GI tract. Subsequently, the
effects of methanol and its metabolites on small and large
intestinal barrier function, along with possible mecha-
nisms of action, will be reviewed.

ABSORPTION AND METABOLISM OF ETHANOL

Pharmacokinetic studies have shown large individual
variations in the absorption, distribution, and elimination
of ethanol.26,27 After oral ingestion, ethanol is absorbed
from the GI tract by simple diffusion due to its small
molecular size, moderate lipid solubility, and excellent
water solubility.28 Minimal absorption occurs in the
mouth and esophagus, and about 20% and 70% is
absorbed through the stomach and the proximal small
intestine, respectively, indicating that the majority of
ingested ethanol is absorbed before it reaches the
colon.29,30 A small proportion of ethanol is excreted
unchanged: 1–5% via the lungs, 0.1–0.5% in sweat, and
0.5–2% in urine.30,31 The rate of ethanol absorption in the
GI tract depends on several factors, including rate of
gastric emptying, sex body mass index, presence of food
in the stomach, and ethanol dosage and concentration.32,33

After being absorbed, ethanol reaches the circulation and
is rapidly distributed throughout the body fluids, with the
rate of distribution related mainly to the water content of
various tissues and organs.32 Therefore, in the terminal
ileum and colon, ethanol concentrations approximate
those in blood.24,34,35 In general, the body water content
is lower in females, which contributes to higher
blood ethanol concentrations in women than in men

after ingestion of similar doses per kilogram of body
weight.36,37

Oxidative metabolism of ethanol

Although the majority of absorbed ethanol (i.e., 90–98%)
is metabolized in the liver, metabolism also occurs in
the tissues of the GI tract, including the oral cavity, the
esophagus, the stomach, and the small and large
intestines.30,38–41 Ethanol is metabolized oxidatively into
acetaldehyde by alcohol dehydrogenase (ADH), which is
located in the cytosol of hepatocytes, by the microsomal
ethanol oxidizing system (MEOS) cytochrome P450 2E1
(CYP2E1) in the microsomes, and by catalase in the per-
oxisomes (Figure 1).25,30 Of these, ADH is the main
enzyme involved, and 10 isoenzymes (grouped into 5
classes) with varying kinetic properties, substrates speci-
ficities, and tissue distributions have been reported
(Table 1).25,30,42–44 Class I ADH enzymes (with a low Km)
are highly expressed in the liver, but ADH expression has
also been reported in intestinal epithelial cells, being
higher in the villous tip than in the crypt region.45 The
mucosa of the oral cavity, esophagus, and stomach is
characterized by a high expression of class IV ADH.46–48

The esophagus has the highest ADH activity in the GI
tract, similar to that of the liver and approximately four
times that of the stomach.49 In small and large intestinal
mucosa, class I ADH is predominant, with a Km of
1–2 mM for ethanol.39 Interestingly, the activity of rectal
ADH was found to be comparable to the activity of gastric
ADH, suggesting that ethanol can be effectively metabo-
lized to acetaldehyde in the rectal mucosa.40 Evidence
from both human and animal studies indicates that
ethanol undergoes a first-pass metabolism in the stomach
and liver, resulting in a significant decrease in the ethanol
concentration reaching the blood.50 An important role of
the stomach is indicated by a clear decrease in first-pass
metabolism after gastrectomy, after direct intraduodenal
ethanol administration,51 and in subjects with accelerated
gastric emptying. 33 Gastric first-pass metabolism occurs
predominantly by mucosal class IV ADH isoenzymes,
especially s-ADH.39,52–54 The s-ADH activity is lower in
women than in men and, together with the lower body
water content of women, contributes to the higher
susceptibility of females to the injurious effects of
ethanol.55–57

The CYP2E1-dependent MEOS, a pathway for
ethanol metabolism that is present in several different
cells, including hepatocytes, accounts for less than 10% of
ethanol metabolism under normal conditions.58 The
MEOS becomes active only when high concentrations of
ethanol (Km 7–10 mM) are present, and its activity is
increased during chronic alcohol consumption.59 It plays
a key role in the pathogenesis of ethanol-related diseases
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and carcinogenesis, as it potentiates the generation of
free radicals and activates several xenobiotics, including
carbon tetrachloride, to form potentially carcinogenic
products.58,60 Catalase is also able to oxidize ethanol, gen-
erating acetaldehyde and water in the presence of hydro-
gen peroxide (H2O2).25 Although catalase activity has
been observed in human gastric and intestinal mucosae,
no data from human studies in vivo are available on its
role in ethanol metabolism.61

Acetaldehyde is rapidly metabolized in the liver and,
to a lesser extent, in the oral cavity, esophagus, stomach,
intestine, and pancreas via oxidation by aldehyde dehy-
drogenase (ALDH) into acetate (Figure 1).46,47 Acetate is
conjugated to form acetyl coenzyme A and is oxidized,
mainly in the skeletal muscles, into CO2 and H2O2.62 Thus
far, 10 ALDH isoenzymes have been characterized
(Table 2).63,64 In addition to being expressed in the liver,
class I ADH isoenzymes are also expressed in gastric

Figure 1 Oxidative ethanol metabolism in the liver cells (hepatocytes). Adapted from Zakhari.25

Table 1 Kinetic properties and tissue distribution of ADH isoenzymes.
Class Gene Protein Km (mM) Vmax (min-1) Tissue distribution
1 ADH1A a 4.0 30 Liver, small and large intestines

ADH1B*1 ß1 0.05 4.0 Liver, lung, kidney
ADH1B*2 ß2 0.9 350 Liver, lung, kidney
ADH1B*3 ß3 40.0 300 Liver, lung, kidney
ADH1C*1 g1 1.0 90 Liver, stomach
ADH1C*2 g2 0.6 40 Liver, stomach

II ADH4 p 30.0 20 Liver
III ADH5 c >1,000 100 Gingiva, tongue
IV ADH7 s (m) 30.0 800 Liver, esophagus, stomach
V ADH6 Unknown Unknown Liver, stomach
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epithelial cells and in the small and large intestines. They
possess a low Km (0.6–4 mM) and a high maximal veloc-
ity. Therefore, they oxidize ethanol, even at low concen-
trations, at a constant rate.25,65 Since mucosal ALDH
activity is lower than ADH activity in the large intestine,
accumulation of the reactive and toxic metabolite, acetal-
dehyde, is highly expected.41,66

Ethanol metabolism varies between different
ethnic groups. For instance, the variant allele of ADH,
ADH1C*1, is more frequent in Asians than in Caucasians
or Africans, and Asians metabolize ethanol more readily
into acetaldehyde, resulting in accumulation of the lat-
ter.67,68 In addition, the variant allele ALDH2*2, which
encodes an inactive subunit of the enzyme ALDH2, is
dominant and highly prevalent (28–45%) in Asians but is
rare in other ethnicities.65 Homozygous carriers of the
ALDH2*2 allele lack ALDH2 activity and consequently
experience strong facial flushing and physical discomfort
due to high blood acetaldehyde levels following ethanol
consumption.69 These adverse effects are less severe in
heterozygous carriers, who have 10–50% of the ALDH2
activity seen in subjects who do not carry the ALDH2*2
allele, but heterozygous carriers are also at increased risk
of developing ethanol-related GI cancers because they
can metabolize only small amounts of acetaldehyde.69–71

Apart from those who consume large amounts
of ethanol (>80 g daily) or engage in binge drinking
(i.e., more than five drinks [>100 g] within 2 h), many
people worldwide consume moderate amounts of alcohol
(2 standard drinks) on a regular (i.e., at least weekly)
basis.32,72 Concentrations of ethanol after consuming two
standard drinks (i.e., total of 28 g of ethanol) in luminal
contents are found to be approximately 6.5–9.4 g/dL in
the stomach, 6.5–9.4 g/dL in the jejunum, and 0.1–
0.2 g/dL in the ileum as well as in the colon.24

Nonoxidative metabolism of ethanol

While most studies have focused on oxidative metabo-
lism, ethanol can also be metabolized nonoxidatively via

at least two pathways (Figure 2). First, ethanol may react
with membrane phospholipids. Phospholipase D cata-
lyzes transphosphatidylation, thereby generating PEth, an
abnormal phospholipid.25,73 Since the PEth is not a
normal constituent of membranes, it is poorly metabo-
lized and, upon intracellular accumulation, disrupts the
cell signaling that normally restricts proliferation in dif-
ferent tissues, including intestinal epithelial cells.74 With a
half-life of 4 days, PEth can be detected in blood and is
considered a sensitive biomarker for both long-term and
heavy ethanol consumption (>50 g/d) as well as for mod-
erate alcohol consumption (40 g/d).75–79 Furthermore,
PEth has also been detected in rat small intestine80 and
human colonic tissue.74 One hour after intake of ethanol
(50–140 g/dL), serum PEth concentration has been found
in the range of 45–138 ng/mL, reaching maximum
concentrations of 74–237 ng/mL after between 3 days
and 6 days.77

Secondly, ethanol may react with free fatty acids
in a reaction catalyzed by fatty acid ethyl ester (FAEE)
synthase25,73 and cholesterol esterase,73,81 generating
FAEEs.73,82 FAEEs can also be generated by transes-
terification of ethanol and fatty acyl-coenzyme A in
a reaction catalyzed by acyl-coenzyme A: ethanol
O-acyltransferase.73,83 FAEEs have been detected in
hair, heart, leukocytes, brain, adipose tissue, and
meconium.84–90 In the GI tract, FAEEs have been found to
accumulate in the pancreas and the liver.91,92 Since fatty
acids and ethanol are absorbed by intestinal mucosa, the
intestine is considered to be another site where FAEE
synthesis can occur.83 FAEE synthase activity with subse-
quent FAEE synthesis has been demonstrated in duode-
nal mucosa.83 However, little is known about the
concentrations of FAEEs present in the intestine after
ethanol intake and their local effects on intestinal cell
physiology. FAEEs have a half-life ranging between 16 h
and 99 h and can therefore also be used as biomarkers for
prior ethanol ingestion.93,94 Ex vivo, inhibition of oxida-
tive ethanol metabolism in the liver and pancreatic
homogenates of rats by 4-methyl pyrazole, an ADH

Table 2 Distribution of ALDH isoenzymes among different body tissues and organs.
Class Gene Allele Tissue distribution
I ALDH1 ALDH1 Liver, stomach, brain (cytosol)
II ALDH2 ALDH2*1 Liver (mitochondrion)

ALDH2*2 Liver, stomach (mitochondrion)
III ALDH3 ALDH3 Stomach, lung, liver (cytosol)
IV ALDH4 ALDH4 Liver, kidney (mitochondrion)
V ALDH5 ALDH5 Testes, liver, brain, stomach (mitochondrion)
VI ALDH6 ALDH6 Salivary gland, stomach (cytosol)
VII ALDH7 ALDH7 Kidney, lung (microsomes)
V1II ALDH8 ALDH8 Parotid gland (microsomes)
XI ALDH9 ALDH9 Liver, kidney, muscle (cytosol)
X ALDH10 ALDH10 Liver, heart (mitochondrion)
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inhibitor, by diallyl sulfide, an MEOS inhibitor, and by
aminotriazole, a catalase inhibitor, has been shown to
result in a shift toward the nonoxidative pathways, result-
ing in the generation of FAEEs.91 Thus, a low ADH activ-
ity in chronic ethanol abusers may lead to accumulation
of FAEEs and, consequently, increased risk for the inju-
rious effects of FAEEs.95

Role of microbiota in the endogenous production and
oxidation of ethanol

In addition to being ingested orally, ethanol can be
produced endogenously by bacterial fermentation of car-
bohydrates.96 The endogenously produced ethanol is
absorbed and transferred via the portal vein to the liver,
where it is metabolized.97 Although blood ethanol con-
centrations are usually very low in sober subjects (40–
45 mg/dL), conditions associated with intestinal bacterial
overgrowth, such as jejunoileal bypass surgery and tropi-
cal sprue, can lead to endogenous ethanol production of
up to 1 mM (approximately 4.6 mg/dL) and of 2–31 mM
(approximately 9.2–142.6 mg/dL) in blood and jejunal
aspirates, respectively.98,99 In addition, endogenously pro-
duced ethanol has also been found in the cecum of nor-
mally fed rats, with concentrations of 0.9 mM (4.14 mg/
dL) reported.97

Several bacteria and yeasts can ferment sugars to
ethanol,100 including some that can be found in the GI

tract. For example, gastric overgrowth of Helicobacter
pylori101 and small intestinal overgrowth of coliform bac-
teria such as Klebsiella pneumoniae, Enterobacter cloacae,
and Escherichia coli can contribute to endogenous
ethanol production.98 Coliform bacteria and, for example,
Clostridium spp., may contribute to ethanol production
in the colon as well.100

Endogenous and exogenous ethanol can also be
further metabolized by the GI microbiota.102,103 For
instance, oral bacteria and yeasts, including Streptococcus
viridans104 and Candida strains,105 and gastric bacteria
such as H. pylori106 have been found to possess ADH
activity. Intestinal bacteria belonging to the Enterobacte-
riaceae family, such as E. coli, have also been shown to
oxidize ethanol aerobically into acetaldehyde by an ADH-
dependent reaction.107–109 Furthermore, Salaspuro et al.108

have demonstrated that E. coli is also able to convert
ethanol into acetaldehyde under microaerobic, micro-
aerophilic, and anaerobic conditions.

Several bacteria, such as members of the Enterobac-
teriaceae family, are known to possess catalase activity in
addition to ADH activity. Tillonen et al.110 demonstrated
that human colonic contents could indeed generate
acetaldehyde via catalase-dependent pathways.

Jokelainen et al.111 have shown that in vitro incuba-
tion of human colonic contents with ethanol concentra-
tions found in vivo can result in dose-dependent
acetaldehyde production. Data on colonic luminal

Figure 2 Nonoxidative ethanol metabolism. Adapted from Zakhari25 and Best and Laposata.73
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acetaldehyde levels in humans are scarce, most likely
due to the volatility of acetaldehyde, but some data
from animal studies are available. A marked increase in
mucosal acetaldehyde was found in rats with blind loops
and concomitant bacterial overgrowth103 as well as in
the cecum and rectum of rats and the colon of pigs
(271 mM, approximately 1.2 mg/dL) after administra-
tion of 2.5–4.5 g/kg ethanol.112–115 Furthermore, rectal
mucosal acetaldehyde concentrations were found to be
higher in conventional than in germ-free rats,112 and
cecal levels of acetaldehyde could be effectively reduced
by pretreatment with ciprofloxacin,115 pointing to a
role of the intestinal microbiota in acetaldehyde
production.112

Besides exhibiting ADH activity, facultatively
anaerobic bacteria such as Enterobacteriaceae have also
been found to exhibit ALDH activity.116 However, the
capacity of the intestinal microbiota to metabolize acetal-
dehyde by ALDH is rather low.117 This, combined with the
low levels of ALDH in colonic mucosa,118 results in the
accumulation of acetaldehyde in the large intestine.66

Intracolonic production and accumulation of acetalde-
hyde is suggested to cause colorectal carcinogenesis119

and to be an important determinant for blood acetalde-
hyde levels and subsequent hepatotoxicity.66

In summary, ethanol as well as its oxidative and non-
oxidative metabolites can be found in the contents of
both the small and the large intestines, either as a direct
consequence of ethanol ingestion or via the systemic
circulation, which involves the action of ethanol-
metabolizing enzymes in the GI tract and microbiota.

Ethanol-induced changes in the intestinal microbiota

Besides demonstrating the role of bacteria in ethanol
metabolism, mounting evidence has shown that ethanol
can also result in quantitative and qualitative changes in
the intestinal microbiota. Yan et al.120 have demonstrated
in a mouse model that intragastric feeding of ethanol
(30.9 g/kg per day) for 3 weeks induced small intestinal
bacterial overgrowth and cecal dysbiosis. In rats, intragas-
tric administration of ethanol (8 g/kg/d) for 10 weeks was
shown to induce ileal and colonic dysbiosis.121

In humans, long-term ethanol consumption was
found to be associated not only with small intestinal
bacterial overgrowth122,123 but also with alterations in the
composition of the mucosa-associated microbiota in
sigmoid biopsies.124 Mutlu et al.124 found a lower abun-
dance of Bacteroidetes and a higher abundance of Pro-
teobacteria in alcoholics than in healthy controls. In a
randomized crossover study performed in healthy vol-
unteers who consumed red wine, dealcoholized red
wine, or gin for 20 days, all interventions resulted in
changes in the fecal microbiota, as demonstrated by

quantitative PCR and denaturing gradient gel electro-
phoresis, with changes differing among groups.125 In line
with the above, a reduction in the proportion of
Bacteroidetes and an increase in the Proteobacteria were
also demonstrated by 454 pyrosequencing in a mixed
group of patients with hepatitis-B or ethanol-related
liver cirrhosis versus healthy individuals. Furthermore,
the authors also reported changes on the family level,
including, for example, increased numbers of Entero-
bacteriaceae and Streptococcaceae and reduced num-
bers of Lachnospiraceae.126 Moreover, probiotic and
synbiotic interventions have been demonstrated to
attenuate liver injury in a rat model of alcoholic steato-
hepatitis127 and liver dysfunction in cirrhotic patients,128

respectively, supporting a role for the gut microbiota in
ethanol-induced liver diseases.

In addition to possibly enhanced translocation of
endotoxins and direct effects of bacteria on the epithe-
lial barrier, alterations in the composition and activity
of gut microbiota can also result in changes in the pro-
duction or breakdown of ethanol and acetaldehyde. In
an in vitro study, for example, Nosova et al.129 demon-
strated that Bifidobacterium spp. and, to a greater extent,
Lactobacillus GG, are weak acetaldehyde generators but
have a high acetaldehyde-metabolizing capacity, which
correlates positively with bacterial concentrations. Nev-
ertheless, additional data on the effects of different
dosages and durations of ethanol intake on the intestinal
microbiota and subsequent ethanol-related microbial
metabolic activity in humans are warranted.

EPITHELIAL BARRIER DISRUPTION MEDIATED BY
ETHANOL AND ITS METABOLITES

Intestinal epithelial barrier

The GI epithelium is composed of a continuous mono-
layer of intestinal epithelial cells, which facilitate a selec-
tive passive entry of luminal nutrients, ions, and water
while restricting access of pathogenic substances and
microorganisms by means of transcellular and paracellu-
lar pathways.130 The transcellular pathway contains lipo-
phobic and lipophilic pores located in the brush border
membrane of enterocytes.131 The paracellular pathway is
regulated via apical intercellular junctional proteins
known as tight junctions (TJs) and via associated proteins
known as the adherens junctions (AJs).131 The TJs are
composed of transmembrane proteins (e.g., claudins),
integral membrane proteins (e.g., occludin), junction
adhesion molecules, and cytoplasmic zona occludens
(ZO) proteins (e.g., ZO-1, ZO-2, and ZO-3), which
connect the TJ complex intracellularly with the actin
cytoskeleton.132 The TJs are regulated by both intra- and
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extracellular signaling molecules. Intracellular signaling
molecules that regulate the assembly and disassembly of
the TJs include, for example, myosin light chain kinase
(MLCK),133 Rho GTPases,134 protein kinase C,135 mitogen-
activated protein kinases,136 protein tyrosine kinase,137

intracellular calcium,138 and zonulin.139,140 Extracellular
modulators of the TJs include, for example, nutrients,
xenobiotics such as nonsteroidal anti-inflammatory
drugs, and cytokines (e.g., interferon-g, tumor necrosis
factor-a, and interleukin-1b).141–145 Intestinal epithelial
barrier function in vivo can be assessed noninvasively by
measuring ingested test probes (sugars, polyethylene
glycol, radioactively labelled chromium-EDTA), analyz-
ing TJ structures, or measuring the sequelae of barrier
dysfunction, such as bacterial translocation and produc-
tion of serum/plasma endotoxins.146–149

Effects of ethanol on small and large intestinal
barrier function

Ethanol and its oxidative and nonoxidative metabolites
can be found throughout the GI tract, where they can
interfere with several functions, including those of the
intestinal barrier. It has been shown that, after oral
administration of 0.8 g/kg ethanol as a 25% solution,
luminal levels of ethanol can reach more than 400 mg/dL
and can be maintained for 60 min in the stomach, in the
proximal jejunum, and in the duodenum, whereas levels
in the ileum were approximately 200 mg/dL, parallel to
those in blood.24 Ethanol concentrations found in the
colon are comparable to those in blood.24,34,35 Hence, the
continuous presence of ethanol in the GI tract, which
results from equilibration throughout the vascular space,
may account for the ethanol-induced epithelial barrier
dysfunction in both the upper and the lower GI tract. Few
studies have investigated the effects of ethanol intake on
GI tract barrier function in humans (Table 3). Most
studies are performed in long-term ethanol abusers,
defined as individuals with a consumption of more than
four drinks (>80 g alcohol) per day,32 the majority of
whom are also diagnosed with ALD. Overall, an increase
in small intestinal permeability was observed in long-
term ethanol abusers (alcoholics)9,10,14,150–153; likewise, gas-
troduodenal permeability increased in nonalcoholics
following administration of a single dose of ethanol.151,154

Millan et al.155 reported histological changes in the small
intestine following administration of a single dose of
ethanol in nonalcoholics, although barrier function was
not assessed. Hirsch et al.150 did not find changes in the
permeability of the small intestine of long-term abusers
after 3 days of abstinence. However, in a similar group of
patients, the ethanol-induced increase in gastroduodenal
permeability was found to persist for at least 7 days in the
presence of aspirin.152 In patients with ALD, an increase in

small intestinal permeability has been found to be asso-
ciated with high levels of endotoxins in blood.9,14,156,157

Animal studies have demonstrated that both short- and
long-term ethanol administration, at dosages ranging
from 6 g/kg/day to 8 g/kg/day, can increase intestinal per-
meability and induce endotoxemia,12,13,15,158 subsequently
leading to liver injury,12,13,15 intestinal inflammation,159

and rectal carcinogenesis.112,160,161 Moreover, ethanol,
when present along with alterations in intestinal perme-
ability and immune status, has been shown to lead to
small intestinal bacterial overgrowth, contributing to an
increase in endotoxin translocation and an exacerbation
of intestinal tissue damage after burn injury in rats.162,163

Data from studies in humans have confirmed that small
intestinal bacterial overgrowth can also occur in patients
with ALD, in whom increased numbers of aerobic and
anaerobic bacteria were found in jejunal aspirates.122,123

Data on the effects of ethanol on human colonic barrier
function are lacking. In animals, oral administration of
ethanol (3–4.5 g/kg) in rats as well as ex vivo exposure of
rat colon to acetaldehyde (40–160 mM, approximately
176–704 mg/dL) resulted in increased colon permeabil-
ity.164 Antibiotics and doxantrazole, a mast cell membrane
stabilizer, significantly inhibited these effects, pointing to
a mechanistic role for the enteric microbiota and mast
cell activation.164 As for human data, it has recently been
shown that moderate red wine consumption can increase
small intestine and colon permeability in patients with
inflammatory bowel disease.154

In vitro studies on the effects of ethanol and
acetaldehyde on epithelial integrity

The majority of data on ethanol-induced barrier dys-
function results from in vitro studies, all using Caco-2
cell monolayers. It was found that ethanol in concen-
trations of 0.1% up to 10% (92–920 mg/dL) signifi-
cantly decreased transepithelial electrical resistance and
increased permeation markers (see Table 4). In two
studies, ethanol up to a 5% (4.6 g/dL) concentration
failed to increase paracellular permeability.165,166 In
contrast, ethanol at concentrations of 2.5% (2.3 g/dL)
and above has been shown to increase paracellular
permeability by compromising the cell viability.167,168

Ethanol metabolism into acetaldehyde has been sug-
gested to be required for ethanol-induced barrier disrup-
tion. Indeed, acetaldehyde at concentrations ranging
from 25 mM to 760 mM (0.11–3.3 mg/dL) has also been
demonstrated to increase permeability (see Table 5).
The concentrations of ethanol tested in vitro were com-
parable to those found in the human upper GI tract,24

whereas concentrations of acetaldehyde were com-
parable to those found in the rat colon (0.12–3 mM,
approximately 0.53–13.2 mg/dL).169
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MECHANISMS OF INTESTINAL BARRIER DYSFUNCTION
INDUCED BY ETHANOL AND ITS METABOLITES

Several mechanisms underlying the ethanol-induced
barrier dysfunction have been proposed, including direct
damage to epithelial cells, loss of integrity of TJs and/ or
AJs, and changes in intestinal microbiota, each of which is
discussed below.

Direct damage to epithelial cells

Ethanol and its metabolites can induce direct cell injury.
Long-term ethanol ingestion has been reported to induce
ultrastructural and histological changes in duodenal
mucosa, including a decrease in the mean total mucosal
surface area in chronic alcoholics.170 Data on the effects of
long-term moderate intake are not known. However, oral
ingestion of a single dose of ethanol (1 g/kg, administered

as a 35 g/dL solution) has been shown to result in histo-
logical changes in the duodenum, including subepithelial
bleb formation, hemorrhagic erosions, and inflammatory
cell infiltration.171 In the rectal mucosa of individuals who
consumed excessive amounts of ethanol, several ultra-
structural changes were found, including inflammatory
changes, a decreased number of mucin-secreting goblet
cells, and alterations in cell organelles such as distorted
mitochondria and dilated endoplasmic reticulum.172

Animal studies have demonstrated that acute intra-
gastric administration of ethanol at 5–20% (4.6–18.4 g/
dL) for 4 h can result in hemorrhagic erosions and
epithelial cell loss in the proximal small intestine of
rats.173 Similar lesions have also been found in rats gavage
fed for 14 days with 18.4 g/dL ethanol, including exfolia-
tion and subepithelial edema of villous tips.174 Adminis-
tration of a single dose of ethanol (6 g/kg) in mice has
also been demonstrated to induce severe injury in ileal

Table 4 In vitro studies exploring the effects of ethanol on paracellular permeability using Caco-2 cell
monolayers.
Ethanol concentrationa/
exposure time

Significant findings Possible mechanisms Reference

1%, 2.5%, 5%,
7.5%, 10%

Dose-related drop in TEER
Increase in FSA permeability
Disruption of TJ integrity
Displacement of actin and

myosin filaments

MLCK activation Ma et al.166

0–15% Increase in FSA permeability
Disassembly of the microtubules

Oxidative stress Banan et al.167

0–2.5%/24 h Increase in FSA permeability
Disruption of F-actin

NF-kappaB activation Banana et al.187

5%/5 h Drop in TEER
Increase in FSA permeability
Decrease in ZO-1, occludin,
and claudin-1 protein levels

Zinc deficiency
Oxidative stress

Zhong et al.198

5%/24 h Drop in TEER
Increase in FITC-D4 permeability
Decrease in occludin protein levels

HNF-4a inactivation via
oxidative stress and
zinc deficiency

Zhong et al.191

0.1% and 1%/3 h Drop in TEER
Increase in FITC-D4 permeability
Decrease in occludin protein levels

Induction of miR-212
expression with subsequent
decrease in ZO-1 translation

Tang et al.192

0.2%/2 h Drop in TEER
Increase in FITC-D4 permeability
Decrease in occludin protein levels

Stimulation of intestinal
circadian clock gene
expression

Swanson et al.190

0.2%/2 h Drop in TEER
Increase in FSA permeability
Increase in p-Snail protein levels

iNOS- mediated ethanol-induced
Snail activation

Forsyth et al.193

0.1–1%/3 h Increase in FITC-D4 permeability
Disruption of ZO-1 and occludin

integrity
Increase in acetylated microtubule

protein levels

Hyperacetylation of
microtubules

Elamin et al.194

a 1% equals 1 g/dL.
Abbreviations: FITC-D4, fluorescein isothiocyanate-labeled dextran 4 KD; FSA, fluorescein-5-(and-6)-sulfonic acid trisodium salt; HNF-4a,
hepatocyte nuclear factor-4a; iNOS, inducible nitric oxide synthase; MLCK, myosin light chain kinase; PER2, period circadian protein
homolog 2; TEER, trans-epithelial electrical resistance; ZO-1, zona occludens 1.
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mucosa, including formation of submucosal blebbing and
ulceration of microvilli.15

Long-term (16 weeks) ethanol administration
induced various alterations in rat enterocytes, including
enlargement, dilatation, and diminishment of the mito-
chondria, the smooth endoplasmic reticulum, and the
rough endoplasmic reticulum, respectively.175 Interest-
ingly, these alterations were more prominent in the distal
ileum than in the proximal jejunum, pointing to the
bloodborne route of ethanol in inducing such effects
rather than a first-pass effect on the ileal mucosa.175

Apart from the histological observations, most data
on epithelial cell damage as well as further mechanistic
insight come from in vitro experiments. In vitro studies
using Caco-2 cell monolayers have shown that luminal
(i.e., apical) exposure to high ethanol concentrations (i.e.,
10–15%, approximately 9.2–13.8 g/dL) can decrease cell
viability.166,167 Ethanol at 13.8 g/dL has been found to
induce cell apoptosis, an effect that was synergistically

enhanced in the presence of estradiol, pointing to a pos-
sibly more severe effect of ethanol in females.7,176 Low
concentrations (i.e., <1%, <0.92 g/dL) have been shown to
promote Caco-2 cell differentiation and to synergize with
E. coli to induce cell apoptosis.177,178 Studies investigating
effects of acetaldehyde on intestinal cytotoxicity are
scarce. However, at concentrations �1,000 mM (�0.44 g/
dL), acetaldehyde has not been found to compromise
intestinal cell viability.179 Further studies investigating
wider ranges of concentrations are warranted.

Nonoxidative ethanol metabolites such as palmi-
toleic and palmitic acid ethyl esters (10–100 mM) have
also been demonstrated to induce pancreatic acinar cell
necrosis through mechanisms involving intracellular
calcium release.180 It has also been shown that FAEEs at
concentrations (20–40 mM) reached in blood after mod-
erate ethanol consumption can induce oxidative stress
and decrease mitochondrial function in intestinal epithe-
lial cells without compromising cell viability.181 The

Table 5 In vitro studies exploring the effects of acetaldehyde on paracellular permeability using Caco-2 cell
monolayers.
Exposure
concentration/time

Significant findings Possible mechanisms Reference

100–760 mM/4 h Reduction of TEER
Increase in mannitol permeability

– Rao165,182

650 mM/6 h Decrease in TEER
Increase in inulin permeability
Tyrosine phosphorylation of ZO-1,
E-cadherin, and b-catenin

Inhibition of protein
tyrosine phosphatases

Atkinson & Rao137

100–600 mM/4 h Decrease in TEER
Increase in inulin and endotoxin permeability
Dissociation of ZO-1, occludin,
E-cadherin, and b-catenin

– Seth et al.183

100–600 mM/4 h Decrease in TEER
Increase in inulin and endotoxin permeability
Reorganization of occludin, ZO-1,
E-cadherin, and b-catenin
Reorganization of actin cytoskeleton

– Sheth et al.184

100–600 mM/3–6 h Redistribution of and reduction in ZO-1, occludin,
E-cadherin, and b-catenin protein levels

Protein tyrosine phosphorylation

Inhibition of protein
tyrosine phosphatases

Basuroy et al.186

400 mM/0.5 h Redistribution of E-cadherin and b-catenin
Tyrosine phosphorylation of b-catenin

Abolishment of interaction of b-catenin
with E-cadherin

Tyrosine kinase activation Sheth et al.185

100–760 mM/5 h Decrease in TEER
Increase in inulin permeability
Redistribution of ZO-1, occludin,
E-cadherin, and b-catenin.
Reorganization of actin cytoskeleton
Tyrosine phosphorylation of occludin, ZO-1,

claudin-3, and E-cadherin

Tyrosine kinase activation Samak et al.136

25–100 mM/3 h Increase in FITC-D4 permeability.
Disruption of ZO-1 and occludin integrity.
Increase in acetylated microtubule protein levels

Hyperacetylation of
microtubules

Elamin et al.194

Abbreviations: FITC-D4, fluorescein isothiocyanate-labeled dextran 4; TEER, trans-epithelial electrical resistance; ZO-1, zona occludens 1.
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discrepancy between recent data and data from earlier
studies can be explained by differences in cell type, dosage
of ethanol, and duration of exposure to FAEEs. Data on
the cell-damaging effects of PEth on intestinal epithelial
cells are not available. Therefore, further study is required
to determine the exact role of PEth and FAEEs in ethanol-
induced intestinal epithelial damage.

Effects on tight junction integrity

Ethanol. The main mechanisms by which ethanol and
its metabolites result in barrier dysfunction are through
direct and indirect effects on the integrity of TJs
(Table 4). Interactions between AJ proteins (E-cadherin
and b-catenin), TJ proteins (ZO-1 and occludin), and
cytoskeletal proteins are crucial for the organization of
the TJ complex and for subsequent maintenance of the
intestinal epithelial barrier.137,182–186 Several mechanisms
involving ethanol-induced disruption of epithelial TJs
and AJs have been identified. Ma et al.166 have shown that
ethanol (1–10%, approximately 0.92–9.2 g/dL) in Caco-2
monolayers can reversibly disrupt the intestinal epithe-
lial TJ integrity through MLCK activation and subse-
quent modulation of perijunctional actin and myosin
filaments. Furthermore, incubation of Caco-2 cells with
ethanol (2.5%, approximately 2.3 g/dL) for 24 h has been
shown to induce nuclear factor-kB activation, thereby
resulting in F-actin cytoskeleton instability and, conse-
quently, intestinal barrier dysfunction.187 Ethanol has
also been found to affect intestinal cells by targeting a
number of pre- and post-transcriptional regulators,
including circadian clock genes and microRNA (miRNA;
short ribonucleic acid molecules of an average of 22
nucleotides that bind to complementary sequences on
target messenger RNA transcripts, resulting in transla-
tional repression), respectively.188,189 Swanson et al. have
demonstrated in the rat duodenum and proximal colon
as well as in Caco-2 cells that ethanol-induced intestinal
barrier dysfunction occurs through mechanisms involv-
ing upregulation of intestinal circadian clock gene
expression.190 In addition, in Caco-2 monolayers, ethanol
downregulated the target gene ZO-1 of miRNA-212 and,
consequently, decreased the mRNA and protein levels
of ZO-1 through a mechanism involving hepatocyte
nuclear factor-4a dysfunction.191,192 In addition, ethanol
has been found to induce activation of one of the tran-
scription factors involved in an epithelial-mesenchymal
transition program, known as Snail, resulting in upregu-
lation of inducible nitric oxide synthase (iNOS) and,
consequently, intestinal epithelial hyperpermeability.193

Ethanol is also able to induce post-translational modifi-
cations in intestinal cell proteins. Very recently, it was
demonstrated in a three-dimensional Caco-2 cell cul-
ture model that basal exposure to ethanol (40 mM,

approximately 184 mg/dL) for 3 h can induce microtu-
bule hyperacetylation, resulting in redistribution of
ZO-1 and, consequently, loss of TJ integrity.194 Such
effects were independent of altered TJ-encoding gene
expression.

A large number of studies have investigated the role
of oxidative stress on the intestinal mucosa as a possible
mechanism to explain barrier dysfunction. There is
strong evidence to indicate the involvement of cellular
oxidative stress in mediating ethanol-induced intestinal
barrier dysfunction.195 Evidence provided by Banan
et al.167,196 has shown that ethanol (2.5–15%, approxi-
mately 2.3–13.8 g/dL) can increase the paracellular per-
meability of Caco-2 monolayers via iNOS-mediated
generation of reactive oxygen species (ROS), resulting in
oxidation of the microtubule cytoskeleton and, conse-
quently, disassembly of the TJs. The involvement of iNOS
in ROS-mediated ethanol-induced intestinal hyperper-
meability has been confirmed in rats gavage fed with
ethanol (6 g/kg/day) for 10 weeks. In that study, inhibi-
tion of iNOS attenuated ethanol-induced gut leakiness
and the associated endotoxemia.197 Moreover, decreased
intestinal antioxidant capacity has been found to play a
crucial role in ethanol-induced intestinal disruption.
Zhong et al.198 demonstrated in mice that long-term
ethanol (4.8%, approximately 4.4 g/dL) gavage for 4
months can induce ileal oxidative stress mediated by zinc
deficiency, thereby sensitizing epithelial cells to ethanol,
resulting in loss of TJ integrity.

Acetaldehyde. Evidence from in vitro and an ex
vivo studies revealed that acetaldehyde has a higher
potency than ethanol to induce intestinal barrier
dysfunction,164,165,182 thereby highlighting the relevance
of this oxidative metabolite. Mechanistic studies have
demonstrated in Caco-2 monolayers that acetalde-
hyde can induce redistribution of occludin and ZO-1
from the intercellular junctions into the intracellular
compartments137,183–185 leading to dissociation of these
proteins from the actin cytoskeleton, resulting in paracel-
lular hyperpermeability.186,199 Acetaldehyde not only dis-
rupts the TJs but also induces redistribution of
E-cadherin and b-catenin, thereby disrupting the integ-
rity of the AJs.137,185 The role of several cell-signaling path-
ways that regulate barrier function, including protein
tyrosine kinases200–204 and protein tyrosine phos-
phatases,203 in acetaldehyde-induced loss of TJ integrity
has been explored. Basuroy et al.186 have demonstrated
that acetaldehyde induces tyrosine phosphorylation and
disrupts the integrity of TJs and AJs in human colonic
mucosa. Sheth et al.184 have shown that acetaldehyde can
induce protein tyrosine phosphorylation of E-cadherin
and b-catenin, resulting in loss of interaction between
these proteins and, consequently, barrier dysfunction. In
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addition, acetaldehyde-induced inhibition of protein
tyrosine phosphatase was found to disrupt the interac-
tions between the AJ proteins and protein tyrosine phos-
phatase 1B and, consequently, to induce paracellular
barrier dysfunction in vitro137 and in human colon ex
vivo.186 Not only protein phosphorylation but also hyper-
acetylation can interfere with barrier dysfunction.
Recently, in a three-dimensional Caco-2 cell culture
model, it was demonstrated that exposure to acetaldehyde
(25 mM, approximately 110 mg/dL) for 3 h can result in
increased paracellular permeability through mechanisms
involving hyperacetylation of microtubular protein
(a-tubulin).194

Nonoxidative metabolites. Data on the effects of the non-
oxidative metabolites, i.e., PEth and FAEEs, on the intes-
tinal epithelial barrier function are limited. In one study,
incubation of Caco-2 cells for 48 h with ethanol (0.05%,
46 mg/dL) was found to increase intracellular accumula-
tion of PEth, resulting in claudin-1 endocytosis, disrup-
tion of claudin-1/ZO-1 TJs, and activation of ZO-1-
associated nucleic acid binding proteins (ZONABs),
which, consequently, promoted cell proliferation.74 Simi-
larly, high levels of accumulated PEth in colonic polyp
sections obtained from long-term ethanol abusers were
associated with remarkable ZO-1 mislocalization.74 These
data have been confirmed in vivo and ex vivo; for
example, incorporation of PEth in membranes and dis-
ruption of ZO-1 and ZONAB localization was found to
be correlated with increased cell proliferation in the
colonic epithelium of mice (consuming 9.2 g/dL for 4
months) and in the adenomas of long-term ethanol con-
sumers (30 g/d), respectively.74 Although FAEEs have
been found to possess cytotoxic activity in pancreatic
cells205,206 and liver cells,207 research on their role in
ethanol-induced barrier dysfunction has received little
attention. However, it was recently shown in a Caco-2
three-dimensional cell culture model that exposure to
ethyl ester oleate and ethyl ester palmitate at 20 mM or
40 mM concentrations can dose dependently induce ZO-1
and occludin redistribution and, consequently, a decrease
in the paracellular barrier function.181 Interestingly, these
changes were partially attenuated by preincubation with
the nutritional antioxidant resveratrol, pointing to the
involvement of ROS generation in FAEE-induced intes-
tinal barrier dysfunction.181

Modulation of tight junctions by microbiota

In addition to converting ethanol into acetaldehyde meta-
bolically,66 the intestinal microbiota can also modulate the
TJs directly or indirectly via increased levels of lipopoly-
saccharide (LPS), an endotoxin derived from gram-
negative bacteria.208 As discussed previously, ethanol has

been shown to alter the composition of the intestinal
microbiota, which can result in increased levels of endo-
toxin.124 Bode et al.122 showed that ethanol can induce
overgrowth of gram-negative anaerobic bacteria in the
jejunum of alcoholics, predisposing them to increased
levels of luminal LPS. Furthermore, short-term ethanol
administration has been shown to increase plasma LPS
levels approximately fivefold within 30–90 min in rats209

and in mice,210 whereas 4 weeks of ethanol feeding
increases the plasma LPS levels 15-fold in rats.211 In
humans, long- and short-term ethanol consumption has
been found to induce excessive and transient increases in
blood LPS levels, respectively.122,212,213 LPS has been shown
to induce epithelial hyperpermeability via a poly (ADP-
ribose) synthetase (PARS)-dependent mechanism214 and
MLCK activation.215 Since increased levels of circulating
LPS can potentiate an increase in intestinal permeabil-
ity,208 ethanol and LPS in combination may represent a
two-hit insult on intestinal epithelial barrier integrity.

Intestinal bacteria can also modulate intestinal
barrier integrity directly via mechanisms involving
changes in TJ protein expression and distribution. The
effects differ between bacterial strains. For example,
enteropathogenic E. coli has been demonstrated to
disrupt TJs in vitro216 and to increase intestinal epithelial
permeability in vivo.217 In contrast, several probiotic bac-
teria, including E. coli strain Nissle 1917,218,219 Bifidobac-
terium infantis,220 and Lactobacillus plantarum MB452,221

have been shown to promote intestinal barrier integrity
in vitro by increasing expression of the ZO-2 and occlu-
din proteins, by reducing expression of the claudin-2
protein, and by increasing transcription of the occludin
genes. Furthermore, Karczewski et al.222 have recently
shown that administration of Lactobacillus plantarum
WCFS1 into the duodenum of healthy human volunteers
increases expression of ZO-1 and occludin in duodenal
biopsies and protects against phorbol ester-induced
dislocation of ZO-1 and occludin in vitro.

Studies investigating the role of the intestinal micro-
biota in ethanol-induced intestinal barrier dysfunction
have been performed in rats and have reported that pre-
treatment with antibiotics can ameliorate ethanol-induced
intestinal barrier dysfunction and the associated endotox-
emia.164,223 Modulation of gut microbiota by probiotics or
prebiotics13,224 in animals127,225 and in humans226 has been
demonstrated to improve the intestinal barrier function.
Therefore, the effects of probiotic or prebiotic treatment
on intestinal barrier function after moderate and long-
term ethanol consumption merit further investigation.

CONCLUSION

On the basis of currently existing knowledge, ethanol and
its metabolites, including acetaldehyde, PEth, and FAEEs,
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are considered to reach the entire GI tract, including the
large intestine. The effects of ethanol and its metabolites
on the intestine depend on various factors such as the
food consumption pattern and host factors, e.g., sex, and
the presence of gene polymorphisms for the enzymes
involved in ethanol metabolism. Although ethanol by
itself can be injurious, scientific evidence strongly points
towards a very important role of its oxidative metabolite
acetaldehyde, especially in intestinal barrier disruption
and induction of colorectal cancers associated with
ethanol consumption. In addition, ethanol has been
shown to act synergistically with acetaldehyde, E. coli, and
burn injury, resulting in more pronounced intestinal
barrier dysfunction.

In vitro studies have led to exciting new information
on the mechanisms of ethanol- and acetaldehyde-
induced TJ disruption. However, detailed information
about the precise mode of interaction between the TJ
proteins complex and the mechanisms by which this TJ
disruption can be (therapeutically) modulated or pre-
vented is still lacking. So far, information on the effects of
the nonoxidative metabolites, i.e., PEth and FAEEs, on
intestinal epithelial barrier function is limited and has
received little attention. The evidence so far, however,
indicates that nonoxidative metabolites could be major
modulators of epithelial permeability. Moreover, infor-
mation on the effects of ethanol and acetaldehyde on
other components of intestinal epithelium, such as mucin
and mucin-secreting cells (i.e., goblet cells), is largely
lacking. Since the intestinal microbiota plays a crucial role
in the generation and accumulation of intracolonic
acetaldehyde, and since ethanol and its metabolites can
reach the colon via blood, mechanistic research on
ethanol-induced colonic barrier dysfunction, taking into
account the role of the gut microbiota, is warranted.
Understanding the cellular and molecular mechanisms
that mediate the effects of ethanol and its metabolites on
intestinal barrier dysfunction may provide leads for
therapeutic targets that can prevent or reverse ethanol-
induced intestinal failure and subsequent liver injury.
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