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Abstract

Objective. The purpose of this project was to deter-
mine whether machine-learning classifiers could
predict which patients would require a preoperative
acute pain service (APS) consultation.

Design. Retrospective cohort.

Setting. University teaching hospital.

Subjects. The records of 9,860 surgical patients
posted between January 1 and June 30, 2010 were
reviewed.

Outcome Measures. Request for APS consultation.
A cohort of machine-learning classifiers was com-
pared according to its ability or inability to classify
surgical cases as requiring a request for a preopera-
tive APS consultation. Classifiers were then opti-
mized utilizing ensemble techniques. Computational
efficiency was measured with the central process-
ing unit processing times required for model train-
ing. Classifiers were tested using the full feature set,
as well as the reduced feature set that was optimized
using a merit-based dimensional reduction strategy.

Results. Machine-learning classifiers correctly pre-
dicted preoperative requests for APS consultations
in 92.3% (95% confidence intervals [CI], 91.8–92.8) of
all surgical cases. Bayesian methods yielded the
highest area under the receiver operating curve
(0.87, 95% CI 0.84–0.89) and lowest training times
(0.0018 seconds, 95% CI, 0.0017–0.0019 for the
NaiveBayesUpdateable algorithm). An ensemble of
high-performing machine-learning classifiers did
not yield a higher area under the receiver operating
curve than its component classifiers. Dimensional
reduction decreased the computational require-
ments for multiple classifiers, but did not adversely
affect classification performance.

Conclusions. Using historical data, machine-
learning classifiers can predict which surgical cases
should prompt a preoperative request for an APS
consultation. Dimensional reduction improved com-
putational efficiency and preserved predictive
performance.

Key Words. Machine Learning; Pain; Surgery;
Anesthesia; Acute Pain Service

Introduction

The modern acute pain service (APS) requires a special-
ized organizational structure involving additional resources
in the form of nurses, technicians, and clerks specifically
educated to meet the needs of the APS [1]. Additionally, to
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optimize resident education and patient flow, many aca-
demic medical centers provide APS services in a dedi-
cated space, often referred to as a “block room” [2]. The
optimal use of these relatively costly resources depends
on the appropriate and timely referral by operating sur-
geons. However, due to the lack of evidence-based
guidelines for the perioperative need for APS consulta-
tions, the referral pattern is often subjected to the random-
ness of decisions by individual referring physicians, and
thus may appear to be highly unpredictable [3]. This
apparent inability to forecast the request for APS services
in a timely fashion may prevent providers from using cost-
effective strategies, such as parallel processing, and may
minimize efficiency improvements obtained with a regional
anesthesia block room model [2,4,5].

On the other hand, the experience of industries, such as
insurance or risk-management companies, that depend
on the effective prediction of future outcomes highlights
the increasing power of predictive analytics as an emerg-
ing forecasting tool. Predictive analytics encompass a
variety of statistical techniques to analyze highly dimen-
sional data sets with large numbers of variables, identify
patterns based upon given sets of outcomes, and use
these patterns to successfully forecast future events with
iterative improvements [6]. Among others, machine learn-
ing, a branch of artificial intelligence, is gaining popularity,
as it not only uses advanced statistical methods for
regression and classification, but also emulates human
cognition and the ability to learn from training examples to
predict future events [7]. Since the inception of the Health
Information Technology for Economic and Clinical Health
Act initiatives, more hospitals and clinics are integrating
electronic medical records (EMRs) into their health infor-
mation processing and storage, thereby enabling the
application of predictive analytics for the forecasting of
events in the health care industry [8]. Consequently, the
Agency for Healthcare Research and Quality has pro-
moted the use of health information technology, including
clinical decision support systems, to advance the quality
of patient care [9].

In this retrospective cohort study, we tested the hypoth-
esis that, by using readily available information in EMRs,
predictive analytics could reliably and cost-efficiently
predict the request for an APS consultation ahead of the
actual request. In addition, we compared the performance
and efficiency of different types of machine learning clas-
sifiers (MLC) when applied to this classification task.
Finally, we examined the role of ensemble classification
techniques and dimensional reduction in machine learning
classification to forecast APS consultation requests.

Methods

Study Population

The University of Florida Institutional Review Board
approved this study. All in-hospital surgical cases per-
formed between January 1, 2010 and June 30, 2010 at

the University of Florida and Shands Hospital (UF &
Shands), a tertiary academic center, were reviewed if they
were posted on the operating room list and, hence, were
included in the EMRs database (Centricity Perioperative
Management [CPM], GE Healthcare, Waukesha, WI,
USA). A preoperative request for an APS consultation, in
practice, leads to the patient being sent to a preoperative
block room for preoperative assessment and evaluation
for placement of a nerve block.

Outcomes and Input Attributes

Only those attributes available preoperatively in the oper-
ating room schedule and CPM database were included.
This limitation mimicked the preoperative decision point
that would be available to operating room schedulers and
resource assignment administrators. Input data included
11 attributes: operating room location, patient status
description (inpatient, outpatient, or postoperative admis-
sion), surgeon, anesthesiologist, primary and secondary
Current Procedural Terminology (CPT) codes, day of
week, scheduled surgery starting time, postoperative care
location, patient age, and estimated duration of surgery.

For input data, continuous variables were nominalized to
ensure broad application to differing classifiers (see later).
Primary operating surgeon and primary attending anes-
thesiologist identities and primary and secondary CPT
codes were included as nominal values. For purposes of
demonstrating the distribution of outcome predictions
across procedural groups, CPT codes were also grouped
into broader anatomic surgical categories; such groupings
were not used for classifier development or testing, but,
rather, for demonstration of outcome predictions across
surgical categories (see Appendix 1). The day of the week
for each procedure was included to account for cases
scheduled outside of a surgeon’s standard OR time block,
but which may still be considered elective. Likewise, the
location of the operating room was included as a categori-
cal variable to account for procedures performed outside
of the surgeon’s or customary venue of the procedure.
Scheduled starting time was nominalized into five catego-
ries: 0700–1159, noon–1500, 1501–1800, 1801–2100,
and 2101–0659, as these time intervals represented dif-
fering practice patterns and case volumes for the APS.
Postoperative destinations included the post-anesthesia
care unit (PACU), surgical intensive care unit (ICU), pedi-
atric ICU, neonatal ICU, medical ICU, cardiac ICU, burn
ICU, and neurosurgical ICU. Patient age was categorized
(according to empirically derived groups) as 1 year or less,
1–2 years, 3–5 years, 6–10 years, 11–15 years, 16–20
years, and 21–30 years, with 10-year increments up to
100. The estimated surgery times were defined as 1–30
minutes, 31–60 minutes, 61–90 minutes, 91–120
minutes, 121–180 minutes, 181–240 minutes, 241–
300 minutes, 301–360 minutes, 361–420 minutes, 421–
480 minutes, and >8 hours.

The primary outcome was the preoperative APS consul-
tation request; this was considered a binary outcome.
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MLC Selection, Performance, and Optimization

The main goal of machine learning research is to create
machines (computers) that can learn [6]. Classification,
one of the most common machine learning tasks, has
attracted much attention. Classification algorithms induce
a classifier by using training examples (i.e., data that are
prelabeled by a supervisor). There are many ways to rep-
resent a classifier, with common representations that
include “if-then rules,” “decision trees,” “networks” (such
as neural networks), “mathematical functions” (such as
linear functions), and many others. Regardless of the
method of classifier training used, the goal of a classifier
remains the same: determining to which group a new
observation should be assigned by using the information
contained in prior observations for guidance. In this
project, we used supervised machine learning techniques
to develop classifiers, which we refer to as machine-
learning classifiers (MLC), for predicting whether a given
surgical case will require an APS consultation.

The overall mechanism for MLC creation is a repetitive
process divided into two phases. In the first phase, or
training phase, a set of data with known outcomes is used
to train the classifier. In the second phase, or testing
phase, the performance of the classifier is evaluated by
using it to make predictions on previously unseen data.
Because the classifier is applying lessons learned from the
training data set to a new, previously unseen set of
instances in need of classification, MLC performance may
decrease to reflect a more realistic scenario. We com-
bined the testing and training phases using stratified

10-fold cross-validation by segmenting the entire data set
into 10 “folds” (Figure 1).

We used different MLC types to represent a variety of
classification methodologies (Table 1) [6,10]. All classifiers,
with the exception of three, were able to complete the
training and testing phases. The support vector machine,
multilayer perceptron, and logistic regression schemes
each required greater than 10 minutes of dedicated
central processing unit (CPU) time to partially train the
MLC, and, thus, were excluded from further study. The
following parameters were used to compare the perfor-
mance of MLCs: area under the receiver operating curve
(AUC), percent correct, sensitivity, specificity, and compu-
tational requirements. The AUC was selected as the
primary performance metric due to its comprehensive
description of overall classifier performance [11,12].
“Percent correct,” or accuracy, represents a traditional
measurement of classifier performance, but falsely
assumes uniform class distribution across the study
sample [11]. Computational requirements were deter-
mined using the CPU time required for model training. All
models were tested using Weka 3.6.2 (University of
Waikato, New Zealand).

In order to visually demonstrate a decision tree, we
applied a separate dedicated decision tree algorithm (JMP
Pro 9, SAS Institute, Cary, NC, USA). As a decision tree
incorporating all variables would be prohibitively challeng-
ing to visualize given the large number of levels inherent to
our data set, this example used a separate sample of
variables. All attributes were restricted to variables with

Figure 1 Overview of machine learning classifier (MLC) design, implementation, and testing. A series of
inputs, called the feature set, are entered into a series of MLCs. The classifiers then render an output
prediction, based upon prior training, using a feature set with known outcomes. In this study, classifiers were
evaluated using metrics of both predictive performance as well as computational requirements.
CPT = Current Procedural Terminology; ICU = intensive care unit; PACU = post-anesthesia care unit;
APS = acute pain service.
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less than 30 levels, taking into account both algorithm
constraints and visualization limitations; CPT anatomic
groupings, patient status, day of week, scheduled start
time, postoperative location, patient age group, and esti-
mated surgical duration time were used for this simplified
visualization (Figure 2).

Predictive Model Optimization

To further optimize predictive model performance and
decrease computational requirements, we used two strat-
egies: ensemble development and dimensional reduction.
We combined MLC types with the highest AUC from each
methodology group into an ensemble meta-classifier
using the Vote schema, which averages the probability
estimates of component base classifiers to render a single
classification per instance [13]. In the second optimization
step, we performed dimensional reduction to identify key
attributes in the prediction model [14,15]. We employed a
correlation-based feature subset selection (CFS) using the
greedy-stepwise search pattern with 10-fold cross-
validation [16]. This dimensional reduction strategy identi-
fies those attributes that are highly correlated with the
separating class, yet poorly correlated with the other
attributes. The resulting “merit” of an attribute results from
the following equation:

M k r k k k rS cf ff*= + ( )( )– ,1

where M is the merit of a subset of feature set S, which
contains k number features; rcf is the average correlation
between a feature and a class; and rff is the average
intercorrelation between features. Thus, the numerator
indicates how predictive a feature set is, and the denomi-
nator indicates the redundancy among features.

The greedy-stepwise search pattern identifies a baseline
set of attributes, and then iteratively adds or deletes
attributes to improve the correlation score within the CFS
selection schema [10,15]. The rank and merit of each
attribute was reported based on the results of the CFS
analysis. Only those attributes contributing to the majority
of cross-validated folds were used to further test the MLC
performance in a dimensionally reduced data set.

Statistical Analysis

MLC performance measures were compared using non-
parametric analysis of variance. Post hoc comparisons
were conducted using the Steel or Dunn’s method, as
appropriate. Pairwise comparisons of before and after
dimensional reduction were performed using Wilcoxon’s
method. Statistical significance was set, with alpha <0.05.
Power analysis, using a one-sample mean per classifier
and testing a difference to detect an AUC of 0.1 with a
standard deviation of 0.1 and sample size of 10 runs,
suggested a power of 0.8. Statistical analysis of classifier
performance comparisons was conducted using JMP 9
(SAS Institute).

Results

Model Description

A total of 9,860 surgical cases were included in the analy-
sis. Sixteen percent of them had preoperative APS con-
sultations, and were evaluated in the block room
immediately prior to surgery. Over the included 6-month
time frame, this represents an average of 13 consultations
per week day, or nine consultations per day if averaged
across all days. There were 43 separate operating

Table 1 Description of machine learning classification schemes

Type of Classifier Examples Description

Bayesian BayesNet Apply Bayesian principles of conditional probability to classification.
Naive Bayesian approaches presume that input factors are
independent of one another.

Naïve Bayes (updateable)

Function-based Logistic regression Creates a separating surface using linear, logistic, or kernel-based
methods.Support vector machine

Multilayer perceptron
Radial basis frequency network
Voted perceptron

Lazy K-nearest neighbor Maps outcomes onto a plot, and classifies outcomes based upon
proximity to neighboring outcomes with known correct
classification via majority rules.

Rule-based Decision tables Create rules to assign outcomes into the correct classification
grouping, either simply or via iteration.Propositional rule learner (JRip)

PART decision list
ZeroR

Decision trees J48 Create hierarchy of rules for classification, using an “If this . . . then
that . . .” paradigm.AD Tree

Random Forest
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locations, ranging from 0.04% to 5.1% of cases. Forty-
two percent of patients were inpatient, 21% outpatient,
and 37% represented patients admitted to the hospital
following surgery. A total of 186 surgeons were included,
with none accounting for more than 3% of the case
volume. Likewise, 77 attending anesthesiologists were
included, ranging from 0.01% to 6% of all cases. A total of
1,514 primary CPT codes were used in conjunction with
833 secondary CPT codes. Cases were performed on
every day of the week, 94% of which were performed
Monday–Friday. Surgery started between 0700 hours and
noon in 66% of cases, dropping to 2% between 1801 and
2100 hours, and 3% between 2100 and 0700 hours. The
most common postoperative destination was the PACU
for 73% of patients, with 0.2–6% of patients transferred to
each type of ICU. Ages ranged from less than 1 year to
100 years. Most procedures lasted less than 2 hours and
over 25% less than 1 hour.

Performance of Predictive Models

Using all 11 attributes in the full model, the MLCs correctly
predicted preoperative requests for APS consultations in
92.3% (95% confidence intervals [CI], 91.8–92.8) of all
surgical cases. There was a statistically significant differ-
ence between the different types of MLCs in the percent-
age of correct predictions (P < 0.0001), ranging from
84.2% (95% CI, 84.2–84.2), with ZeroR, to 94.3% (95%
CI, 93.7–94.9) with the Voted Perceptron. The AUC
ranged from 0.5, with ZeroR, to 0.95 (95% CI, 0.95–0.96)
for both BayesNet and NaiveBayesUpdateable algo-
rithms, with a statistically significant difference in the AUC
among the classifiers (P < 0.0001). A representation of
classifier predictions rendered by BayesNet across differ-
ent anatomic surgical groupings of the primary CPT code
is given in Figure 3.

The BayesNet and NaiveBayesUpdateable algorithms
returned the highest classifier sensitivities (0.87, 95% CI
0.84–0.89 and 0.87, 95% CI 0.84–0.89, respectively). The
ZeroR classifier had the lowest sensitivity at zero. Con-
trariwise, ZeroR was the most specific classifier, with a
specificity of 1; and BayesNet (0.94, 95% CI 0.93–0.95),
NaiveBayesUpdateable (0.94, 95% CI 0.93–0.95), and IBk
(0.95, 95% CI 0.94–0.95) were the least specific. Overall,
there were significant differences between classifiers in
both sensitivity (P < 0.0001) and specificity (P < 0.0001).

The Voted Perceptron required the highest CPU time for
training, at 38.7 (95% CI, 38.2–39.2) seconds, and Naive-
BayesUpdateable required the least, at 0.0018 (95% CI,
0.0017–0.0019) seconds. Overall, there was a significant
difference among classifiers in the time required for CPU
training (P < 0.0001) (Table 2).

Performance of Optimized Predictive Models

The MLCs with the highest AUC from each group
were included in the EnsembleVote meta-classifier. The
EnsembleVote demonstrated an AUC of 0.95 (95% CI,

0.95–0.96), percent correct of 94.7% (95% CI, 94.2–
95.3), sensitivity of 0.82 (95% CI, 0.79–0.85), specificity of
0.97 (95% CI, 0.97–0.97), and CPU training time of 3.69
seconds (95% CI, 3.60–3.77). No significant difference
was demonstrated between the EnsembleVote AUC
and the AUC of the individual components of the
Ensemble. The EnsembleVote had significantly higher
CPU training time requirements when compared with
almost all classifiers (Table 3).

The CFS dimensional reduction algorithm recognized six
separate attributes that highly correlated with the outcome
classification: attending anesthesiologist, surgeon,
primary and secondary CPT code, location of operating
room, and scheduled start time. Each of these attributes
contributed to classification in all cross-validated folds
(Table 4). Here, the folds denote each of the 10 cross-
validated folds used in the dimensional reduction algo-
rithm, demonstrating that the six relevant attributes were
found to be of significance in all tested folds, while the
attributes that were ranked 7 to 11 had low merit scores,
suggesting a poor independent correlation with outcome
and/or high levels of correlation with other attributes.
Although dimensional reduction did not lead to significant
changes in MLC performance, it did significantly reduce
CPU training time for all models, ranging from an 11% to
38% reduction (Figure 4).

Discussion

Our study demonstrated that predictive analytics meth-
odology MLCs and reasonable computational resources
can be successfully used to predict a request for a pre-
operative APS consultation in 92% of surgical cases
based upon readily available data in EMRs. While this
study was restricted entirely to retrospective data for
training and testing of the MLCs, the cross-validated
results suggest that MLCs may be able to prospectively
predict those patients for whom an APS consult is likely
to be requested. To the best of our knowledge, this is
the first published study that has used a nontraditional
predictive analytic methodology to support clinical deci-
sions regarding pain service-related clinical resource allo-
cation. This success becomes more noteworthy when
considering the failure of traditional statistical methods to
render predictions by utilizing realistic computational
resources, as we discovered when we attempted to
employ logistic regression in our study, but failed due to
high processing times. We found that most classifiers
achieved a high AUC, percent correct, and specificity
scores regardless of the underlying classification meth-
odology, with the major difference in computational
requirements for performance.

An increasing number of investigations using quantitative
sensory testing, genetic biomarkers, and psychometric
evaluations to assist with predictions of postoperative pain
presage an era in which the clinician will need to transform
larger quantities of increasingly complex information into
real-time decisions [17–20]. In recognition of this, the
Centers for Medicare and Medicaid Services has required
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that EMRs must demonstrate decision support service
capabilities to qualify for EMR-based performance incen-
tives [8,21]. Our results suggest that predictive analytics
techniques, such as MLCs, may offer considerable assis-
tance as clinical decision support tools, but must be com-
pared and validated using multiple metrics of classifier
performance. The results of this study complement previ-
ous work demonstrating the potential utility of MLC to
forecast the need for a postoperative rescue femoral nerve
block following anterior cruciate ligament repair [22].

Our particular APS involves the use of a preopera-
tive “block room” consisting of a dedicated space in the
preoperative holding area, and specialized preoperative
nurses who assist with patient preparation, sedation, and
block placement. Although the block room offers trainees
a more protected and less time-pressured environment to
place nerve blocks, their ability to decrease total periop-
erative costs is debatable [2,5,23,24]. The automated pre-
diction, of which patients are expected to have an APS
consultation and be sent to the block room ahead of the
actual consultation request by the surgeon, can help with
more appropriate advance staffing, potentially decreasing
the cost of a block room.

Interestingly, the high AUC scores across multiple MLCs
point to a highly patterned practice within our health
care system. This might suggest that practitioners
should be able to predict which patients need a preop-
erative APS consultation with a fair degree of certainty.
At our own institution, our APS team spends as much as
45 minutes each day reviewing over 150 cases across
three facilities to determine which patients are likely to
require preoperative APS consultations. Despite this
investment of time, our system still errs, with up to 1–2
patients per day affected. Examples leading to such
errors include surgeon requests for a nerve block at the
last minute or a late addition of a patient to the operating
room schedule that includes a delayed discussion with
the APS team concerning nerve block placement. Such
errors can be magnified when the involved physicians
are trainees or new to local practice patterns. Our results
suggest that MLCs may provide clinical decision support
using information already available, potentially decreasing
both time requirements and decision-making errors.
Future research will need to compare MLCs and human
classification performance in this problem set, as well
as determine whether human predictions can amplify
MLC performance.
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Figure 2 Example of a decision tree for forecasting APS consult requests. This decision tree used only a
subset of variables in order to avoid difficulty with visualizing the branch and leaf pattern inherent to variables
with hundreds of levels. Attributes were restricted to variables with less than 30 levels; and included patient
status, and CPT groupings by anatomic site, day of week, scheduled start time, postoperative location,
patient age group, and estimated surgical duration. The 10-fold cross-validated ROC was 0.89.
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Table 2 Summary of machine learning classifier performance

Classifier
Percent
Correct

Area under
ROC Sensitivity Specificity

CPU Training
Time (second)

BayesNet 92.8 0.95 0.87 0.94 0.01
NaiveBayesUpdateable 93.0 0.95 0.86 0.94 0.0018
RBFNetwork 93.9 0.95 0.81 0.96 0.27
VotedPerceptron 94.3 0.87 0.75 0.98 38.7
IBk 92.0 0.91 0.78 0.95 0.0005
DecisionTable 91.6 0.88 0.68 0.96 2.3
JRip 93.4 0.88 0.78 0.96 3.47
PART 91.4 0.88 0.54 0.98 3.22
ZeroR 84.2 0.50 0.00 1.00 0.0005
RandomForest 93.5 0.95 0.71 0.98 1.09
ADTree 92.5 0.89 0.69 0.97 0.073
J48 92.5 0.88 0.68 0.97 0.20
EnsembleVote 94.7 0.95 0.82 0.97 3.69

Table 3 Comparison of classifier performance between EnsembleVote and naive classifiers*

Native Classifier Native Classifier aROC EnsembleVote aROC P Value

BayesNet 0.95 0.95 1
NaiveBayesUpdateable 0.95 0.95 1
RBFNetwork 0.95 0.95 1
VotedPerceptron 0.87 0.95 <0.0001
IBk 0.91 0.95 0.2
Decision table 0.88 0.95 0.002
JRip 0.88 0.95 0.0005
PART 0.88 0.95 0.002
ZeroR 0.50 0.95 <0.0001
RandomForest 0.95 0.95 1
ADTree 0.89 0.95 0.003
J48 0.88 0.95 0.001

Native Classifier
Native Classifier CPU
Training Time (second)

EnsembleVote CPU
Training Time (second) P Value

BayesNet 0.01 3.69 0.0002
NaiveBayesUpdateable 0.0018 3.69 <0.0001
RBF Network 0.27 3.69 0.1
VotedPerceptron 38.7 3.69 1
IBk 0.0005 3.69 <0.0001
DecisionTable 2.3 3.69 1
JRip 3.47 3.69 1
PART 3.22 3.69 1
ZeroR 0.0005 3.69 <0.0001
RandomForest 1.09 3.69 0.6
ADTree 0.073 3.69 0.002
J48 0.20 3.69 0.02

* Resulting P values are listed following nonparametric comparisons using the Dunn’s method between the Naive and Ensemble
Classifiers.
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Rather than seeking improvement through added com-
plexity, optimization techniques employing dimensional
reduction may offer substantial improvements in compu-
tational efficiency and preserve classification ability. No
classifiers in our study suffered a statistically significant
decrease in the AUC when moving from a full to reduced
set of input data. However, multiple classifiers, including
those with a high AUC, such as BayesNet, RBFNetwork,
and EnsembleVote, exhibited statistically significant
decreases in computational requirements. Although the
proportional decrease in time requirements was as high as
38%, the magnitude of differences was, nevertheless,
small. Such differences would likely be clinically insignifi-
cant unless implemented in environments focused on effi-
cient CPU utilization, such as with mobile devices. On the
other hand, by combining several unique classifiers into a
single meta-classifier, EnsembleVote, we achieved only
incremental improvements in the AUC that were not sta-
tistically significant.

Although our findings are derived at the single institution
level, hence reflecting an institutional practice pattern
where continuous and single-injection peripheral,
neuraxial, and paraneuraxial blocks are highly accepted

Table 4 Results of the correlation feature subset
selection method of dimensional reduction

Rank Attribute Average Merit
Number
of Folds

1 Anesthesiologist 0.087 � 0.001 10/10
2 Surgeon 0.106 � 0.001 10/10
3 Primary CPT code 0.108 � 0.001 10/10
4.2 � 0.4 OR number 0.109 � 0.001 10/10
5.2 � 0.75 Secondary CPT

code
0.109 � 0.001 10/10

5.6 � 0.49 Scheduled start
time

0.11 � 0.001 10/10

7 Patient status
description

0.109 � 0.001 0/10

8.4 � 0.49 Estimated duration
of surgery

0.105 � 0.001 0/10

8.6 � 0.49 Postoperative
destination

0.105 � 0.001 0/10

10 Patient age 0.101 � 0.001 0/10
11 Case day of week 0.099 � 0.001 0/10

Figure 4 Comparison of area under the receiver operating curve (ROC) and CPU training time requirements
for each classifier using full and reduced feature sets. For the area under the ROC, statistically significant
differences between full and reduced feature sets were found only for the IBk classifier. Statistically significant
differences in computational training times between the full and reduced feature sets were found for
BayesNet, RBFNetwork, DecisionTable, ADTree, and EnsembleVote. CPU = central processing unit;
ROC = receiver-operating curve. *Starred items denote differences between full and reduced feature set
classifier results significant at the 0.05 level.
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and supported by surgeons, anesthesiologists, patients,
and administrators, the methodology is applicable glo-
bally. Notably, the CFS method of dimensional reduction
does not offer coefficients, likelihood estimates, or other
traditional metrics denoting the relative importance of a
feature. Rather, it achieves the same goal of a stepwise
approach to regression by calculating the correlation of a
given feature as a function of other attributes as well as its
class dependency. This approach was highly effective in
our study in both reducing the number of features to
improve processing efficiency and maintaining accurate
classifications. Those attributes with high merit scores
may warrant closer examination in external applications of
our methodology.

One of the study limitations is the lack of patient factors in
the data source used for MLC training. Ideally, MLCs
would be able to predict which patients would benefit from
a preoperative APS consultation, rather than limiting the
question to who would be referred for consultation. To
optimally predict which patients would benefit from an
APS consultation, MLCs would need to account for the
presence and timing of anticoagulation, physiologic
parameters (i.e., severe emphysema, aortic stenosis),
patient questions, and patient preferences after discus-
sion of the risks, benefits, and alternatives. These require-
ments, of course, are in addition to the patient and
procedural-specific outcome data for regional anesthet-
ics. Ultimately, the widespread incorporation of informa-
tion from EMRs will allow for the application of predictive
analytics for more complex and automated clinical deci-
sion processes.

Conclusions

In conclusion, although the complex nature of pain
renders special challenges to any predictive efforts, the
ability of predictive analytics techniques to efficiently
manage highly dimensional data offers novel opportunities
to provide clinical predictors and circumvent the limitations
inherent in traditional, logistic regression-based factor
analysis. Future work is necessary to refine the many
methodological issues, to identify the relevant data inputs,
and to translate both data and its analysis into improved
postoperative pain control.
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Appendix 1

Type of Surgery CPT Range

General 10021–10022
Integumentary 10040–19499
Musculoskeletal 20000–29999
Respiratory 30000–32999
Cardiovascular 33010–37799
Hemic and lymphatic 38100–38999
Mediastinum and diaphragm 39000–39599
Digestive 40490–49999
Urinary 50010–53899
Male genital 54000–55899
Reproductive 55920–55980
Female genital 56405–58999
Maternity care 59000–59899
Endocrine 60000–60999
Neurological 61000–64999
Ophthalmic 65000–68999
Auditory 69000–69999
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