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Abstract

Objective. We report on a classification approach
using machine learning (ML) algorithms for pre-
diction of postoperative femoral nerve block (FNB)
requirement following anterior cruciate ligament
(ACL) reconstruction.

Background. FNBs are commonly performed for
ACL reconstruction to control postoperative pain.
Ideally, anesthesiologists would target preoperative
FNB only to ACL reconstruction patients expected
to experience severe postoperative pain. Periope-
rative factors associated with postoperative FNB
placement following ACL reconstruction remain
unclear, may differ among separate surgical facili-
ties, and render such predictions difficult.

Methods. We conducted a chart review of 349
patients who underwent ACL reconstruction at a
single outpatient surgical facility. Standard periop-
erative data commonly available during routine pre-
operative examination were recorded. ML classifiers
based on logistic regression, BayesNet, multilayer
perceptron, support vector machine, and alternat-
ing decision tree (ADTree) algorithms were then
developed to predict which patients would require
postoperative FNB.

Results. Each of the ML algorithms outperformed
traditional logistic regression using a very limited
data set as measured by the area under the receiver
operating curve, with ADTree achieving the highest
score of 0.7 in the cross-validated sample. Logistic
regression outperformed all other classifiers with
regard to kappa statistics and percent correctly
classified. All models were prone to overfitting in
comparisons of training vs cross-validated samples.

Conclusion. ML classifiers may offer improved pre-
dictive capabilities when analyzing medical data
sets compared with traditional statistical method-
ologies in predicting severe postoperative pain
requiring peripheral nerve block.

Key Words. Machine Learning Theory; Femoral
Nerve Block; Anterior Cruciate Ligament; Postop-
erative Pain; Opioids

Introduction

Machine learning (ML) is a mathematical algorithm-driven
system of classifying large amounts of data into useful
information. These models, called “classifiers,” take input
(i.e., patient symptoms, medications, etc.), process that
input, and predict an outcome (i.e., presence or absence
of a diagnosis, need for postoperative femoral nerve block
[FNB]) based on the underlying patterns. When these
patterns are constructed to the event, ML models have
been shown to offer expanded prediction capabilities over
classical statistical methodologies [1,2]. Modern appli-
cations of ML include the complex and data-intensive
analysis of handwriting recognition [3], automated voice
recognition [4], fraud detection [5], email spam filtering [6],
targeted marketing [7], and, most recently, crime fighting.1
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Preoperative prediction of severe postoperative pain
remains an imperfect art, which is notoriously inaccurate if
done by doctors [8]. We chose to apply ML to the appli-
cation of FNB for anterior cruciate ligament (ACL) repair
because this is one of the most common ambulatory
surgical procedures performed in the United States, with
nearly 100,000 projected ACL ruptures annually within the
United States alone [9]. Concerns on severe postoperative
pain have led many anesthesiologists to routinely place
FNBs prior to induction of anesthesia for those patients
undergoing ACL repair [10]. However, at some institutions,
the associated risks of FNB, including nerve injury, vascu-
lar injury, and local anesthetic toxicity, have led to a more
conservative approach, with postoperative FNB placed on
an as-needed basis [11]. Postoperative FNB following
high-dose opioids is suboptimal because the removal of
nociceptive input by FNB often results in subsequent
sedation and prolonged stay in the postanesthesia care
unit. Ideally, FNB would be prospectively targeted in the
preoperative setting toward those patients predicted to
experience severe postoperative pain to warrant FNB. The
challenge, therefore, is to identify the patients who will
require a postoperative FNB preoperatively and eliminate
the need for high-dose opioid use.

In this study of a retrospective sample, we applied ML
classifiers to predict which patients would receive a FNB
following ACL repair using only information routinely avail-
able prior to the start of surgery. To our knowledge, this is
the first time that ML classifiers have been applied to the
perioperative prediction of pain. We hypothesized that
commonly used ML algorithms, namely support vector
machines (SVMs), naive Bayesian analysis, multilayer per-
ceptron, and decision trees [12], would perform compa-
rably with a traditional logistic regression-based analysis.
Finally, we examined how these algorithms performed in
both the model-training and the model-validation stages
of ML classifier development.

Methods

Outcomes

The primary outcome of this study examined the pre-
dictive performance of multiple ML classifiers against a
stratified 10-fold cross-validated sample of subjects. The
binary classification was the placement, or not, of a post-
operative FNB following ACL repair. Secondary outcomes
examined the differences between testing and training
phases of model development.

Description of Subjects

This study was approved by the Institutional Review Board
at the University of Florida. We reviewed the perioperative
records of 349 patients who underwent ACL reconstruc-
tion at the University of Florida’s Florida Surgical Center.
All surgeries were performed between August 2007 and
August 2009. Subjects received either an open or arthro-
scopic ACL repair using an allograft or autograft technique

harvested from the patellar or hamstring tendon. All pro-
cedures were conducted under general anesthesia. Both
primary repairs and revisions were included, as were those
subjects who received an ACL repair in conjunction with
other surgical procedures of the knee. Those subjects
who received a preoperative nerve block were excluded
from the study sample. The data did not reflect the prac-
tice of any single anesthesiologist, nor of an academic
subspecialty group, due to the nature of physician sched-
uling at our institution. FNBs were placed following ACL
repair only if the patient continued to report severe pain
following multimodal analgesic administration in the recov-
ery room. Multimodal analgesics generally included the
use of intraoperative ketamine (10–20 mg i.v.), ketorolac
(30 mg), oxycodone (5–10 mg), and intravenous hydro-
morphone administered in 0.5 mg increments until the
patient’s pain was either adequately relieved or had
required at least 2 mg of hydromorphone within 1 hour of
arrival in the recovery room without adequate relief from
pain.

Input Variables

Data collected included age, gender, preoperative
numerical rating score of pain (0–10), body mass index,
and use of alcohol, tobacco, or illicit drugs. The preop-
erative use of opioids, nonsteroidal anti-inflammatory
drugs (NSAIDs), gabapentin, or anxiolytics was recorded
as a preoperative patient factor. Recorded surgical
characteristics included autograft vs allograft, open vs
arthroscopic approach, and total thigh tourniquet time.
Recorded anesthetic details included the perioperative
administration of gabapentin or pregabalin, NSAIDs,
acetominophen, ketamine, or inhalational anesthetic
agent as dichotomous inputs. Although anesthetic agent
administration was recorded as an intraoperative event,
it was included as a preoperative predictor as the deci-
sion of which agent to use is commonly made in the
preoperative environment.

Theory of ML Classification

The overall mechanism for creating a ML classifier is an
iterative process, typically divided into two phases. In the
first phase, called the training phase, a set of data with
known outcomes is used to train the classifier. The clas-
sifier’s performance may be overly optimistic in this train-
ing phase because the developing model is “fitted” to the
same data set with which it was created; this phenom-
enon is referred to as “overfitting.” In the second phase,
called the testing phase, the classifier’s performance is
measured by using it to make predictions on a previously
unseen data set (also known as out-of-sample testing).
Because the classifier is applying lessons learned from
the training data set to a new set of instances in need
of classification, the ML classifier’s performance may
decrease to reflect a more realistic situation. In some
respects, this testing phase is similar to the validation
phase of any clinical prediction tool. A “good classifier” is
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one that performs well during both training and testing
phases. Although earlier work on classification algorithms
focused on logistic regression and neural networks, recent
efforts have expanded to include decision trees, SVMs,
and Bayesian analysis. A broad overview of this process is
given in Figure 1.

A variety of software products have been developed to
assist with ML classifier application, yet each approaches
the problem of classification using a similar approach.
Examples include RapidMiner (Rapid-I, Dortmund,
Germany), Weka (University of Waikato, New Zealand),
and Enterprise Miner (SAS Institute, Cary, NC, USA). In
this study, all ML algorithms were run using WEKA 3.6.2
[12]. Each implementation first requires the user to import
data sets either as separate training and testing (or hold-
out) sets or as a single set that can be partitioned into
training and testing phases. The user then selects a cohort
of ML classifiers to develop using the training data. Once
refined, the ML classifiers then classify the testing (hold-
out) data, which have known outcomes but were not used
for classifier development. This allows objective scoring of
ML classifier performance. We used the above metho-
dology throughout this study. We used 10-fold cross-
validation for testing ML classifiers against the hold-out
data [13].

Due to the pilot nature of this project, we assembled a
team of mathematicians, anesthesiologists, and adminis-
trators to assist with problem formulation, classifier selec-
tion and tuning, and interpretation of results. Because ML
classification is heavily related to the discipline of data
mining, there is ongoing debate concerning the role of
traditional biostatistics vs applied data mining [14]. This
is similar to the debate between Bayesian and classical
statistics [15].

Description of Classifiers

Our study compared the results across four classifiers:
BayesNet, multilayer perceptron, SVM, and alternating
decision tree (ADTree). Additionally, we included a logistic
regression analysis as a comparator. The simple logistic
regression implemented in Weka used no errors on
probabilities, heuristic stop at 50, maximum boosting

iterations of 500, with cross-validation of logit boost
iterations [16].

The BayesNet classifier approaches the problem of clas-
sification as one of the conditional probabilities. It con-
structs a directed acyclic graph or a series of nodes
connected by directional links that do not form loops.
Each node represents a variable, and the linkages the
conditional probabilities among the nodes (Figure 2). Our
classifier used the K2 search algorithm, which systemati-
cally tries to add “parent” nodes to each node to improve
the resulting graph, as well as a Markov blanket classifier
that permitted grouping of parent and child nodes. The
BayesNet classifier was run using the SimpleEstimator
with an alpha of 0.5, a maximum of one parent node, and
random ordering of network nodes.2

Figure 1 Overview of machine learning (ML) classification implementation. Input variables are defined for
each instance and then entered into one or more ML classifiers. The classifiers then render predictions on the
class to which the instance should belong based on the training of the classifier.

Figure 2 Schematic representation of a BayesNet
network. The BayesNet algorithm constructs a
directed acyclic graph or a series of nodes con-
nected by directional links that do not form loops.
Each node represents a variable, and the linkages
between nodes the conditional probabilities among
the nodes.
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Multilayer perceptrons are a type of neural network. First,
an input layer of nodes is constructed, followed by mul-
tiple levels of hidden layers, and finally an output layer.
Information is passed from one layer of nodes to the next,
but as with neurons, nodes will only transmit the informa-
tion to the next node if the information reaches a certain
threshold of importance. By comparing the actual outputs
with the classification goal, the thresholds required for
node activation are iteratively updated via backpropaga-
tion until a final optimization is reached (Figure 3) [17]. In
this case, the multilayer perceptron was set to autobuild
with two hidden layers, learning rate of 0.3 and momen-
tum of 0.2, nominal to binary filter off, normalized
attributes and normalized numeric classes, seed of 0, and
training series of 1,000,000 with validation size of 10%
and validation threshold of 20 [13,18].

SVMs are a function-based classifier, which first plot all
instances on a coordinate system and then derive a func-
tion to maximally separate the instances according to the
target classification scheme. The complexity of this func-
tion is influenced by the complexity value, and the type of
function by the selected kernel (Figure 4). The support
vector classifier incorporating a logistic model used a
complexity value of 1, the round-off error or epsilon of
1 ¥ 10-12, normalized training data filter, the Puk kernel

based on the Pearson VII distribution with omega and
sigma both set to 1, random seed of 1, and tolerance
parameter of 0.001 [19,20].

The ADTree is a type of decision tree. With the ADTree, the
decision tree establishes prediction nodes each consisting
of single numbers, and then decision nodes that predicate
a decision on the prediction node based on the input
variables. Each instance is then applied to the tree, and
the prediction nodes through which the instance passes
are summed to render a score. The magnitude of this
score dictates the classification. The ADTree uses boost-
ing or the combination of multiple “weak” algorithm itera-
tions to create a stronger classifier (Figure 5). The ADTree
classifier used 10 boosting iterations with random seed of
0 and default expansion of all paths in designing the
decision tree.3

Statistical Analyses

General statistical comparisons for univariate analysis
were completed using JMP 8.0.2 (SAS Institute). The
t-test and chi-square analysis were used for univariate
comparisons as appropriate. A two-sided Fisher’s exact
result was substituted for routine chi-square analyses for

Figure 3 Schematic of a pro-
totypical multilayer perceptron.
Following inputs, data progress
to hidden layers using different
functions, which can be either
logic- or function-based. Each
node functions as a neuron,
passing information to the next
node only if the information
reaches a certain threshold. The
difference between the even-
tual outcome and the known
outcome, or error, leads the per-
ceptron to backpropagate this
information, permitting the per-
ceptron to adjust its nodes in
an attempt to reduce the final
error. This process is repeated
iteratively.
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Figure 4 Schematic representation of a support vector machine (SVM). Circles of different colors represent
instances belonging to different classes. The SVM attempts to design a function describing a line (panel A
[high-dimension space]) or a plane (panel B [kernel-based hyperplane mapping in the input space]), which
can separate instances according to class. This plane can extend into very high-dimensional space as
necessary, but is visualized here in two dimensions (panel B).

Figure 5 Schematic representation of an alternating decision tree (ADTree). With the ADTree, the algorithm
establishes prediction nodes each consisting of single numbers and then decision nodes that predicate a
decision on the prediction node based on the input variables. Each instance is then applied to the entire tree,
and the prediction nodes through which the instance passes are summed to render a score. The magnitude
of this score dictates the classification. The tree is “boosted” in that a number of trees are created, the
best scores from each tree combined into a single classification. NRS = numerical rating scale;
NSAID = nonsteroidal anti-inflammatory drug; BMI = body mass index; APAP = acetaminophen.
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the comparisons involving illicit drug use, home anxiolytic
use, open surgical repair, and perioperative acetomi-
nophen administration due to expected cell counts of less
than five in a 2 ¥ 2 table.

We reported the results of both training and testing
phases of ML development to demonstrate the capabili-
ties and risk of overfitting of ML classifiers. Multiple metrics
were incorporated into the evaluation of each classi-
fier. The overall percent of correctly classified instances
reflects a simple evaluation of a classifier, the same as
evaluation by the area under a receiver operating curve
(ROC). Because a classifier relying on random selection of
instances will frequently classify some instances correctly,
we used the kappa statistics to control for those instances
that may have been correctly classified only by chance
[21]. We also evaluated the accuracy of each classifier by
its F-measure, which represents the harmonic mean
between precision and recall [22]. For the test phase, all
models used stratified 10-fold cross-validation [13].

Results

Figure 6 describes the methodology for data aggrega-
tion from the perioperative chart. Overall, 91 out of 349
patients (26%) required a postoperative nerve block.
Baseline characteristics of the study sample based on the
need for a postoperative FNB are shown in Table 1. Based
on the univariate analysis, female gender and tobacco use
were increased in those needing rescue FNB. There was
no difference in surgical factors (autograft vs allograft,

open repair, tourniquet time) between groups. Periopera-
tive NSAID, ketamine, gabapentin, or pregabalin were all
used more frequently in those receiving a rescue FNB,
although inhalational agents were used less often.

Table 2 compares the training and cross-validation results
for each of the models studied using data available to the
anesthesiologist in the preoperative setting. ROC area
was greatest in the cross-validated data set using the
ADTree classifier, while SVM had the highest kappa value.
Logistic regression outperformed other classifiers in the
percent correctly classified as well as the F-measure.

The logistic regression algorithm used by WEKA uses a
boosting option, and we permitted up to 500 boosting
iterations. Notably, boosting is not used in all implemen-
tations of logistic regression. When minimized to a single-
boosting iteration, the returned ROC area was only 0.559,
a notable decrease from the 0.645 given using the default
settings of the simple logistic implementation of logistic
regression.

Discussion

Our results suggest associations between perioperative
factors and the need for postoperative FNB placement
following ACL reconstruction. Although logistic regression
demonstrated appropriate classification ability, other ML
classifiers offered comparable, or better, classification per-
formance during both training and cross-validation. This
similarity may underestimate the capabilities of the ML
classifiers because our data set did not include data with
a high ratio of attributes to instances, where ML may offer
significant improvements over simple logistic regres-
sion [2]. For instance, an elevated attribute-to-instance
ratio would include a data set of subjects whereby 100
subjects were included, yet each subject had over 50
variables such as age, gender, and zip code. Contrariwise,
traditional classifiers such as logistic regression can
manage only one variable per 10 outcome events [23].

Our analysis used relatively default configurations for each
classifier; no attempt was made to significantly optimize
any one model. Although optimization of a classifier would
have likely improved classification performance, we hoped
to demonstrate the efficacy of “out of the box” classifiers
vs those that would be incrementally tuned. Additionally, a
focus on multiple performance metrics would have lead to
multiple versions of each classifier tuned against a specific
outcome rather than addressing the original outcomes.
Future investigations may wish to compare baseline algo-
rithm performance against the performance of syste-
matically tuned algorithms to determine the extent of
improvement possible.

Traditionally, statistical tests have been geared toward
testing of a single hypothesis, and data mining as imple-
mented by ML classifiers focused on the search through
multiple potential hypotheses [1,18]. The ML classifiers
included in this study encompass a wide variety of

Figure 6 Review of data aggregation from medical
records. Records with insufficient data included
those missing information on outcomes, thus ren-
dering them ineligible for classification in either
machine learning classification training or testing
stages. ACL = anterior cruciate ligament.
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mathematical underpinnings. Despite their differing
approaches, each classifier returned similar results on
the cross-validated data. Each classifier, but especially the
SVM, “over-fit” the training-set data. This reflects the
remarkable adaptability of the SVM to identify a very
complex function, which defines a surface separating
each instance according to the outcome in question. In
other words, on a Cartesian coordinate system, one might
imagine that all instances resulting in a postoperative

block lie above this plane, and all instances without a
block below the plane. As with any overfit model, the SVM
has adapted itself so perfectly to the training set, including
outliers, that it becomes too rigid for future data, which
may not perfectly follow the identified function. One
example would be the athlete who simply wants a nerve
block after surgery due to the positive reviews offered by
her teammate. No volume of biopsychosocial indicators
would likely predict such a circumstance, yet such an

Table 1 Univariate analysis of patient, surgical, and anesthetic factors associated with postoperative
femoral nerve block

Rescue block?

P valueNo Yes

Patient factors Age 26.5 26.5 0.9994
Female 33% 48% 0.012†

NRS 1.37 1.63 0.51
BMI 26 27.6 0.0635
EtOH (responding yes) 6.98% 6.59% 0.9
Tobacco (responding yes) 4.65% 19.8% <0.0001†

Illicit drug (responding yes) 1.55% 3.3% 0.3829‡

Home opioid use 4.26% 7.69% 0.22
Home NSAID use 19.38% 24.18% 0.337
Home gabapentin/pregabalin 12.02% 15.38% 0.4172
Home anxiolytic use 1.16% 1.11% 1‡

Surgical factors Autograft repair 32.95% 27.47% 0.3299
Allograft repair 67.05% 71.43% 0.4382
Open repair 3.88% 4.40% 0.764‡

Tourniquet time (minutes) 48.3 45.9 0.2321
Anesthetic factors Perioperative NSAID 65.5% 89% <0.0001†

Perioperative APAP 4.26% 6.59% 0.3988‡

Perioperative ketamine 75.19% 87.91% 0.0049†

Perioperative gabapentin/pregabalin 25.58% 42.86% 0.0024†

Inhalational agent 17.83% 8.79% 0.0313†

† Significant at the 0.05 level.
‡ Test for significance using Fisher’s exact test.
APAP = acetaminophen; BMI = body mass index; EtOH = ethanol; NSAID = nonsteroidal anti-inflammatory drug; NRS = numerical
rating scale.

Table 2 Training and cross-validation results for classification algorithms, preoperative data inputs only

Stage BayesNet
Multilayer
perceptron SVM ADTree

Simple logistic
regression

Training ROC area 0.737 0.778 0.996 0.772 0.657
Kappa statistics 0.295 0.320 0.902 0.301 0.228
Percent correctly classified 77.4% 79.7% 96.3% 79.1% 77.7%
F-measure 0.744 0.754 0.962 0.747 0.72

10-fold cross-validation ROC area 0.691 0.688 0.671 0.7 0.645
Kappa statistics 0.2169 0.1703 0.242 0.179 0.228
Percent correctly classified 75.1% 74.5% 65.9% 74.2% 77.7%
F-measure 0.716 0.7 0.677 0.702 0.72

ADT = alternating decision tree; ROC = receiver operating curve; SVM = support vector machine.
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instance in a training set might doom an SVM plane into
extreme contortions to satisfy this event.

Aside from the above exception, the need for a postop-
erative FNB frequently indicates the presence of severe
postoperative pain. The level of pain and opioid require-
ment may not be well predicted by the type or complexity
of the ACL repair [24]. Werner et al. recently conducted a
meta-analysis of studies attempting to predict postopera-
tive pain based on perioperative predictors [8]. They con-
cluded that up to 54% of the variance in postoperative
pain may be predicted by preoperative evaluations of
sensory testing, nociception, anxiety, and catastrophic
thinking. Although quantitative sensory testing may offer
specific advantages in prediction of postoperative pain
[25–27], their implementation in routine preoperative
assessment is far from universal. Our study focused on
only those variables routinely captured in the perioperative
setting. Expansion of predictors into the intraoperative
time frame may improve ML classifier performance, yet
render predictions too late for preoperative nerve block.
Still, a prediction rendered at the end of a surgical proce-
dure may still assist the clinician in deciding to place a FNB
immediately following emergence from anesthesia vs a
trial of systemic analgesics within the recovery room.

Our economical use of existing data vs exploration of
additional biological predictors, each requiring discrete
investigation, highlights an important methodological dif-
ference in our approach to the problem of postoperative
pain prediction. We were able to examine improvements in
clinical decision support in a manner that required no
additional testing of patients. Clinicians rarely make deci-
sions based on single or even multiple individual charac-
teristics. More importantly, the specific evidence behind
such predictors, especially when studied in carefully con-
trolled environments such as randomized controlled clini-
cal trials (RCT)s, lose certainty as they are applied to
foreign situations not encountered in the original RCTs.
Clinicians instead combine their prior experience with
simultaneous input from dozens of specific predictors,
some of which may be considered “evidence-based.”
Critically, ML classifiers still rely on relevant characteristics
to render their classifications. Rather than offer a substi-
tute for biopsychosocial research platforms, we envision
ML classifiers as a complement, assisting with the trans-
lation of such findings into improvements in clinical care.

We envision a system that will automatically pull a test
data set, classify this test data against ML classifiers
designed using historical training data, render predictions,
and then report such predictions to the pertinent anesthe-
siologists via a nightly email. The next-day experience
would then be entered into the historical training set to
improve the ML classifier’s performance on the next day.
Regardless of the problem set, the same two-phase
methodology of ML classifier training and refinement, fol-
lowed by testing and updating, would apply.

Our study suffered some limitations, chiefly its retro-
spective nature. Only those variables available within the

perioperative record were available for entry into the clas-
sification algorithms. Also, we believe the name of the
surgeon, who was not used as a variable in this study, may
have a significant influence on the outcome. We may even
speculate that using surgeon name as a variable could
make the predictions substantially more accurate. Further-
more, it is possible that the predictive ability would be
greatly improved by inclusion of formalized quantita-
tive sensory and psychosocial evaluations. Although many
additional variables conceivably could have been
included, the restricted sample size prohibited the ratio-
nale inclusion of many factors considered to be minimal in
impact or inappropriately partitioned between groups.
This particular limitation is more specific to logistic regres-
sion than ML classifiers, which may retain discriminatory
power even when the number of covariates is greater than
the number of data points [1]. Further studies using pro-
spective implementation of ML classifier-based forecast-
ing of postoperative pain are required to fully determine
the impact of ML classifiers for improving perioperative
patient care.

One perceived weakness to our classification approach is
the absence of single-unit predictors. Traditionally, classi-
cal statistics has left the reader with a few covariates that
were deemed statistically significant following some type
of multivariate regression. However, such approaches fail
to include these covariates in a conditional framework, or
as high-level interactions, as demonstrated in Figure 5.

Perhaps one of the most interesting limitations pertains to
the ramifications of clinically oriented ML classification
systems. Currently, no standards exist for ML classifier-
based analytics, although some entities recognize
software-focused training certifications. The complex
nature of ML classifier algorithm development and deploy-
ment will likely restrict full understanding to those physi-
cians without fellowship training unless medical training is
significantly revised to include substantial increases in
mathematics and statistics. In the United States, federal
incentives to both deploy electronic medical record
systems and use them as clinical decision support tools
may expedite the development and utilization of clinical
ML classification systems.4

In conclusion, our study represented a proof-of-concept,
demonstrating the performance of ML classifiers against
more common classification methodologies involving
logistic regression. Our efforts focused on the economic
use of available information rather than prospec-
tively studied single-predictor attributes. Regardless of the
problem set, the same two-phase methodology of ML
classifier training and refinement, followed by testing and
updating, would apply. Although our work focused on
postoperative nerve block requirements, the same meth-
odologies could be used to predict patient satisfaction
with pain control, severe postoperative pain scores, pro-
longed length-of-hospitalization, postoperative respiratory
failure, or any other health care problem requiring complex
and highly interactive, or even conditionally related, pre-
dictors to establish classifications. Due to the complex
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nature of perioperative pain, forecasting efforts will likely
necessitate novel integration of predictive attributes such
as those provided by ML classifiers.
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