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Abstract

Background. Given their ability to process highly
dimensional datasets with hundreds of variables,
machine learning algorithms may offer one solution
to the vexing challenge of predicting postoperative
pain.

Methods. Here, we report on the application of
machine learning algorithms to predict postopera-
tive pain outcomes in a retrospective cohort of
8,071 surgical patients using 796 clinical variables.
Five algorithms were compared in terms of their
ability to forecast moderate to severe postoperative
pain: Least Absolute Shrinkage and Selection Oper-
ator (LASSO), gradient-boosted decision tree, sup-
port vector machine, neural network, and k-nearest
neighbor (k-NN), with logistic regression included
for baseline comparison.

Results. In forecasting moderate to severe postop-
erative pain for postoperative day (POD) 1, the
LASSO algorithm, using all 796 variables, had the
highest accuracy with an area under the receiver-
operating curve (ROC) of 0.704. Next, the gradient-
boosted decision tree had an ROC of 0.665 and the
k-NN algorithm had an ROC of 0.643. For POD 3, the
LASSO algorithm, using all variables, again had the
highest accuracy, with an ROC of 0.727. Logistic
regression had a lower ROC of 0.5 for predicting
pain outcomes on POD 1 and 3.

Conclusions. Machine learning algorithms, when
combined with complex and heterogeneous data
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from electronic medical record systems, can fore-
cast acute postoperative pain outcomes with accu-
racies similar to methods that rely only on variables
specifically collected for pain outcome prediction.

Key Words. Machine Learning; Algorithm; Postop-
erative Pain; Pain Prediction

Introduction

Over 60% of surgical patients suffer from moderate to
severe acute postoperative pain, and this pain has been
associated with the development of chronic postsurgical
pain [1,2]. Mounting evidence points to the importance
of establishing preemptive, and even preventative, anal-
gesia whenever possible before the onset of surgical
stimulus [3,4]. However, many preemptive and prevent-
ative analgesic interventions can carry considerable side
effects, such as bleeding or major adverse cardiac
events with nonsteroidal antiinflammatories and sedation
with gabapentinoids. Therefore, the ability to predict
which patients are more likely to suffer from moderate
to severe acute postoperative pain would permit target-
ing of perioperative analgesic therapies in a manner that
optimizes the risk to benefit ratio.

Accurate postoperative pain prediction has been the
topic of research for over a century [5]. Although previ-
ous efforts that used logistic regression have highlighted
potential risk factors for severe postoperative pain, these
approaches are limited [6,7]. For instance, logistic
regression approaches are unable to incorporate the
rapidly expanding set of available clinical data, let alone
the genetic, proteomic, and metabolomic data expected
to be available for clinical decision support systems in
the near future [6–13]. Pragmatically, such approaches
also require regular updating to remain relevant to mod-
ern practice. Thus, new methods are needed that incor-
porate the potential predictive power of the myriad data
elements being routinely collected. Moreover, new
methods are needed that can automatically select the
most useful variables and develop and validate predic-
tion algorithms to stay current with current clinical
practice.

Machine learning classifiers are algorithms that can
autonomously integrate and learn from complex data-
sets with many hundreds of variables. Therefore,
machine learning classifiers may offer a solution to the
vexing challenge of predicting postoperative pain [14].
These algorithms use a variety of mathematical
approaches and are often more computationally efficient
and accurate when using very large datasets with com-
plex distributions that do not conform to the assump-
tions of parametric methods like logistic regression
[15–18]. Machine learning classifiers have already been
successfully applied to many prediction problems,
including crime prevention, handwriting recognition,
fraud detection, and email spam filtering [19–22]. Fur-
thermore, the recent focus on the adoption and mean-

ingful use of electronic medical records (EMR) has led
to massive clinical datasets comprising variables col-
lected by healthcare providers during the course of a
patient’s hospitalization [23–25]. Machine learning
approaches have the potential to leverage this clinical
“Big Data” to create more accurate and automated pre-
dictions of postoperative pain.

Here, we explore the application of machine learning
algorithms to analyzing the highly complex data avail-
able in the preoperative period to accurately predict
acute postoperative pain. The primary goal was to test
the feasibility of an automated machine learning process
to collect, prepare, and classify preoperative patient
data from an EMR and determine whether a patient
was at risk for moderate to severe postoperative pain.
The secondary goal was to determine the proportion of
at-risk patients that could be reliably identified with
machine learning algorithms. Together, these aims lay a
foundation for the future incorporation of highly complex
clinical features into a clinical decision support system
that predicts which patients are at risk of postoperative
pain and guides clinicians toward the safest and most
effective preemptive and preventative analgesic
interventions.

Materials and Methods

Study Design

This study was approved by the Institutional Review
Board (IRB 354-2012) at the University of Florida and
was a retrospective cohort study of surgical patients
undergoing nonobstetric, nonambulatory surgical proce-
dures over a 1-year time period from May 2011 to May
2012 at a large tertiary-care teaching hospital.

Description of Dataset

Surgical case data were obtained from the University of
Florida’s Integrated Data Repository, which is a large
database of patient demographic characteristics and
care data obtained from the university health system’s
(UF Health) EMR system. Subjects were patients aged
21 and over undergoing nonambulatory surgery at UF
Health over a 1-year period beginning May 2011. Surgi-
cal case exclusion criteria included obstetric surgery, as
well as patients who received multiple separate sur-
geries within the study period to avoid contamination of
pain scores from the effects of surgeries preceding or
following the case of interest. Results were reported in
accordance with the STROBE criteria for cohort studies.
(http://www.strobe-statement.org/fileadmin/Strobe/
uploads/checklists/STROBE_checklist_v4_cohort.pdf)

Description of Outcomes

All pain scores were documented by clinical staff using
the numeric rating scale (NRS) on an 11-point system
ranging from 0 to 10, where zero represents no pain
and 10 the worst pain imaginable. Pain scores were
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recorded every 4 hour per nursing protocol, with a
repeat query within 1 hour after administration of anal-
gesic medications for breakthrough pain. When the clini-
cal staff documented a pain score as “patient asleep,”
the pain score was converted to a missing value rather
than 0/10 to account for the fact that some patients
had received additional sedatives that may have facili-
tated sleep despite ongoing pain. All pain scores were
recorded with a corresponding date/time stamp, as
were the start and end times of the related surgical pro-
cedure. End of surgery times generally reflected the clo-
sure of skin and emergence from anesthesia.

Two outcomes were defined: the presence or absence
of a moderate (NRS score of 4–6) to severe (NRS score
of 7–10) maximum pain score on postoperative day
(POD) 1 and on POD 3. POD 1 and 3 were selected to
address challenges with the early adaptive response of
the healthcare system to address patient needs on
POD1, as well as patients with refractory pain on POD3,
despite the theoretical escalation of pain therapies for at
least 48 hour after surgery [26].

Description of Variables

Predictions were rendered based on 796 variables (Fig-
ure 1). This compares to the use of only 24 or fewer
variables in previous work [26,27]. Demographic data
included age, gender, body mass index, ethnicity, insur-
ance/payer, and marital status. Binary variables were
defined based on the presence or absence of home
use of opioids, nonsteroidal antiinflammatory drugs
(NSAIDs), muscle relaxants, benzodiazepines, and
amine reuptake inhibitors. Medications were extracted
using the World Health Organization pharmaceutical
ontology (http://www.whocc.no/atc_ddd_index/).

Patient comorbidity data were prepared by first extract-
ing up to 50 comorbid diagnoses per patient. Diagnoses
were recorded using the International Classification of
Disease, 9th edition, Clinical Modification (ICD-9-CM).
Each diagnostic code was also associated with a
“present on admission” flag, denoting that the diagnosis
was explicitly documented as a diagnosis occurring
prior to hospital admission. Also, the ICD-9-CM codes
were then converted into a Charlson Comorbidity Index
[28]. Separate from the Charlson Comorbidity Index, the
total number of comorbid conditions was also calcu-
lated. Next, comorbid diagnoses were included in the
analysis using 30 binary variables. These categorical
variables were defined by the presence or absence of 1
of 30 predefined Agency for Healthcare Research and
Quality (AHRQ) comorbidity codes (http://www.ncbi.nlm.
nih.gov/pubmed/9431328?dopt5Abstract). Additionally,
a parallel and corresponding variable was assigned to
each comorbid diagnosis. Each ICD-9-CM diagnosis
was recoded as Clinical Categorization Software (CCS)
for Services and Procedures diagnosis according to the
CCS system (http://www.hcup-us.ahrq.gov/toolssoft-
ware/ccs_svcsproc/ccssvcproc.jsp). Finally, for each of
the 288 separate CCS diagnoses, the presence or

Figure 1 Loading of variables into machine learn-

ing classifier pipeline. Variables were included

using a staged approach for demographics,

comorbidities, home medications, surgical proce-

dure, and the circumstances of surgery.
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absence of the diagnosis was arrayed as a binary vari-
able, irrespective of order of entry. Ultimately, an array
of 48,787 variables pertaining to established comorbid-
ities was loaded into the machine learning process.

The identities of the surgeon, anesthesiologist, nurse,
time of surgery (day of week, weekday versus weekend,
normal versus off-hours), postoperative admission versus
inpatient status, nerve block status, and emergent versus
elective status of the procedure were included and organ-
ized into 16 separate variables used to describe the cir-
cumstances of the surgery. Types of surgery were
identified using current procedural terminology (CPT)
codes published by the American Medical Association.
Up to 10 CPT codes were included for each patient, and
a count of the number of concurrent CPT codes was also
included as a covariate. Given the large number of CPT
codes, surgeries were grouped into 245 separate catego-
ries according to the CCS system, as well as a broader
grouping using anatomic location of surgery based on the
first one to three digits of the CPT code (http://www.
hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/
ccssvcproc.jsp). The CCS grouping was performed using
a ranked parallel listing of CCS procedure groups as well
as a wide array of CCS groups represented as binary
flags. Ultimately, 275 variables were included to describe
and categorize the type of procedures performed.

Machine Learning Process: Data Preparation

Figure 2 outlines the overall experimental design. First,
data were imported as two discrete tables, one includ-
ing all cases with an outcome (i.e., a valid pain score)
on POD1, and a subset of this table for patients who
also had an outcome on POD3. The next step in data
cleansing was imputation of missing data. Because sev-
eral of the algorithms would not function if missing val-
ues were present, we used a protocol for automated
entry of missing data. While this approach inevitably
leads to information loss, this step improves the clinical
feasibility for implementing an automated clinical deci-
sion support system with real-world hospital administra-
tive datasets, which frequently contain missing data.
Additionally, this step tested the ability of the analysis to
function automatically, such as in a setting where man-
ual cleaning and imputation would be infeasible. For
nominal variables, missing entries were imputed using
the distribution method, whereby replacement values for
a given variable were based on the normalized random
percentiles of that variable’s distribution. For continuous
variables, the median value for a given variable was
used for imputation.

Next, we used three levels of interventions to address
the risk of overfitting, whereby the model is over-
customized to existing data and less useful for predict-
ing future patient outcomes [27–31]. First, data were
partitioned into training (40% of observations), validation
(30% of observations), and hold-out testing (30% of
observations) partitions. Each partition was stratified on
the target outcome so that roughly equivalent propor-

tions of moderate to severe pain outcomes were pres-
ent in each partition. Second, we included an
experiment branch that included an automated variable
selection algorithm that selected a subset of variables
for use by the algorithms. Third, several of the algo-
rithms tested incorporated regularization features and/or
additional cross-validation in their modeling process.

Description of Algorithms

Five separate algorithms were tested in the classification
array: Least Absolute Shrinkage and Selection Operator
(LASSO), gradient-boosted decision tree, support vector
machine (SVM), neural network, k-nearest neighbor (k-
NN), and logistic regression. These algorithms were
chosen to represent a wide variety of classification
approaches ranging from the classic (logistic regression)
to those specifically designed to accommodate highly
dimensional data (SVM and LASSO). Details of the
selected algorithms, and their implementation, can be
found in the Supporting Information technical
supplement.

Analysis

Following the training and validation of each algorithm
with full and reduced variable sets, algorithm accuracy
was compared by examining accuracy in classifying
moderate to severe pain in the holdout test data parti-
tion [32]. The primary endpoint for comparison of model
accuracy was the area under the receiver-operating
curve (ROC) [33,34]. Misclassification rates and the

Figure 2 Overview of machine learning classifier

pipeline. Separate experiments were conducted

for outcomes occurring on POD 1 and 3. Data

replacement, imputation, and partitioning were

performed using an algorithmic approach. Five

machine learning classifiers were tested, along

with a standard logistic regression classifier, using

the entire set of variables, as well as a reduced

set of variables selected via a separate feature set

reduction algorithm. LASSO 5 least absolute

shrinkage and selection operator; SVM 5 support

vector machine; GB-D.Tree 5 gradient-boosting

decision tree; k-NN 5 k-nearest neighbor; MLP 5

multilayer perceptron.
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number of wrong classifications were reported to offer
clinical context of the ROC [35]. Additionally, we com-
puted error matrices for to determine in which direction
the errors were made.

As a secondary endpoint of classifier performance, we
reported the cumulative lift for each model [36–38]. Lift
measures how many times more likely an algorithm is to
include instances of interest (patients with pain in this
case) relative to pure chance if we had to choose only a
small subsample (i.e., we want the subsample to
include as many patients with pain as possible). It is the
ratio of the percentage of patients with a high(er) proba-
bility of pain as predicted by the model to the percent-
age of patients with pain in the overall dataset. For
example, take the case where an acute pain service
could offer only a limited number of nerve blocks each
day, such that only 20% of eligible surgical patients
could receive a block. Given a predictive model, we
assume rightly or wrongly, our best chance of identifying
that subpopulation most likely to otherwise suffer from
severe pain is to examine the prediction probabilities of
the model and pick a sample from the general surgical
population that has the top 20% of the predicted proba-
bility of suffering from severe acute postoperative pain.
A perfect model would fill that entire sample with
patients who actually will suffer from severe acute post-
operative pain. If the distribution of present versus
absent acute pain outcomes was a 50:50 split, the
maximum top decile of lift for a perfect model would be
2. In comparison, if the ratio of a present versus absent
acute pain outcome was 80:20, then the maximum the-
oretical lift for a perfect model would be 5. A value of
one or less signals an inaccurate model (i.e., the per-
centage of patients with higher probability of pain as
predicted by the model in a subset of the test set does
not exceed the percentage of patients with pain in the
full test set). The value reported in this work is the maxi-
mum cumulative lift.

All analyses were conducted using SAS Enterprise
Miner 12.1 (SAS Institute, Cary, NC).

Results

A total of 8,071 subjects were included in this study,
reflecting a convenience sample of patients available
with pain scores on POD 1. A 5,031-patient subset of
this sample also had documented pain scores on POD
3 due to continued hospitalization. For POD 1 out-
comes, all 8,071 subjects were included. Table 1 pro-
vides an overview of the demographic and procedural
characteristics of the POD 1 and 3 samples.

Pain Outcomes on POD 1 and 3

Of the 8071 subjects included in the POD 1 dataset,
4,267 (53%) reported suffering from moderate to severe
pain on the first day after surgery (Table 2). For the POD
3 dataset, 2,256 (45%) reported suffering from moder-
ate to severe pain on the third day after surgery, yieldingT
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an absolute reduction rate of 8%. Of the 4267 patients
who reported suffering from moderate to severe pain on
POD1, 2,676 remained hospitalized on POD3, and
1,786 (79%) of these patients also reported moderate to
severe postoperative pain on POD3. For those 3,804
patients with no reports of moderate to severe pain on
POD1, 2,335 remained hospitalized on POD3, 1885
(81%) of whom also reported no episodes of moderate
to severe pain on POD3.

Imputation of Missing Variables

The majority of missing value imputations were due to
absence of “present on admission” flag data for the fifth
(1,983 imputations), sixth (2,575), seventh (3,189), and
eighth (3,779) listed comorbid conditions, followed by
features pertaining to home medication use (1,402
imputations for each home medication) and the identi-
ties of the attending surgeon or anesthesiologist. A
summary of the imputations for the POD1 and POD3
datasets can be found in Appendix Table A1.

Data Partition

As noted above, to avoid overfitting, algorithms were
trained on the training set, tuned on the validation set,
and then tested on the hold-out partition of data. For
the POD1 data, there were 3,227 subjects partitioned to
the training set, 2,421 to the validation set, and 2,423
to the hold-out data set. By design, 53% of patients
suffered from moderate to severe pain in each of the
three partitions. For the POD3 data, there were 2,011
subjects partitioned to the training set, 1,509 to the vali-
dation set, and 1,511 to the test set. Again by design,
within the POD3 training set, 45% of patients suffered
from moderate to severe pain in each of the three sets.

Feature Selection

Separate sets of features were selected for the POD 1
and 3 outcomes (Table 3). Details concerning patient
age, type of surgery, and comorbidities grouped using
the CCS array featured prominently in the POD 1 and 3
outcomes. Home opioid use carried a much higher rela-
tive importance for POD1 outcomes (relative importance
0.54) than POD3 (relative importance 0.26) outcomes.

Model Comparison

Each algorithm was compared on the hold-out test set
using the full and reduced feature set, and then against
the outcome of moderate to severe pain on POD 1 and
3, yielding a total of four experimental branches (Table
4). Overall, the LASSO algorithm, using the entire fea-
ture set to predict the occurrence of moderate to severe
pain on POD 3, had the highest accuracy, with an area
under the ROC of 0.727.

For POD 1, the LASSO algorithm, using the full feature
set, had the highest accuracy with an ROC of 0.704.
This was followed by the gradient-boosted decision tree
algorithm, with an ROC of 0.665 and the k-NN algo-
rithm, with an ROC of 0.643. In this branch of the
experiment, the LASSO algorithm suffered 844 misclas-
sifications for a misclassification rate of 0.35 (Figure 3A).
Using the full feature dataset, the LASSO algorithm
exhibited a cumulative lift of 1.49 given the 53% inci-
dence of postoperative pain, suggesting that at the top
decile, 78% of that decile’s patients actually did suffer
from severe acute postoperative pain (Figure 4A). On
POD 1 using the full feature set, LASSO exhibited a
sensitivity of 0.69, a specificity of 0.61, and a likelihood
ratio of 1.77 (Table 5). Table 6 demonstrates those
parameter estimates with the greatest weights when
tested using the entire feature set via LASSO.

When using the full feature set on POD 1, the neural
network and logistic regression algorithms had the low-
est accuracy, with an ROC of 0.5 each. This suggested
negligible improvement in classification accuracy over
that offered by chance.

When the feature set was reduced using the prealgor-
ithm variable selection step, the LASSO algorithm again
had the highest accuracy, with an ROC of 0.704, fol-
lowed by the gradient-boosted decision tree algorithm,
with an ROC of 0.698, and the autoneural algorithm,
with an ROC of 0.688. Here, accuracy of the LASSO
algorithm remained grossly unchanged, committing 848
misclassifications versus 844 with the full feature set.
However, the gradient-boosted decision tree algorithm
had increased accuracy with the reduced feature set,
increasing in ROC from 0.665 with the full feature set to

Table 2 Associations between POD 1 and 3 outcomes

POD 3 Median Pain Score

as Moderate to Severe

No Yes

POD 1 median pain score 5

moderate to severe

No 3,804 No Yes

2775 2256

Yes 4,267 1,885 (37.5%)* 470 (9.34%)

890 (17.7%) 1,786 (35.5%)

* Percentages 5 Percentage of total POD 3 subject pool.
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0.698 with the reduced. Using the reduced-feature
dataset, the LASSO algorithm exhibited a slightly lower
cumulative lift of 1.44, suggesting that the top decile is

1.44 times more likely to include patients with severe
acute postoperative pain than would a model based on
random sampling.

Table 3 Results of automated feature selection for pain prediction outcomes on POD 1 and 3

POD1 POD3

Variable

Number of

Rules in Tree

Relative

Importance Variable

Number of Rules

in Tree

Relative

Importance

Age 1 1 CCS code: Insertion,

replacement, or

removal of extracranial

ventricular shunt

4 1

CCS group for second-

ary CPT code

5 0.88 Age 1 0.90

Home opioid 2 0.54 Admitting service 2 0.84

CCS diagnosis category

20: Cancer; other

respiratory and

intrathoracic

3 0.54 CCS diagnosis code 17:

Cancer of Pancreas

4 0.82

Payor type 1 0.48 CCS diagnosis code 20:

Cancer; other respira-

tory and intrathoracic

1 0.47

CCS procedure category

3: Laminectomy, exci-

sion of Intervertebral

Disc

2 0.47 Surgical service 1 0.35

OR room name 2 0.37 CCS procedure code 4:

Diagnostic spinal tap

1 0.32

Presence of more than

25 ICD9 comorbidities

1 0.36 CCS diagnosis code 18:

Cancer of other GI

organs; peritoneum

1 0.29

CCS diagnosis category

95: Other nervous sys-

tem disorders

1 0.27 CCS procedure code 3:

Laminectomy, excision

of intervertebral disc

1 0.28

CCS diagnosis category

19: Cancer of bron-

chus; lung

1 0.23 Home opioid 1 0.26

CCS procedure code 5:

Insertion of catheter or

spinal stimulator into

spinal canal

1 0.18 CCS diagnosis code 60:

Acute posthemorrhagic

anemia

1 0.26

CCS diagnosis code 98:

Essential hypertension

1 0.17 CCS diagnosis code 35:

Cancer of brain and

nervous system

1 0.16

CCS diagnosis category

237: Complication of

device; implant or graft

1 0.13 AHRQ code: Paralysis 1 0.16

BMI 1 0.13

Patient status (inpatient

vs. outpatient vs.

patient on admission)

1 0.13

Home SSRI/SSNRI 1 0.12

Home benzodiazepine 1 0.09

* Number of results in tree refers to how often this feature occurred in decision trees used for autonomous feature set selection.

CCS diagnosis codes referred to the coding of one of up to 50 comorbidities within the CCS classification system.
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As mentioned previously, for POD 3, the LASSO algo-
rithm using the full feature set again had the highest
accuracy, with a ROC of 0.727. In this branch of the
experiment, the LASSO algorithm suffered 483 misclas-
sifications for a misclassification rate of 0.32. This was
again followed by the gradient-boosted decision tree,
with an ROC of 0.682, and the k-NN algorithm, with a
ROC of 0.637 (Figure 3B). Using the full feature dataset,
the LASSO algorithm exhibited a cumulative lift of 1.61,
suggesting that the top decile is 1.61 times more likely
to include patients with severe acute postoperative pain
than would a model based on random sampling (Figure
4B). On POD 3, with the full feature set, LASSO exhib-
ited a sensitivity of 0.59, a specificity of 0.75, and likeli-
hood ratio of 2.4.

When using the full feature set on POD 3, the neural
network and logistic regression had the lowest accu-
racy, each with an ROC of 0.5. This suggested negligi-
ble improvement in classification accuracy over that
offered by chance.

When the feature set was reduced using the prealgor-
ithm variable selection step on POD 3 outcome data,
the LASSO algorithm had the highest accuracy, with an
ROC of 0.717, followed by the gradient-boosted deci-

sion tree algorithm, with an ROC of 0.702, and then
neural network algorithm, with a ROC of 0.691. Using
the reduced-feature dataset, the LASSO algorithm
exhibited a cumulative lift of 1.6, suggesting that the
LASSO algorithm detected, or captured, 61% of those
subjects who suffered from moderate to severe postop-
erative pain.

Discussion

Our results demonstrate that machine learning algo-
rithms, when applied to high-dimensional datasets
developed from clinical data repositories, offer substan-
tial improvements in accuracy over the tested logistic
regression-based approaches to classification of acute
postoperative pain outcomes. The majority of algorithms
offered slightly better accuracy in predicting the occur-
rence of moderate to severe postoperative pain on POD
3 in comparison to POD 1. Reducing the number of
predictor variables using used an automated approach
improved the accuracy of many of the algorithms
tested; however, LASSO performed equally well with the
complete and reduced feature sets.

Our analysis included multiple metrics of algorithm per-
formance to more fully delineate the differences in

Table 4 Comparison test outcomes of machine learning algorithms

Feature Set POD Algorithm ROC

Misclassification

Rate

Number of Wrong

Classifications*

Cumulative

Lift

Full feature

set

1 LASSO 0.704 0.35 844 1.49

Gradient boosting 0.665 0.38 916 1.47

MBR 0.643 0.39 934 1.36

SVM 0.627 0.40 975 1.37

Autoneural 0.500 0.47 1,142 1.00

Dmine regression 0.500 0.53 1,281 1.00

3 LASSO 0.727 0.32 483 1.61

Gradient boosting 0.682 0.38 573 1.58

MBR 0.637 0.39 590 1.35

SVM 0.635 0.40 604 1.29

Autoneural 0.500 0.45 678 1.00

Dmine regression 0.500 0.45 678 1.00

Reduced

feature set

1 LASSO reduced 0.704 0.35 848 1.44

Gradient boosting reduced 0.698 0.35 848 1.51

Autoneural reduced 0.688 0.36 884 1.46

Dmine regression reduced 0.628 0.40 975 1.37

MBR reduced 0.601 0.44 1,055 1.28

SVM reduced 0.592 0.46 1,104 1.26

3 LASSO reduced 0.717 0.33 504 1.60

Gradient boosting reduced 0.702 0.35 534 1.63

Autoneural reduced 0.691 0.36 538 1.54

SVM reduced 0.620 0.44 670 1.30

Dmine regression reduced 0.599 0.41 623 0.87

MBR reduced 0.539 0.50 751 1.18

* Number of wrong classifications is calculated from misclassification rate for gradient boosting decision tree.
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prediction capabilities afforded by each machine learn-
ing approach. Although ROC is a widely accepted met-
ric of model accuracy, it fails to provide substantial

insight into what portion of the population is likely to
benefit from the accuracy offered by the model [35].
This is partially due to the fact that the proportion of

Figure 3 ROC for pain outcomes on POD 1 and 3. The ROC for each tested classifier are shown at the

training, validation, and testing stages for POD 1 (A) and POD 3 (B). For POD 1, the LASSO algorithm,

using the full feature set, had the highest accuracy, with a ROC of 0.704. For POD 3, the LASSO algo-

rithm, using the full feature set, again had the highest accuracy, with a ROC of 0.727. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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patients who will suffer from moderate to severe post-
operative pain is not equal to the proportion of those
who will not. Subsequently, and even independently in
some cases, misclassifications may be biased toward,
or against, the detection of patients likely to suffer from
moderate to severe pain after surgery. Indeed, the
results presented here suggest that the LASSO algo-
rithm may capture a larger proportion of patients
expected to have an adverse acute pain outcome on
POD1 than on POD3, despite having an identical ROC.
This information may be helpful in developing future iter-
ations of a postoperative pain prediction pipeline by
modifying the costs associated with a particular misclas-
sification, thereby helping influence the direction of mis-
classification to favor the detection of at-risk patients.

Using only routinely collected clinical data, our results
compare favorably to the models derived from prior
studies in which predictive models were prospectively
developed using datasets designed a priori for research
purposes [26,27]. Kalkman and others [27] prospectively
examined 1,416 patients undergoing a mix of surgical
procedures, excluding cardiac and neurosurgical cases,
and developed a logistic regression model incorporating
the following features: age, gender, type of surgery,

intended incision size, blood pressure, heart rate, body
mass index, preoperative pain intensity, and health-
related quality of life as measured by the SF-36, the
State-Trait Anxiety Inventory, and the Amsterdam Pre-
operative Anxiety and Information Scale. The boot-
strapped model had an ROC of 0.73, and the authors
concluded that pain scores within the first hour of sur-
gery can be predicted using a set of variables collectible
during a preoperative evaluation. Although this repre-
sented a significant contribution toward the prediction of
postoperative pain, it should be noted that early postop-
erative pain scores do not correlate well with pain
scores reported on POD 1 through 5 [39]. Furthermore,
the work by Kalkman incorporated variables that were
collected solely for the purpose of postoperative pain
prediction; such tools are not universally applied in clini-
cal preoperative evaluations. Our model accuracy of
0.7–0.73, using routinely available clinical data not pre-
screened for inclusion into the model, thus compares
favorably to the dedicated prospective efforts by
Kalkman.

Similarly, Sommer et al. collected postoperative pain
scores on 1,490 patients undergoing a mix of surgical
procedures [26]. Preoperative variables included

Figure 4 Cumulative lift curves for pain outcomes on POD 1 and 3. The LASSO algorithm exhibited a

cumulative lift of 1.49 given the 53% incidence of moderate to severe postoperative pain on POD 1, sug-

gesting that at the top decile, 78% of that decile’s patients actually did suffer from severe acute postop-

erative pain. (A) On POD 3, the LASSO algorithm exhibited a cumulative lift of 1.61, suggesting the top

decile is 1.61 times more likely to include patients with severe acute postoperative pain than would a

model based on random sampling. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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demographics, type of anesthesia, type of surgery,
American Society of Anesthesiologists score, duration of
procedure, and multiple psychometric scales. ROC
ranged from 0.74 on the day of surgery to 0.78 on POD
4, a trend similar to our results, suggesting an increase
in model accuracy with each POD. Notably, there is no
report of any type of validation step used by Sommer
et al., raising the possibility that their results suffered
from model overfitting. For comparison, our own results
offered an ROC of 1, 0.89, and 0.79 for the unvalidated
training-set models developed by the full feature set
logistic regression, reduced feature set logistic regres-
sion, and full feature set SVM algorithms on POD 1.

Our pragmatic approach to postoperative pain predic-
tion thus offers classification accuracy that, although
less than ideal, compares quite favorably to prior pub-
lished work. Moreover, while these prior groundbreaking
reports are quite laudable in their scope and results,
they nevertheless used approaches that lacked the abil-
ity to include additional variables. For instance, the
inclusion of genomic data alone may result in the addi-
tion of tens of thousands of features for any given
patient. Our approach suggests that pragmatic, autono-
mous forecasting of postoperative acute pain outcomes
may be feasible for individual healthcare systems, thus
permitting customization of models to the patients and
practices that are particular to a given hospital and
population.

Altogether, the risks and benefits associated with the
assortment of pharmacologic and needle-based thera-

pies offered by modern acute pain medicine services
points to the need for accurate decision support sys-
tems capable of determining which patients are likely to
benefit from such analgesic interventions. Simultane-
ously, such forecasts may spare those patients not at-
risk for severe acute postoperative pain from the risks
and costs inherent to regional anesthetics. Our results
offer a specificity of 0.755 on POD 3, thus providing a
moderate capability to spare those who would other-
wise be scheduled for a nerve block from the associ-
ated risks and costs.

We also demonstrated a pragmatic application of
advanced analytic methods to automatically process
existing EMR data, select relevant variables, and then
forecast severe acute postoperative pain [31]. The man-
ual review of records to organize and “clean” data is no
longer a feasible modeling approach given the massive
amount of clinical data accumulated for each patient
[40]. When using large administrative datasets, many
patient characteristics that may be associated with poor
postoperative pain outcomes, such as anxiety, cata-
strophizing, and socioeconomic status, may not be
readily available in forms that are used within the experi-
mental paradigm. Furthermore, the number of patients
whose records would need to be reviewed in a time-
sensitive fashion given the often short time interval
between OR case scheduling and surgery makes this
approach even more impractical. This presents a realis-
tic challenge in converting experimentally derived mod-
els to models that are clinically applicable. This
challenge, however, may be overcome with automated
methods to processing EMR data, such as those pre-
sented here. Also, with the increasing structured clinical
collection of social and behavioral characteristic, such
as socioeconomic status, these automated methods
may be made even more powerful in predicting postop-
erative pain.

Our data suffered from several limitations inherent to ret-
rospective cohort studies. First, our study used static
aggregate measures of pain by looking at the median
pain scores. This represented a tradeoff in the specificity
of the targeted outcome, such as would have been
offered by selecting the number of severe pain events
or focusing on severe pain events, for a more general-
ized clinical applicability affecting a larger proportion of
patients. Second, this study did not incorporate informa-
tion pertaining to analgesic use or functional capacity.
Interestingly, we found that data pertaining to opioid
administration via patient-controlled analgesia devices
was not readily incorporated into the standard clinical
EMR system. Although beyond the scope of this project
(the use of machine learning classifiers), the simultane-
ous prediction of pain, analgesic requirement, and func-
tional capacity remains an important goal for clinical
decision support systems designed to forecast acute
postoperative pain outcomes. Our model for POD 3
also suffered from a censuring effect, in that we offered
no information pertaining to the reason for discharge of
patients between POD 1 and 3. Discharges in this time

Table 5 Confusion matrix for LASSO with full

feature set: POD 1 and 3

POD1*

Outcome:

Moderate

to Severe Pain

Yes/No Yes No

Prediction: moderate

to severe pain

Yes 880 443

No 401 699

POD3†

Yes No

Prediction: moderate

to severe pain

Yes 399 204

No 279 629

* Misclassification rate 5 0.348328518 False positive rate 5

0.387915937

Sensitivity 5 0.68696331 False negative rate 5 0.31303669

Specificity 5 0.612084063 Likelihood ratio 5 1.770907675

PPV 5 0.665154951 NPV 5 0.635454545
† Misclassification rate 5 0.319655857 False positive rate 5

0.244897959

Sensitivity 5 0.588495575 False negative rate 5

0.411504425

Specificity 5 0.755102041 Likelihood ratio 5 2.403023599

PPV 5 0.661691542 NPV 5 0.692731278
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interval may be due to low postoperative pain, whereas
those patients remaining in the hospital may be there
strictly due to poor pain control. This shortcoming points
to the importance of supplemental data, as mentioned

above, as well as the incorporation of time-domain infor-
mation regarding resolution of acute pain, as explored
preliminarily by Chapman et al. [41,42]. Perhaps the
most important shortcoming of this study was the

Table 6 Parameter estimates for LASSO on POD1 and 3

POD Variable Class Level Standardized Estimate Estimate

1 Intercept 0.0000 0.9591

Age 20.1794 20.0057

Home benzodiazepine NO 20.0042 20.0062

Home opioid NO 20.0682 20.0688

Home SSRI NO 20.0124 20.0145

Admitting surgical

service

Trauma and acute care

surgery

0.0190 0.0374

Age Group 65–84 20.0160 20.0169

CCS Category 205:

Spondylosis

0 20.0582 20.0931

CCS Category 212:

Other bone disease

and msk deformities

0 20.0237 20.0527

CCS Procedure Cate-

gory 3: Laminectomy,

excision intervertebral

disc

Yes 0.0037 0.0098

Primary diagnosis of

spondylosis

Yes 0.0266 0.0721

Marital status Divorced 0.0231 0.0399

Primary CPT code

category

MUSCULOSKELETAL 0.0356 0.0404

Surgical service code Cardiothoracic 20.0557 20.0872

Surgical service code Pancreas/hepatic/biliary 20.0081 20.0233

3 Age 20.179 20.006

Home opioid NO 20.068 20.069

CCS Category 205:

Spondylosis

0 20.058 20.093

Surgical service code Cardiothoracic 20.056 20.087

Primary CPT code

category

MUSCULOSKELETAL 0.036 0.040

Primary diagnosis of

spondylosis

Yes 0.027 0.072

CCS Category 212:

Other bone disease

and msk deformities

0 20.024 20.053

Marital status Divorced 0.023 0.040

Admitting surgical

service

Trauma and acute care

surgery

0.019 0.037

Age group 65–84 20.016 20.017

Home SSRI NO 20.012 20.015

Surgical service code Pancreas/hepatic/biliary 20.008 20.023

Home benzodiazepine NO 20.004 20.006

CCS procedure cate-

gory 3: Laminectomy,

excision intervertebral

disc

Yes 0.004 0.010

Intercept 0.000 0.959
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overall lack of model accuracy demonstrated despite
the use of advanced algorithms and a highly dimen-
sional dataset. Our results compare favorably to those
reported by Kalkman and Sommer et al., despite their
inclusion of additional psychometric data selected to
enhance prediction of postoperative pain, and despite
the lack of validation of the model in one of the studies
[26]. Nevertheless, a large proportion of the observed
variance in postoperative pain outcomes remains unex-
plained by our model. Fortunately, the machine learning
approach tested here is well positioned to incorporate
even higher dimensional data, including genetic, text,
and social network variables in future studies.

In summary, our results suggest the feasibility of an
autonomous “analytic pipeline” as follows: on schedul-
ing for surgery, the entire set of variables contained
within a patient’s EMR could be sent to a machine
learning classification system that has previously been
trained, validated, and tested using historical data from
many patients who have recently undergone surgery in
the health system. Next, the system would automatically
clean the patient’s data and forecast whether or not
that patient is likely to suffer from moderate or severe
pain after surgery. Those predictions could then be for-
warded to the perioperative teams that would care for
the patient on the day of surgery. Such an early-
warning system may provide valuable information that
allows a perioperative team to go beyond simple heuris-
tics in choosing anesthesia therapies, such as basing
them only on type of surgery. Notably, while an analytic
pipeline based on the classification methods in this arti-
cle would provide a clinically valuable prediction of pain
risk, it would not suggest specific preventative, preemp-
tive, or rescue analgesia for a given patient. However,
future work could migrate our general analytic pipeline
approach from simply forecasting postoperative pain to
simultaneously considering the clinical context of the
postoperative pain experience and recommending
therapies.

Machine learning algorithms thus, when combined
with highly dimensional datasets, offer an exciting oppor-
tunity to accurately forecast severe acute postopera-
tive pain. Although our results demonstrate the
feasibility with accuracy comparable to prior efforts,
future work will need to improve the analyzed fea-
ture set as well the target pain-related outcomes.
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Appendix

Table A1 Summary of missing value imputations

Dataset Variable

Number of

Missing Value

Imputations

POD1 Attending anesthesiologist 157

Attending surgeon 334

Home benzodiazepine 1,402

CPT code #7 1

Circulator RN 2

Home muscle relaxant 1,402

Home NSAID 1,402

Home opioid 1,402

POA1 2

POA2 331

POA3 801

POA4 1,379

POA5 1,983

POA6 2,575

POA7 3,189

POA8 3,779

Patient admission status 15

Timing of surgery 957

Home SSRI/SSNRI 1,402

Actual surgical service 1

Surgical service 1

POD3 Attending anesthesiologist 88

Attending surgeon 230

Benzo 855

CPT Code #7 1

Circulator RN 1

Home muscle relaxant 855

Home NSAID 855

Home opioid 855

POA1 2

POA2 91

POA3 274

POA4 533

POA5 833

POA6 1,145

POA7 1,509

POA8 1,863

POA9 2,194

Patient admission status 10

Timing of surgery 599

Home SSRI/SSNRI 855

POA 5 Present on admission flag.
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