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Abstract

It is widely believed that super-Eddington accretion flow can produce powerful out-
flow, but where does this originate and how much mass and energy are carried away
in which directions? To answer these questions, we perform a new large-box, two-
dimensional radiation hydrodynamic simulation, paying special attention lest the results
should depend on the adopted initial and boundary conditions. We achieve a quasi-steady
state at an unprecedentedly large range, r = 2–600rS (with rS being the Schwarzschild
radius), from the black hole. The accretion rate onto the central 10 M� black hole is
ṀBH ∼ 180LEdd/c2, whereas the mass outflow rate is Ṁoutflow ∼ 24LEdd/c2 (where LEdd

and c are the Eddington luminosity and the speed of light, respectively). The ratio
Ṁoutflow/ṀBH ∼ 0.14 is much less than previously reported. By careful inspection we find
that most of the outflowing gas reaching the outer boundary originates from the region
at R � 140rS, while gas at 140–230rS forms failed outflow. Therefore, significant outflow
occurs inside the trapping radius ∼450rS. The mechanical energy flux (or mass flux)
reaches its maximum in the direction of ∼15

◦
(∼80

◦
) from the rotation axis. The total

mechanical luminosity is Lmec ∼ 0.16LEdd, while the isotropic X-ray luminosity varies
from L ISO

X ∼ 2.9LEdd (for a face-on observer) to ∼2.1LEdd (for a nearly edge-on observer).
The power ratio is Lmec/L ISO

X ∼ 0.05–0.08, in good agreement with observations of ultra-
luminous X-ray sources surrounded by optical nebulae.
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1 Introduction

It is well known that gas accretion onto a black hole pro-
duces enormous energy, giving rise to a variety of active
phenomena in black hole objects, such as X-ray binaries
and active galactic nuclei. The gas in the accretion disk

falls onto the central black hole via transportation of the
angular momentum by the viscosity, and releases gravi-
tational energy in the forms of radiation energy and/or
mechanical energy (see, e.g., Shakura & Sunyaev 1973).
There is a classical limit to the total amount of radiation
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energy released per unit time by accretion; that is what we
call the Eddington luminosity, LEdd. It is derived from the
balance between the radiation force and the gravitational
force under spherical symmetry, and is written as

LEdd ≡ 4πcGMBH

κes
� 1.26 × 1039

(
MBH

10 M�

)
erg s−1. (1)

Here, c is the speed of light, G is the gravitational con-
stant, MBH is the mass of the central black hole, κes is
the Thomson scattering opacity, and we have assumed the
hydrogen abundance of X = 1.0.

It is now widely accepted that the classical limit can
be exceeded in disk accretion because of the separation of
the directions of the gas inflow and the radiation output.
Super-Eddington accretion flow is gas flow with extremely
high accretion rates, ṀBH 	 LEdd/c2, and is known to shine
at the super-Eddington luminosity. Several astrophysical
objects are known to harbor super-Eddington accretors;
good candidates are ultra-luminous X-ray sources (ULXs),
and some microquasars (e.g., GRS 1915+105) and narrow-
line Seyfert 1 galaxies (NLS1s; e.g., Mineshige et al. 2000;
Jin et al. 2017).

ULXs are bright X-ray compact sources whose X-ray
luminosity is 1039–1041 erg s−1 and have been discovered
in off-nuclear regions of nearby galaxies (see Kaaret et al.
2017 for a recent review). There are two main ideas
to explain high luminosity: one is sub-Eddington accre-
tion onto intermediate-mass black holes (IMBH; Mak-
ishima et al. 2000; Miller et al. 2004), and the other is
super-Eddington accretion onto stellar-mass black holes
(Watarai et al. 2001; King et al. 2001).

The situation changed drastically after the discovery of
the so-called ULX pulsars as a subgroup of ULXs showing
periodic X-ray pulses (e.g., M 82 X-2, Bachetti et al. 2014;
NGC 7793 P13, Fürst et al. 2016; Israel et al. 2017). Now
they are known to possess magnetized neutron stars. These
discoveries support the super-Eddington accretion scenario,
although there still remains room for the IMBH hypothesis
to survive to account for the extremely high luminosity of
hyper-luminous X-ray sources (see, e.g., Barrows et al. 2019
and references therein).

From the theoretical point of view, one of the most
prominent features of super-Eddington accretion flow is
the photon-trapping effect (Katz 1977; Begelman 1978;
Abramowicz et al. 1988). When the mass accretion rate is
very large, Ṁ 	 LEdd/c2, so is the vertical optical depth,
τ e (= κes�, with � being the surface density), since we
have Ṁ = 2πr�|vr| (with vr being the radial velocity).
Then, the photon diffusion timescale (∝τ e) to the disk sur-
face can exceed the accretion timescale (= r/|vr|). When
this occurs, photons will be trapped within gas flow and

swallowed by a central black hole together with the gas.
The photon-trapping radius Rtrap inside which the photon-
trapping effect is significant is given (see, e.g., Kato et al.
2008) by

Rtrap = 3
2

H
R

ṁBHrS. (2)

Here, H is the scale-height of the accretion disk, R is the
radius in cylindrical coordinates, ṁBH ≡ ṀBH/(LEdd/c2) is
the normalized mass accretion rate onto the black hole,
and rs ≡ 2GMBH/c2 is the Schwarzschild radius.

Outflow is another prominent feature of super-
Eddington accretion flow. The super-Eddington luminosity
implies that the radiation force is greater than the gravita-
tional force, leading to the emergence of radiation-pressure-
driven outflow (Shakura & Sunyaev 1973). Once gas is
blown away from the disk surface in the form of outflow, it
will inevitably have an impact on environments far from the
central black hole. The accretion disk structure itself should
also be affected, since the accretion rate within the disk is no
longer constant in space. Moreover, the emergent spectrum
will be modified via Comptonization by the outflowing gas
(Kawashima et al. 2012; Kitaki et al. 2017; Narayan et al.
2017). This will account for the observed spectra in the so-
called ultra-luminous state of ULXs (Gladstone et al. 2009;
Kawashima et al. 2012).

We can derive the launching radius by considering the
balance between the radiation force and the gravitational
force at the disk surface; that is,

Rlau ∼ AlauṁBHrS. (3)

Here, Alau is a constant of order unity, depending on the
geometry. The launching radius is essentially the same as
those introduced in past studies but with different termi-
nologies. In the spherization radius introduced by Shakura
and Sunyaev (1973), for example, Alau was taken to be
unity, while Alau ∼ 1.95 in the critical radius introduced by
Fukue (2004). We wish to note that the launching radius is
crudely equal to the photon-trapping radius.

Although (semi-)analytical approaches are useful in
understanding the basics of super-Eddington flow, we also
need simulation studies to see what actually happens as
a consequence of complex radiation–matter interactions.
Multidimensional RHD (radiation hydrodynamic) simula-
tions of super-Eddington accretion flow were pioneered by
Eggum, Coroniti, and Katz (1988), followed by Fujita and
Okuda (1998). Their 2D (two-dimensional) RHD simula-
tions have shown that super-Eddington accretion flow has
a puffed-up structure and that high-speed outflow forms
a funnel near the rotational axis. Those simulation studies
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Table 1. Results and initial settings of simulations.∗

Sources† Method Compton rout rK rqss Rtrap ṀBH Ṁoutflow

[Yes/No] [rS] [rS] [rS] [rS] [LEdd/c2] [LEdd/c2]

Our simulation 2D-RHD Yes 3000 2430 ∼600 ∼270 ∼180 ∼24
Ohsuga+05 2D-RHD No 500 100 ∼30 ∼200 ∼130
Ohsuga+11 2D-RMHD No 105 40 ∼10 ∼150 ∼100
Jiang+14 3D-RMHD No 50 25 ∼20 ∼330 ∼220 ∼400
S ↪adowski+15 2D-GR-RMHD Yes 2500 21 ∼35 ∼640 ∼420 ∼7000
S ↪adowski+16 3D-GR-RMHD Yes 500 20 ∼10 ∼260 ∼180 ∼520
Hashizume+15 2D-RHD No 5000 100 ∼100 ∼230 ∼150 ∼500
Takahashi+16 3D-GR-RMHD No 125 17 ∼10 ∼300 ∼200
Kitaki+18 2D-RHD Yes 3000 300 ∼200 ∼420 ∼280 ∼300
Jiang+19 3D-RMHD Yes 800 40 ∼15 ∼380 ∼250

∗Here, rout is the radius at the outer boundary, rK is the initial Keplerian radius, rqss is the radius inside which the quasi-steady state is established, Rtrap is the
photon-trapping radius derived based on equation (2), ṀBH is the accretion rate onto the black hole, and Ṁoutflow is the outflow rate at around rout. We also
indicate whether or not the Compton scattering effect is taken into account.

†Sources: Hashizume+15: Hashizume et al. (2015); Jiang+14: Jiang, Stone, and Davis (2014); Jiang+19: Jiang Stone, and Davis (2019); Kitaki+18: Kitaki et al.
(2018); Ohsuga+05: Ohsuga et al. (2005); Ohsuga+11: Ohsuga and Mineshige (2011); S ↪adowski+15: S ↪adowski et al. (2015); S ↪adowski+16: S ↪adowski and
Narayan (2016); Takahashi+16: Takahashi et al. (2016).

were, however, restricted within small computational boxes
due to the limits of the supercomputers available at the time.

More realistic and much larger-scale simulation studies
were initiated by Ohsuga et al. (2005), who performed
much longer-timescale simulations and clarified the detailed
properties of the accretion flow, outflow, and the observa-
tional appearance of super-Eddington systems. Since then,
extensive numerical simulation studies have been con-
ducted, first in Newtonian dynamics (e.g., Ohsuga et al.
2009; Kawashima et al. 2009; Ohsuga & Mineshige 2011;
Jiang et al. 2014, 2019) and then in general relativistic
treatments (e.g., McKinney et al. 2014; S

↪
adowski et al.

2015; S
↪

adowski & Narayan 2016; Takahashi et al. 2016).
In a rotating black hole, furthermore, the emergence of
strong and powerful jets driven by the Blandford–Znajek
mechanism (Blandford & Znajek 1977) is expected, which
was calculated by GR-RMHD (general relativistic radiation
magnetohydrodynamic) and GR-MHD (general relativistic
magnetohydrodynamic) simulations.

We should note, however, that these authors adopted
somewhat artificial numerical settings in these simulations
for numerical reasons. To be more precise, they started
simulations by putting an initial torus near a black hole or
by injecting gas with small angular momentum so that a
torus-like structure formed near a black hole.

There are certainly cases in which small rK is expected,
such as the case of tidal disruption events, but we focus on
other cases with large rK, bearing ULXs and NLS1s in mind.
Here, we define the Keplerian radius, rK, in such a way that
the initial torus (with a given specific angular momentum)
rotates around the central black hole with the Keplerian

rotation velocity. We also define the quasi-steady radius
rqss, inside which a quasi-steady state is achieved (a more
rigorous definition is given in subsection 3.2), and we list
these values in table 1 for recent simulation studies. From
this table we understand that both the Keplerian radius and
the quasi-steady radius are smaller than the trapping radius
Rtrap [equation (2)] in all the previous simulations.

Both were required for numerical reasons, since other-
wise it would take too much computational time to com-
plete within a reasonable time, say, a few months. But we
should point out that the previous simulation studies com-
monly exhibit a puffed-up structure near the black hole,
since rK � Rtrap ∼ Rlau, and that a large amount of outflow
material originates from such an inflated zone. It may be
possible that the outflow rate was grossly overestimated in
such simulations (see table 1).

In the present study, therefore, we aim at expanding the
quasi-steady region as much as possible so that it should
cover the trapping radius and launching radius. With this
issue kept in mind, we perform a 2D-RHD simulation of the
super-Eddington accretion flow in a large calculation box,
adopting a very large initial Keplerian radius (see table 1).
The main objectives of the study are to clarify from which
part of the accretion flow genuine outflow (that reaches the
outer calculation boundary) is launched, and how much
mass, momentum, and mechanical energy is carried away
by outflow and in which direction. The plan of the paper
is as follows: We first explain our numerical methods and
models in the next section. We then present our results in
section 3 and discuss them in section 4. The final section is
devoted to conclusions.
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2 Models and numerical methods

2.1 Radiation hydrodynamic simulations

We consider super-Eddington accretion flow and out-
flow onto a black hole by injecting mass from the outer
simulation boundary at a constant rate of Ṁinput with
angular momentum. The parameter values are specified
in subsection 2.2. The flux-limited diffusion approxima-
tion is adopted (Levermore & Pomraning 1981; Turner &
Stone 2001). We also adopt the α viscosity prescription
(Shakura & Sunyaev 1973). General relativistic effects are
incorporated by adopting the pseudo-Newtonian potential
(Paczyńsky & Wiita 1980).

The basic equations and numerical methods are the same
as those in Kitaki et al. (2017, 2018), but upgraded to
solve the energy equations (see subsection 2.3). This 2D-
RHD code solves the axisymmetric two-dimensional radi-
ation hydrodynamic equations in the spherical coordinates
(x, y, z) = (r sin θ cos φ, r sin θ sin φ, r cos θ ), where the
azimuthal angle φ is set to be constant. We put a black hole
of mass 10 M� at the origin. In this paper we distinguish r,
the radius in spherical coordinates, and R =

√
x2 + y2, the

radius in cylindrical coordinates [e.g., equation (2)].
The continuity equation is given by

∂ρ

∂t
+ ∇ · (ρv) = 0, (4)

where ρ is the gas mass density and v = (vr, vθ , vφ) is the
velocity of the gas. Note that we retain the azimuthal
component of the velocity.

The equations of motion are written as

∂(ρvr)
∂t

+ ∇ · (ρvrv) =−∂p
∂r

+ ρ

[
v2

θ

r
+ v2

φ

r
− GMBH

(r − rs)2

]

+ χ

c
F0,r, (5)

∂(ρrvθ )
∂t

+ ∇ · (ρrvθv) = −∂p
∂θ

+ ρv2
φ cot θ + r

χ

c
F0,θ , (6)

∂(ρr sin θvφ)
∂t

+ ∇ · (
ρr sin θvφv

) = 1
r2

∂

∂r

(
r3 sin θ trφ

)
. (7)

Here, p is the gas pressure, χ = κ + ρσ T/mp is the total
opacity, where κ is the free–free and free–bound absorption
opacity (Rybicki & Lightman 1979), σ T is the Thomson
scattering cross-section, mp is the proton mass, and
F 0 = (F0,r, F0,θ , F0,φ) is the radiative flux in the comoving
frame, where the suffix 0 represents quantities in the
comoving frame and we set F0, φ = 0.

We assume that only the r–φ component of the
viscous-shear tensor is nonzero, and it is prescribed as

trφ = ηr
∂

∂r

(vφ

r

)
, (8)

with the dynamical viscous coefficient being

η = α
p + λE0

�K
. (9)

Here, α = 0.1 is the α parameter (Shakura & Sunyaev
1973), �K is the Keplerian angular speed, E0 is the radiation
energy density, and λ represents the flux limiter of the flux-
limited diffusion approximation (Levermore & Pomraning
1981; Turner & Stone 2001).

The gas and radiation energy equations are given by

∂e
∂t

+ ∇ · (ev) =−p∇ · v − 4πκ B + cκE0

+�vis − �Comp, (10)

and

∂E0

∂t
+ ∇ · (E0v) =−∇ · F 0 − ∇v : P0 + 4πκ B − cκE0

+ �Comp, (11)

respectively. Here, e is the internal energy density, which
is linked to the thermal pressure by the ideal gas equation
of state, p = (γ − 1)e = ρkBTgas/(μmp), with γ = 5/3
being the specific heat ratio, kB the Boltzmann constant,
μ = 0.5 the mean molecular weight (we assume pure
hydrogen plasmas), and Tgas the gas temperature. B =
σSBT4

gas/π is the blackbody intensity, where σ SB is the Stefan–
Boltzmann constant. P0 is the radiation pressure tensor, and
�vis is the viscous dissipative function, written as

�vis = η

[
r

∂

∂r

(vφ

r

)]2

. (12)

The Compton cooling/heating rate, �Comp, is described as

�Comp = 4σTc
kB

(
Tgas − Trad

)
mec2

(
ρ

mp

)
E0. (13)

Here, me is the electron mass and Trad ≡ (E0/a)1/4 is the radi-
ation temperature with the radiation constant a = 4σ SB/c.

2.2 Initial conditions and calculated models

The simulation settings are also the same as in Kitaki et al.
(2018) except for a larger value of rK (= 2430 rS). The com-
putational box is set by rin = 2 rS ≤ r ≤ rout = 3000 rS,
and 0 ≤ θ ≤ π/2. Grid points are uniformly distributed
in logarithm in the radial direction, �log10r = (log10rout −
log10rin)/Nr, and uniformly distributed in cos θ in the polar
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direction, �cos θ = 1/Nθ , where the numbers of grid points
are (Nr, Nθ ) = (200, 240). We also simulated the case with
(Nr, Nθ ) = (400, 480), confirming that our conclusions are
not altered.

We initially put a hot, optically thin atmosphere with
negligible mass around the black hole for numerical rea-
sons. The initial atmosphere is assumed to be in isothermal
hydrostatic equilibrium in the radial (r) direction. Then, the
density profile is

ρatm(r, θ ) ≡ ρout exp
[

μmpGMBH

kBTatmrout

(rout

r
− 1

)]
, (14)

where ρout is the density at the outer boundary. We
employ ρout = 10−17 g cm−3 and Tatm = 1011 K, following
Ohsuga et al. (2005).

Mass is injected continuously at a constant rate of Ṁinput

through the outer disk boundary at r = rout, and 0.48π ≤ θ ≤
0.5π . The black hole mass and mass injection rate are set
to be MBH = 10 M� and Ṁinput = 700 LEdd/c2, respectively.
The injected gas is assumed to possess a specific angular
momentum corresponding to the Keplerian radius of
rK = 2430 rS (i.e., the initial specific angular momentum
is

√
GMBHrK). We thus expect that inflow material first falls

towards the center and forms a rotating gaseous ring at
around r ∼ rK, from which the material slowly accretes
inward via the viscous diffusion process. We allow mass to
go out freely through the outer boundary at r = rout and 0
≤ θ ≤ 0.48π , and assume that mass at r = rin is absorbed.

We assume that the density, gas pressure, radial velocity,
and radiation energy density are symmetric at the rotational
axis, while vθ and vφ are antisymmetric. On the equatorial
plane, on the other hand, ρ, p, vr, vφ , and E0 are symmetric,
and vθ is antisymmetric. More details of the boundary
conditions are given in Ohsuga et al. (2005).

2.3 Updating the energy equation solver

In this study we calculate the large-scale structure of
the super-Eddington accretion flow by adopting the total
energy equation instead of the internal energy equation.
This is preferable for calculating large-scale flow structure,
since total energy conservation does not hold in some cases
if we use the internal energy equation.

We employ the operator-splitting method, in which the
viscous processes are separated from other processes (i.e.,
advection, radiation). The viscosity-related terms in the
equation of motion and energy equation are

∂(ρr sin θvφ)
∂t

= 1
r2

∂

∂r

(
r3 sin θ trφ

)
(15)

Fig. 1. Time-averaged density contours of super-Eddington accretion
flow onto a black hole. Overlaid are the gas velocity vectors whose
lengths are proportional to the logarithm of the absolute velocity. The
red line represents the disk surface, which is defined as the loci where
the radiation force balances the gravitational force. (Color online)

and

∂

∂t

(
e + 1

2
ρv2

φ

)
= 1

r2

∂

∂r

(
r2trφvφ

)
, (16)

respectively. We solve these equations in the following way:
First, the equation of motion (15) is solved by the implicit
method through the Thomas algorithm (e.g., Press et al.
2007), and the velocity in the next time step vn+1

φ is cal-
culated. Second, the total energy equation (16) is solved
using the velocity vn+1

φ , and the internal energy density in
the next time step en+1 is obtained. Then, other quantities
will be updated. The advantage of this method is that the
total energy is always conserved.

3 Results

3.1 Overall flow structure

In this paper we examine the time-averaged structure of
both inflow and outflow in a quasi-steady state, unless
stated otherwise. We first show, in figures 1 and 2, the den-
sity and temperature contours overlaid with the velocity
fields in the quasi-steady state. All the physical quantities
(i.e., temperature, velocity, etc.) except for gas mass den-
sity are time-averaged, weighted by the gas mass density
during the interval t ∼ 8519–9109 s, while the gas mass
density is simple time averages with no weighting. After the
simulation starts, the gas injected from the outer boundary
into an initially empty zone first free-falls and accumulates
around the initial Keplerian radius, rK ∼ 2430 rS, since
the centrifugal force and the gravitational force balance

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/73/2/450/6157709 by guest on 18 April 2024



Publications of the Astronomical Society of Japan (2021), Vol. 73, No. 2 455

Fig. 2. As figure 1 but for the temperature contours. (Color online)

there. Soon after the transient initial phase, the accumulated
matter spreads outward and inward in the radial direction
via the viscous diffusion process, forming an accretion disk
extending down to the innermost zone (t � 8511 s). The
newly injected matter collides with the disk matter so that a
high-density region appears at ∼(2400–3000) rS (well out-
side the initial Keplerian radius); see figure 1. After a suf-
ficiently long time (on the order of the viscous timescale,
t � 8511 s; Ohsuga et al. 2005), a quasi-steady inflow–
outflow structure is established (see figure 1).

In figures 1 and 2 we also indicate the disk surface by a
red solid line. By the disk surface we mean the loci on which
radiation force balances the gravity in the radial direction,
χF0,r/c = ρGMBH/(r − rS)2. We examined other definitions
of the disk surface, for example by including the centrifugal
force term, ρv2

φ/r , but found no better definitions in a
simple form.

We notice a quite different flow shape in figure 1 from
those reported previously (see table 1). That is, we no longer
find a puffed-up structure, which was commonly observed
in the previous studies, but rather a smooth disk shape up to
the outer boundary (see model a11 of figure 1 in Kitaki et al.
2018). This is because we adopted a much larger Keplerian
radius than the previous simulations. The disk height is
roughly proportional to R in the inner region, R � 300 rS,
whereas it is roughly constant outside (H ∼ 200–300 rS).

We also plot the velocity fields of gas by the white vec-
tors in figures 1 and 2. We understand that gas is stripped
off the disk surface to form outflow. Near the rotation
axis, in particular, we see a cone-shaped funnel filled with
high-velocity (∼0.3 c) and high-temperature plasmas of
Tgas � 108 K, surrounded by the outflow region of modest

Fig. 3. Magnified view of the central region of figure 1. (Color online)

velocity (∼0.05–0.1 c) and modest temperatures, Tgas ∼
106 − 7 K.

Figure 3 is a magnification of the central region of
figure 1. When we have a closer look at the disk region,
we notice that the gas motion is outward near the sur-
face, whereas it is inward near the equatorial plane. These
velocities reflect convective motion (to be discussed in
subsection 3.5). We also notice that almost all the velocity
vectors (except for some near the disk surface) are inward
(i.e., towards the central black hole) at r � 40rS, although
a hint of convective motions is observed in snapshots (to be
discussed in subsection 3.5).

3.2 Mass inflow and outflow rates

The radial profiles of the mass flow rates are a very useful
tool to diagnose gas dynamics around the black hole. We
calculate the following five flow rates: the mass inflow and
outflow rates in the disk, the same in the outflow region
(the region above the disk surface), and the net flow rate:

Ṁin
disk(r ) ≡ 4π

∫ π/2

θsurf

dθ sin θ

× r2ρ(r, θ )min {vr(r, θ ), 0} , (17)

Ṁout
disk(r ) ≡ 4π

∫ π/2

θsurf

dθ sin θ

× r2ρ(r, θ )max {vr(r, θ ), 0} , (18)

Ṁin
outf(r ) ≡ 4π

∫ θsurf

0
dθ sin θ

× r2ρ(r, θ )min {vr(r, θ ), 0} , (19)
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Fig. 4. Time-averaged radial profiles of the mass inflow rate, Ṁin
disk (red

line), the mass outflow rate within the disk, Ṁout
disk (green line), the net

flow rate, Ṁnet (blue line), and the mass outflow rate in the outflow
region (above the disk surface), Ṁout

outf (purple line). The net flow rate is
nearly constant inside the quasi-steady radius, rqss ∼ 600 rS, which is
indicated by the vertical black line. (Color online)

Ṁout
outf(r ) ≡ 4π

∫ θsurf

0
dθ sin θ

× r2ρ(r, θ )max {vr(r, θ ), 0} , (20)

Ṁnet(r ) ≡ Ṁin
disk(r ) + Ṁout

disk(r ) + Ṁin
outf(r ) + Ṁout

outf(r ). (21)

Here, θ surf = θ surf(r) is the angle between the rotation axis
and the disk surface (see the red line in figure 1).

Figure 4 illustrates the absolute values of the various
mass flow rates as functions of radius, r, except for Ṁin

outf,
since it turns out to be practically zero.

Let us first focus on the blue line, which represents the net
accretion rate, since this line provides key information for
evaluating to what extent a quasi-steady state is achieved.
We see that this line is approximately constant in the range
of r = 2–600 rS; that is, rqss ≡ 600 rS. This value is unprece-
dentedly large (see table 1), and hence the present simula-
tion can provide us with much more reliable information
on the outflow properties.

Let us next examine the behavior of the various lines
in the innermost region (r < rinflow ∼ 40 rS). We find negli-
gibly small mass outflow rate (for both Ṁout

disk and Ṁout
outf),

while the mass inflow rate stays constant. This feature
agrees well with our previous calculations (Kitaki et al.
2018). The mass inflow and outflow rates averaged over
the range r = 2–30 rS are ṀBH ≡ 〈|Ṁin

disk|〉 = 180 LEdd/c2,
〈Ṁout

disk〉 = 4.6 × 10−6 LEdd/c2, and 〈Ṁout
outf〉 = 0.13 LEdd/c2.

One may think that such a negligibly small mass out-
flow rate from the innermost region seems to be against a

naive expectation that the smaller the radius, the larger
the radiation-pressure force and so the larger the mass
outflow rate. This is not the case, however, since the
radiation flux in the comoving frame is instead inward
in the innermost region because of photon trapping (see
subsection 3.4). In other words, the density on the disk sur-
face (where the radiation-pressure force balances with the
gravitational force, see subsection 3.1) decreases inward
so that the outflow rate (∝ρvr) should also decrease (see
Kitaki et al. 2018).

We are now ready to examine from which part of the
accretion flow the outflow emerges by examining the lines
in the middle region (40–600 rS). The outflow rate above
the disk surface (Ṁout

outf), indicated by the purple line in
figure 4, increases with increasing radius, reaches its max-
imum value of 38 LEdd/c2 at r = 280 rS( ≡ rlau), and then
decreases beyond. How can we understand this?

Here, we wish to stress that the outflow rate (Ṁout
outf)

plotted in figure 4 is cumulative. To be precise, Ṁout
outf(r )

is defined by the mass flow rate measured at the radius r
and so we take into account all the materials which pass
through the shell at r above the disk surface, irrespective
of the launching points [see equation (20)]. Therefore, the
outflow rate should monotonically increase with increasing
radius, as long as outflow occurs. At even larger radii
(r > 280 rS), however, Ṁout

outf decreases with increasing
radius. This is because the outflowing gas which was
launched at smaller radii partly goes back to the disk sur-
face. We call this sort of outflow “failed outflow”(see the
next subsection for further discussion). Note that the gen-
uine outflow rate (by the purple line) is always less than the
outflow rate in the disk (by the green line), Ṁout

disk, which is
caused by radial convective motion within the disk.

In the further outer region, r � 1000 rs, Ṁout
outf is nearly

constant. The space-averaged (genuine) outflow rate at
r = 2000–3000 rS is Ṁoutflow ≡ 〈Ṁout

outf〉 ∼ 24 LEdd/c2.

3.3 Outflow streamlines

Streamline analysis is a powerful tool for investigating
the physical evolution of the outflowing gas after being
launched from a certain point on the disk surface. Figure 5
displays a sequence of streamlines overlaid on the temper-
ature contours. (The lower panel is a magnified view of the
central region of the upper panel.) We understand in this
figure that the outflow emerges from the disk surface inside
the white circle at radius r = 280 rS, where Ṁout

outf reaches
its maximum (see figure 4). We define here the launching
radius (Rlau) to be the radius where the white line crosses
the red line; that is,

Rlau = 280 rS sin(55◦) ∼ 230 rS ∼ 1.3ṁBHrS. (22)
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Fig. 5. Sequence of streamlines overlaid on the gas temperature con-
tours. The upper panel is the large-scale view, while the lower panel is
a magnification of the central region. In each panel we pick up several
streamlines: the purple, green, light blue, and orange lines represent
the streamlines which approach the lines of constant θ = 20◦ , 60◦ , 70◦

, and 83◦ at r = 3000 rS, respectively. The red line indicates the disk
surface, and the white line represents the loci of rlau = 280 rS, at which
the cumulative outflow rate reaches its maximum. (Color online)

This value is consistent with the analytical estimation
[equation (3)].

The streamlines between the orange and red lines in
figure 5 represent the failed outflow; that is, the outflow
which first leaves the disk surface at smaller radii but even-
tually comes back to the disk at large radii. The launching
radius of the genuine outflow (which can reach the outer
boundary of the computational box) is given by

R∞
lau = 190 rS sin(46◦) ∼ 140 rS ∼ 0.75ṁBHrS. (23)

The Bernoulli parameter, Be, is everywhere negative in
the failed outflow region, and in the pure outflow region
around the disk surface. We should note, however, that
the Bernoulli parameter is not a conserved quantity in the
viscous flow, and that Be is positive far from the black hole
in the pure outflow region.

It is interesting to examine how the physical quantities
vary along each streamline. Figure 6 illustrates the vari-
ations of the physical quantities along each of the colored
streamlines depicted in figure 5. We consider first the purple
solid line (this streamline is connected to the funnel region,
see figure 5). From the middle panel we understand that the

Fig. 6. Variations of some physical quantities along the four colored
streamlines shown in figure 5: the mass flow rates per unit solid angle
(top), the absolute values of the radial velocity (middle), and the spe-
cific angular momenta (bottom). The solid (dashed) lines indicate the
quantities in the outflow (disk) region. (Color online)

gas is quickly accelerated to finally acquire a high velocity,
vr ∼ 0.3 c, within the funnel. The outflow rate (r2ρvr ∼
const) is conserved along the streamline within the funnel
(see the upper panel). Thus, the radial profile of the gas mass
density is roughly ρ ∝ r−2. The specific angular momentum
(Rvφ) is also conserved (see the lower panel). This can be
easily understood, since the viscosity is not effective in the
outflow region.

Let us next consider the green and light blue lines, both
of which are connected to the (genuine) outflow region in
figure 6. From the middle panel, we see that the radial
velocities are gradually accelerated until they reach the final
value of several tenths of c at around r � 103 rS. Again,
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Fig. 7. Radiative diffusion timescale (red) and timescale (green), both
evaluated on the equatorial plane. The vertical black line is the photon-
trapping radius calculated based on the slim-disk model (Rtrap ∼ 270 rS).
(Color online)

the specific angular momenta are roughly conserved, as is
shown in the bottom panel.

The orange solid line in each panel of figure 6 shows sim-
ilar tendencies to the green and light blue solid lines, except
in the region around r ∼ 3000 rS, where the outflowing gas
comes back to the disk surface region and merges there.

3.4 Photon-trapping radius

The principal value characterizing the super-Eddington
accretion disk is the photon-trapping radius [see
equation (2)]. The photon-trapping radius is the radius
where the radiative diffusion timescale tdiff is equal to the
dynamical timescale tdyn, where

tdiff = Hinf(R)
c/[3τe(R)]

, (24)

tdyn = R
|vr(R, z = 0)| . (25)

Here, Hinf is the height under which the radial velocity is
negative, and τ e is the vertical Thomson optical depth mea-
sured from the equatorial plane to z = Hinf(R). Figure 7
shows these two timescales, and they intersect at Rtrap ∼
330 rS. By contrast, the photon-trapping radius which the
slim-disk model predicts is Rtrap ∼ 270 rS [see equation (2)].
This value is close to the one estimated numerically in the
present study.

We evaluate the photon-trapping radius from another
viewpoint. The inward, outward, and net luminosities are,
respectively, written as

Lin(r ) =
∫

4π

d�r2min
{
F r

lab, 0
}
, (26)

Fig. 8. Radial profiles of the inward, outward, and net luminosities. The
vertical black line indicates the photon-trapping radius based on the
slim-disk model (Rtrap ∼ 270 rS). (Color online)

Lout(r ) =
∫

4π

d�r2max
{
F r

lab, 0
}
, (27)

and

Lnet(r ) = Lin(r ) + Lout(r ). (28)

Here, F r
lab is the radial component of radiation flux in the

laboratory frame. In figure 8 we compare these luminosi-
ties. The inward luminosity, which represents the photon-
trapping effect, increases inward, and the two lines intersect
at r ∼ 38 rS, which is significantly less than the photon-
trapping radius derived based on the slim-disk model; i.e.,
Rtrap ∼ 270 rS. If we take the radius where Lin(r) vanishes,
it is ∼103 rS, much larger than Rtrap.

Why are these estimations so distinct? We should note
here that the diffusion timescale depends on the vertical
position of the region in question; the larger the vertical
position (z), the shorter the diffusion timescale. We thus
undertook further analysis; namely, we continuously con-
nect the radiation flux vectors starting from the disk sur-
face, as we did in the streamline analysis to follow gas
motion, and display the resultant “flux-line” in figure 9.
(Note that this flux-line does not have the same meaning as
streamlines, since the divergence of the radiation flux is not
zero, and since photons diffuse as they proceed inward.)
We see that the flux-lines starting from the disk surface
at R < 450 rS ∼ 2.5 ṁBHrS are eventually connected to the
black hole region. We thus take this value as the numerical
trapping radius, which is close to the analytical estimation.

The previous GR-RMHD simulations revealed that the
magnetic fields help the photons to escape from the disk
surface, since the gas moves towards the disk surface by
magnetic buoyancy and the photons are trapped in the gas
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Fig. 9. Radiation flux-line (black lines) overlaid on the gas temperature
contours (figure 2). The red line indicates the disk surface. The blue line
starts at R ∼ 450 rS on the equatorial plane and is connected to the black
hole because of the photon-trapping effect. (Color online)

(e.g., Blaes et al. 2011; Jiang et al. 2019). Therefore, the
photon-trapping radius may become smaller in GR-RMHD
simulations.

3.5 Convection in the accretion disk

It is well known that the super-Eddington accretion flow
undergoes large-scale circular gas motion or convection
(see, e.g., Eggum et al. 1988). Since the entropy gener-
ated within the accretion disk cannot easily be taken away
from the disk because of the inefficient radiative diffusion
in the vertical direction, the entropy tends to increase as
gas accretes, a condition for convective instability, as in
the case of radiatively inefficient flow (see, e.g., Narayan &
Yi 1994).

Pietrini and Krolik (2000) proved that convection in
which the vertical wavelength is larger than the radial wave-
length occurs in the radiation-pressure-dominated disk by
deriving the dispersion relation from the RHD equations.
Some analytical and semi-analytical studies were produced
to describe the vertical structure under the assumption of
separating the radial and vertical structures. For example,
S

↪
adowski et al. (2011) calculated the vertical structure of

the super-Eddington accretion disk by the Runge–Kutta
method, and showed that the energy is transported in a ver-
tical direction by the convection, while Gu (2012) derived a
self-similar solution of the super-Eddington accretion disk
by assuming radial dependence of the gas mass density and
the radiation energy density, and this solution does not sat-
isfy the convection criterion. Thus, the occurrence of con-
vection is a controversial issue and the previous studies may
depend on the various assumptions for splitting the radial
and vertical structure.

To proceed, it is useful to perform numerical simu-
lations. It seems important to note that convection also
occurs in the inner region of the standard disk, where radi-
ation pressure is dominant. This is because the radiation

Fig. 10. Snapshot of the density contours overlaid with velocity vectors
in the region 100 rS ≤ R ≤ 600 rS. We clearly see convection cells in the
disk. (Color online)

Fig. 11. As figure 10 but in the central region near the black hole. We
see convective cells even in the vicinity of the black hole at r < rinflow ∼
40 rS, which were not visible in the time-averaged profile (see figure 3).
(Color online)

diffusion becomes inefficient, as in the case of the super-
Eddington accretion flow. According to the RHD simu-
lations of the standard disk, the energy in the radiation-
pressure-dominated region is transported not by radiation
diffusion but by advection of the radiation (Agol et al. 2001;
Blaes et al. 2011). Considering these studies of the standard
disk, we conclude that analyzing the energy budget is very
useful in evaluating the convection in the super-Eddington
accretion disk.

As mentioned in subsection 3.2, convection occurs in the
super-Eddington accretion disk. Figures 10 and 11 show
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snapshots of the cross-sectional view of the accretion flow.
We see there circular motions of velocity vectors around
several points, e.g., (R, z) = (17 rS, 10 rS), (50 rS, 20 rS),
(320 rS, 50 rS), and (470 rS, 110 rS). These convections tend
to rotate in the clockwise direction. This is because the
radiation force and the centrifugal force tend to overcome
the gravitational force when the gas blob rises from the
equatorial plane to the surface of the disk.

It is very important, however, to note that small-scale
convective motions totally disappear and global convec-
tion appears when we make a time average (see figures 1
and 2). Here, we wish to emphasize that this global con-
vective motion is constructed by time-averaging the small-
scale circular motions. The time-averaged direction of the
gas motion is inward near the equatorial plane, while it is
outward near the surface of the accretion disk. The inflow
and outflow motions in the disk by global convection are
dominant over the entire accretion flow (see the red and
green lines in comparison with the purple line in figure 4).

It was previously indicated that the occurrence of
convection in snapshots may depend on the adopted
α-parameter; smaller α means more efficient convection
motion (Igumenshchev & Abramowicz 1999, 2000; Yang
et al. 2014), and the α-parameter decreases with increasing
radius (α ∼ 0.05–0.2; Jiang et al. 2019). Therefore, the
(time-averaged) global convection may be modified if we
adopt smaller α-parameter values and/or if we perform
RMHD simulations.

3.6 Energy transportation by convective motion

Plotting the heating and cooling rates is a powerful tool
for diagnosing gas dynamics in the disk, as demonstrated
by Blaes et al. (2011). In the gas energy equation, vis-
cous heating and advective heating balance with the energy
transported to the radiation,

�vis + qadv
gas = �comp + (4πκ B − cκE0), (29)

while in the radiation energy equation, energy transported
from the gas balances with the radiation advection cooling
and radiative diffusion,

�comp + (4πκ B − cκE0) = qadv
rad + qdiff

rad . (30)

The terms in this equation are defined as

qadv
gas ≡ − [∇ · (ev) + p∇ · v] , (31)

qadv
rad ≡ ∇ · (E0v) + ∇v : P0, (32)

qdiff
rad ≡ ∇ · F 0. (33)

Fig. 12. Polar angle dependencies of the heating and cooling rates at
three different radii: r = 41 rS (top), r = 328 rS (middle), and r = 548 rS

(bottom). The colored lines represent the following quantities: the vis-
cous heating (purple), the net radiation heating and cooling (light blue),
the advection of the radiation (red), the Compton heating and cooling
(green), the advection of the gas (orange), and the radiation diffusion
(blue). The black vertical line indicates the polar angle of the disk sur-
face (see figure 1). The solid lines mean that each value is positive (e.g.,
4πκB − cκE0 > 0), whereas the dashed lines mean that each value is
negative (e.g., 4πκB − cκE0 < 0). (Color online)

Here, �vis is the viscous heating, qadv
gas is the advection of

the gas, including work by the gas pressure, �comp is the
Compton heating and cooling, (4πκB − cκE0) is the net
heating rate due to emission and absorption of radiation,
qadv

rad is the advection of the radiation, including work by the
radiation pressure, and qdiff

rad is the radiation diffusion.
Figure 12 shows the angle dependencies of these heating

and cooling rates at each radius. We numerically confirmed
that equations (29) and (30) roughly hold. See also table 2
for a summary of the dominant terms.
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Table 2. Dominant heating and cooling rate.∗

Region Angle Radius Gas energy equation Radiation energy equation
(θ ) (r) heating/cooling heating/cooling

Equatorial plane (∼90
◦
) Inner part (r � 330 rS) �vis ∼ �comp �comp ∼ qadv

rad
Middle part (330 rS � r � rqss) �vis ∼ (4πκB − cκE0) (4πκ B − cκE0) ∼ qdiff

rad

Disk surface (∼θ surf) (r � rqss) �vis + qadv
gas ∼ �comp �comp ∼ qadv

rad + qdiff
rad

∗The dominant heating and cooling rate in gas and radiation energy equations at each spatial point [see equations (29) and (30)].

It is important to note that it is not advective cooling but
advective heating that works in the gas energy equation.
The reason for this can be understood in the following way
(Nakamura et al. 1997). Entropy is generated via viscous
dissipation within the gas so that the gas is heated, but the
internal energy is quickly transported to the radiation via
the Compton process. This results in a monotonic decrease
of the gas entropy towards the center. Since the higher-
entropy gas moves inwards, the advection works as heating.

The dominant terms in equations (29) and (30) vary at
each spatial position and are shown in table 2. When we
focus near the equatorial plane (θ ∼ 90

◦
) in figure 12, the

viscous heating is much larger than the advection of the gas
(�vis 	 qadv

gas ). The energy is transported from gas to radi-
ation by the Compton effect near the black hole, whereas
it is transported by the net radiation heating and cooling
far from the black hole. The advection of the radiation is
dominant near the black hole, but the radiation diffusion is
dominant far from the black hole. Hence, the energy bal-
ance near the equatorial plane is roughly �vis ∼ �comp ∼ qadv

rad

near the black hole, and �vis ∼ (4πκ B − cκE0) ∼ qdiff
rad far

from the black hole.
Let us next consider the region just below the disk

surface. We then see that in figure 12, the viscous
heating is comparable to advection of the gas (�vis ∼
qadv

gas ). The energy is transported from gas to radiation
by the Compton effect. The advection of the radiation
is comparable to the radiation diffusion. The relation of
equations (29) and (30) near the photosphere is roughly
�vis + qadv

gas ∼ �comp ∼ qadv
rad + qdiff

rad .
The energy is carried by the advection of the radia-

tion in a vertical direction near the black hole (R � Rtrap

∼ 330 rS). This process corresponds to energy transporta-
tion by convection. We confirmed that the advection term,
∇ · (E0v), is larger than the work by radiation pressure,
∇v : P0, by a factor of several [i.e., qadv

rad ∼ ∇ · (E0v)]. The
advection term, ∇ · (E0v), has radial and angular compo-
nents, and these components are approximately comparable
to each other. The radiation energy is carried by E0v in
the vertical direction. In other words, the radiation energy
moves with the gas.

We understand that the radiation is trapped in teh gas
by Lorentz transformation of the radiation flux (Ohsuga &
Mineshige 2007). The formula in the optically thick region
is written as

F i
lab = F i

0 + vi E0 + v j P
i j
0 ∝ vi E0, (34)

where F i
lab is the radiation flux in the laboratory frame. The

comoving flux in the optically thick region is represented by
the diffusion approximation, F 0 = −c∇E0/(3ρκ), and we
assume that the radiation diffusion is inefficient, F i

0 � vi E0

(i.e., the photon-trapping effect). The third term on the
right-hand side of equation (34), v j P

i j
0 , is equal to E0v

i/3,
and corresponds to the work by the radiation pressure
(Mihalas & Mihalas 1984). From these relations, we under-
stand that F i

lab ∼ vi E0 is established in the super-Eddington
accretion disk, and this formula means that the radiation
moves with the gas. In particular, energy is transported
inward with the gas velocity, but the energy carrier is the
radiation under the radiation-pressure-dominant region.

4 Discussion

4.1 Comparison with the super-Eddington
accretion model in Kitaki et al. (2018)

Kitaki et al. (2018) performed rather extensive parameter
studies of RHD simulations of the super-Eddington accre-
tion flow and derived semi-analytical formulas for repre-
sentative physical quantities of the disk (e.g., temperature,
density, radial velocity, and so on) as functions of black
hole mass, accretion rate, and radius. Figure 13 shows the
ratios of the present numerical values to those reported by
Kitaki et al. (2018). We focus on the range r � 600 rS, where
the quasi-steady state is achieved (see subsection 3.2). The
present numerical results, except for gas mass density, agree
well with those of Kitaki et al. (2018) within a factor of 2.

For the gas mass density we find reasonable agreement
in the inner region (r � 200 rS), but we notice significant dis-
crepancies at larger radii. The reason for the discrepancies
can be understood in relation to the fact that the mass out-
flow rate is comparable to the (net) inflow rate there. In fact,
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Fig. 13. Ratios of the values of some physical quantities (density, tem-
perature, etc.) obtained by the present simulation to those derived by
the formulas of Kitaki et al. (2018). The following values are inserted
into the formulas: MBH = 10 M�, ṀBH = 180 LEdd/c2, and α = 0.1. The
colored lines represent the gas mass density (red), the gas temperature
(green), the radiation energy density (blue), the radial velocity (orange),
and the azimuthal velocity (purple). The results agree well (except for
the density at large radii) within a factor of 2 in the region sandwiched
by the two horizontal black lines. (Color online)

the inflow and outflow rates increase outward at r � 200 rS

(see figure 4). The formulas by Kitaki et al. (2018) were
derived in the regime in which outflow is negligible com-
pared with inflow. Although the density profile shows some
discrepancies, the radial velocity profile does not, since the
latter is rather insensitive to ṀBH (Watarai 2006; Kitaki
et al. 2018). In conclusion, we are not allowed to apply
the formulas to the present numerical results in the region
r � 200 rS where the outflow is substantial.

As future work it will be useful to derive new formulas
describing the accretion disk structure in the regime in
which the outflow rate is comparable to the inflow rate.

4.2 Impact on the environment

As we stressed in section 1, the impact on the environ-
ment seems to have been grossly overestimated in the pre-
vious simulation studies, since the outflow was mostly
launched from the initial Keplerian torus. In our simula-
tion we can give more realistic estimations of the impact
of the outflow.

Figure 14 shows the θ profiles of the mass flux, the
momentum fluxes, and the energy fluxes measured at
r = 2545 rS multiplied by r2 in the upper to lower panels,
respectively. (In other words, dṀ/d�, d J̇i/d� with i = r, θ ,
and φ, and dĖ/d� are plotted, where J̇i is the momentum
flow rate, and Ė is the energy flow rate.) The energy fluxes

Fig. 14. Angular profile of the mass fluxes (top), the momentum fluxes
(middle), and the energy fluxes (bottom) at r = 2545 rS in the range
θ = 0◦ –83◦ (= θsurf). The solid lines mean that each value is positive
(e.g., 0 < ρvθ vr ∝ vθ ), and the dashed lines mean that each value is
negative (e.g., 0 > ρvθ vr ∝ vθ ). (Color online)

are also connected to the isotropic X-ray luminosity and
the isotropic mechanical luminosity calculated by

LISO
X (θ ) = 4πr2 F r

lab, (35)

LISO
mec(θ ) = 2πr2ρv2vr. (36)

Here, v2 = v2
r + v2

θ + v2
φ is the total gas velocity, and we

assume that radiation is emitted predominantly in the X-ray
band, since the ratio between the X-ray luminosity and the
bolometric luminosity is ∼71%–98% (Kitaki et al. 2017;
Narayan et al. 2017).

We notice that the radiation luminosity has a peak
in the face-on (θ = 0) direction, while the mass out-
flow rate increases towards the edge-on direction, and the
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momentum flux and the mechanical luminosity reach their
maximum at θ ∼ 15

◦
. In the inner funnel region (with θ ∼

0
◦
–15

◦
), all the lines except for the radiative flux rapidly

decrease with a decrease in θ . This is because the gas
mass density rapidly decreases inward (towards the rota-
tion axis). Although the radial velocity increases towards
the rotation axis, the change in ρ overcomes that in vr so
that ρvr decreases with decreasing θ .

In the outflow region (θ ∼ 20
◦
–83

◦
), by contrast, the

radial components of the fluxes (ρvr, ρv2
r , 0.5ρv2vr) only

slightly or scarcely change in the polar direction.
The isotropic X-ray luminosity decreases slightly with

increasing angle by less than a factor of 2. The previous
studies showed, however, that the isotropic X-ray lumi-
nosity varies by a factor of ∼10 in the azimuthal direction
(e.g., Ogawa et al. 2017). This difference stems from the
different outflow properties. That is, a much larger amount
of gas is blown away in the previous studies because of the
small value of the Keplerian radius adopted. It is difficult
for photons generated inside the disk region (with small θ )
to pass through the outflow region (at large θ ).

Observational determination of the inclination angle
seems to be difficult. By contrast, the spectral shape is
sensitive to the inclination angle because of the significant
Compton scattering within the outflow region (Kawashima
et al. 2012). Spectral calculation based on our hydrody-
namic simulation data is left as future work.

4.3 The energy conversion

The energy conversion efficiency is one of the key quantities
in accretion problems. In subsection 3.2, we evaluated the
inflow rate at the black hole as ṀBH ∼ 180 LEdd/c2, and the
outflow rate above the surface of the disk at around rout

as Ṁoutflow ∼ 24 LEdd/c2. We should note that the numer-
ical results in r ≥ rqss = 600 rS are not so reliable, since
the quasi-steady assumption does not hold there. But we
can accurately estimate the outflow quantities, such as the
outflow rate Ṁoutflow at rout, since the outflows are launched
at relatively small radii, i.e., rlau ∼ 280 rS < rqss. The inflow
and outflow conversion efficiencies are calculated as

β ≡ Ṁoutflow

ṀBH
∼ 0.14, (37)

βin ≡ ṀBH

ṀBH + Ṁoutflow
∼ 0.88, (38)

βout ≡ Ṁoutflow

ṀBH + Ṁoutflow
∼ 0.12. (39)

Here, the denominators of equations (38) and (39),
ṀBH + Ṁoutflow, mean the injected mass flow rate from the

surrounding environment under the assumption that the net
flow rate is entirely constant in radius. Hence, we conclude
that about 12% of the injected gas turns into outflow.

The luminosity measured by a distant observer is
calculated by

LX ≡ 4π

∫ θsurf

0
dθ sin θr2 max

{
F r

lab, 0
}
, (40)

and is LX ∼ 2.5 LEdd at r = 2545 rS (near the outer
boundary), while the predicted luminosity from the slim-
disk formula is given by (Watarai et al. 2001)

Lslim =
[
1 + ln

(
1

30
ṀBH

LEdd/c2

)]
LEdd ∼ 2.8 LEdd, (41)

and is in reasonable agreement.
The mechanical luminosity of the outflow is given by

Lmec ≡ 4π

∫ θsurf

0
dθ sin θ r2 max

{
1
2

ρv2vr, 0
}

, (42)

and is Lmec ∼ 0.16 LEdd at r = 2545 rS (near the outer
boundary). The ratio of the luminosities is Lmec/LX ∼ 0.07.
Hence, the energy carried outside by the radiation is larger
than that by the outflow.

4.4 Outflow in ULXs

Some ULXs are accompanied by optical nebulae with
extents of 10–100 parsecs (e.g., Kaaret et al. 2004) and/or
radio bubbles with extents of 10–100 parsecs (e.g., Berghea
et al. 2020). These nebulae are thought to originate from the
outflow in super-Eddington accretion flow. The isotropic
X-ray luminosities of the central object and the mechanical
luminosities of the outflow are listed in table 3 for some
ULXs. On the observational side, the isotropic X-ray lumi-
nosities are evaluated from the photons which come directly
to the observer, and the mechanical luminosities are evalu-
ated from the optical radiation. The values of LISO

X and Lmec

evaluated in the present study are thus consistent with the
observed luminosities in ULXs (see table 3).

We wish also to note that the iron absorption lines in
X-ray with Doppler velocities of ∼0.2 c are discovered by
stacking analysis (Pinto et al. 2016), and these velocities are
consistent with our results.

4.5 Future issues

The M-1 closure method, an alternative method for calcu-
lating radiation flux, etc., is extensively used in recent sim-
ulations instead of the flux-limited diffusion (FLD) method
(e.g., S

↪
adowski et al. 2015). We note, however, that there
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Table 3. The X-ray luminosities and the mechanical luminosities.∗

Object LISO
X [1039 erg s−1] Lmec [1039 erg s−1] Lmec/LISO

X

Our simulation (θ = 2.
◦
6–80

◦
) ∼2.6–3.7 ∼0.20 ∼0.05–0.08

Holmberg II X-1 (ULX) ∼5–16† ∼0.7‡ ∼0.04–0.14
IC 342 X-1 (ULX) ∼10–20§ ∼3‡ ∼0.15–0.3

∗Here, LISO
X is the isotropic X-ray luminosity of a central object, and Lmec is the mechanical luminosity of the

outflow.
†Kaaret, Ward, and Zezas (2004).
‡Abolmasov et al. (2007).
§Shidatsu, Ueda, and Fabrika (2017).
‖Fürst et al. (2016).
�Pakull, Soria, and Motch (2010).

will be practically no big differences in the calculated accre-
tion disk structure between them, since both methods give
the correct formula of the radiative diffusion approxima-
tion in the optically thick regime. In the optically thin region
(e.g., the outflow region), by contrast, we find slight dif-
ferences, since the M-1 closure gives a different solution
compared with the FLD method there (e.g., in the beam
problem, the shadow test, etc.; see González et al. 2007).
Further, we wish to point out that the M-1 closure method
does not always give the correct radiation fields, since the
M-1 closure method is also an approximation and it is
known to produce inaccurate results in nonuniform radi-
ation fields; see, e.g., Ohsuga and Takahashi (2016) for
the case of a radiation hydrodynamic shock. This issue
will only be resolved by full-transfer simulations in the
future.

We assume equatorial symmetry in our simulation.
When we expand the simulation box in the polar direc-
tion from θ = 0–π/2 to θ = 0–π , the flow pattern in the
disk may be slightly modified by the convective motion
across the equatorial plane, which is seen in S

↪
adowski and

Narayan (2016), but it is hard to believe that the disk struc-
ture will change dramatically from our results.

The next issue is three-dimensional simulations.
S

↪
adowski and Narayan (2016) compared the results

of 2D and 3D GR-RMHD simulations of the super-
Eddington accretion flow, and reported that the phys-
ical values in the accretion disk (e.g., rotational velocity,
surface density) are almost the same within an error
of 10%. They also showed that the radiation energy
density differs only within a factor of 2 between 2D
and 3D simulations. We thus believe that there will be
no significant differences, as far as the global structure
is concerned, but 3D simulations are definitely needed
in future for more advanced study, e.g., spatiotemporal
variation studies.

We used the α prescription for simplicity (Shakura &
Sunyaev 1973), although magnetorotational instability is
believed to be one of the most plausible origins of the

viscosity (Balbus & Hawley 1991, 1992). S
↪
adowski et al.

(2015) calculated the super-Eddington accretion flow by
GR-RMHD simulation and found that the viscosity param-
eter is α ∼ 0.1 and is roughly constant in the radius
outside the innermost stable circular orbit. Therefore, we
conclude that our assumption (α = 0.1) is reasonable,
but in future we need full radiation-MHD simulations for
confirmation.

5 Concluding remarks

In the present study we have carefully solved the structure
of the super-Eddington accretion flow and associated out-
flow, and examined from where in the accretion flow the
outflow is launched and how much material, momentum,
and energy can be blown away to a large distance. For
this purpose, we greatly expanded the simulation box to
rout = 3000 rS and set an extremely large initial Keplarian
radius, rK = 2430 rS, compared with the previous studies.
We could, hence, achieve an unprecedentedly large quasi-
steady radius, r ≤ rqss ∼ 600 rS, within which a quasi-steady
state is realized.

In figure 15 we summarize our view of the structure
of the super-Eddington accretion flow and associated out-
flow obtained through the present study. In this figure we
plot gas motion (both circular motion within the disk and
outflow from the disk surface). The main features can be
summarized as follows:

� The disk thickness (H) is roughly proportional to R (i.e.,
H/R ∼ 1) near the black hole, whereas it is constant in
radius, H ∼ (2–3) × 102 rS ∼ (1.1–1.7)ṁBHrS, far from the
black hole. The photon-trapping radius, Rtrap ∼ 450 rS ∼
2.5 ṁBHrS, approximately separates these two regions.
This feature is consistent with the prediction of the slim-
disk model and the standard Shakura–Sunyaev disk.

� From the streamline analysis we find that the gas on the
disk surface at R ≤ Rlau ∼ 230 rS ∼ 1.3 ṁBHrS is blown
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Fig. 15. Schematic view of the structure of the super-Eddington accretion
flow and associated outflow based on our numerical results. The black
arrows indicate the gas motion. (Color online)

away to produce outflow (see figure 5). The genuine out-
flow (which reaches the outer calculation boundary) is
launched at R � R∞

lau ∼ 140 rS ∼ 0.75 ṁBHrS, well inside
the trapping radius, while the failed outflow originates
from the region between R ∼ R∞

lau and Rlau (see figure 5).
Systematic simulation studies to confirm the ṁBH depen-
dencies of these radii (e.g., Rlau) are left as future work.

� The black hole accretion rate in our study is ṀBH ∼
180 LEdd/c2 and the outflow rate is Ṁoutflow ∼ 24 LEdd/c2.
The ratio of the isotropic X-ray luminosity to the mechan-
ical luminosity is Lmec/LISO

X ∼ 0.05–0.08, which is con-
sistent with observations of ULXs surrounded by optical
nebulae.

� We separately examined the energy balance for the radia-
tion and for the gas. Around the equatorial plane, the gas
is heated via viscous dissipation and is cooled by emitting
radiation at large radii, as formulated in the standard
disk model, but is cooled by inverse Compton scattering
at small radii. The radiation is heated through inverse
Compton scattering and is cooled by advection of the
radiation at small radii, as formulated in the slim-disk
model. The situation is somewhat different near the disk
surface, where gas is heated both by viscous dissipation
and advective heating (not cooling), which occurs since
the entropy decreases inward as gas accretes as a conse-
quence of significant Compton cooling.

� Convection (or large-scale circulation) occurs over nearly
all the accretion disk. Convective motions are observed
even inside Rinflow ∼ 40 rS ∼ 0.22 ṁBHrS in snapshots (see
figure 11), although they are smeared out when time-
averaged (see figure 3). The direction of the convec-
tive motion is sometimes clockwise and sometimes anti-
clockwise, but more frequently we see clockwise motion,
when we set the black hole at the lower-left corner
(see figures 10 and 11).

� Most of the previous simulation studies show a puffed-
up structure near the black hole (R � Rtrap), which seems
to be formed as a direct consequence of adopting a very
small Keplerian radius. We caution that a large amount
of mass outflow can be produced by such a puffed-up
structure, and that cases with small Keplarian radii may
be applied to the tidal disruption events which undergo
super-Eddington accretion. This is because the objects
disrupted by tidal action came close to the black hole.
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