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Abstract

We investigate the radiation fields around super-Eddington accretion flow, in which
multiple inverse-Compton scattering plays a principal role, by using newly developed
code describing Boltzmann radiation transfer in the Schwarzschild space-time. We apply
this code to post-processing spectral calculations based on general relativistic, radia-
tion magnetohydrodynamic simulation data to obtain X-ray spectra seen from various
viewing angles. The radiation fields are distinctively separated into a funnel region with
an opening angle of ∼30◦, which is full with hot (gas temperature of T > 108 K), tenuous,
and high-velocity plasmas, and surrounding cooler (T ∼ 107 K) and optically thick outflow
regions. Accordingly, there is a clear tendency that the smaller the viewing angle, the
harder the spectra. In particular, hard photons with several tens of keV are observable
only by observers at viewing angles less than ∼30◦, consistent with past spectral studies
based on simulations. Further, we investigate how the spectra are varied by a flare occur-
ring in the innermost region, finding that the variation amplitude grows as the photon
energy increases and that the harder photons emerge more quickly than softer photons.
The observational implications on long-term spectral variability of ultra-luminous X-ray
sources are briefly discussed.
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1 Introduction

How to accurately solve radiation transfer equations? This
is one of the most fundamental issues in astrophysics, since
we can obtain rich information mainly via detecting electro-
magnetic wave radiation from astrophysical objects. Radi-
ation is, however, not only a means of observation; it can
also transport energy and momentum, thereby being able
to have a significant impact on the environment around a

radiating source and even on the media inside the source.
Radiation can heat up gas (if absorbed and/or Compton up-
scattered) or cool down gas (if Compton down-scattered).
It can also push material by asserting radiation-pressure or
line-driven force. Good examples are stellar wind, which
affects stellar evolution; and accretion disk outflow, which
controls disk activities; and so on.

Let us focus on the cases of accretion disks around black
holes. We soon notice that it is impossible to discuss X-ray
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emission properties without Comptonization. Seed photons
emitted from a cool and dense disk body are up-scattered
by hot electrons existing around the disk to produce char-
acteristic spectral features, such as hard power-law compo-
nents and/or spectral humps. Two main sites are known to
produce hard X-rays via inverse Compton scattering: low
accretion-rate flow or the so-called radiatively inefficient
accretion flow [RIAF; see chapter 9 of Kato, Fukue, and
Mineshige (2008) and the references therein], and accre-
tion disk coronae above and below sub-Eddington flow
(see, e.g., Liang & Nolan 1984; Haardt & Maraschi 1991;
Kato et al. 2008).

In both cases, the system has high-temperature
(corresponding to a photon energy of ∼100 keV) ionized
gases around the central object. The Thomson optical depth
is typically τ es ∼ 1 and the Compton y-parameter is of the
order of unity.

We wish to note that Comptonization should also be crit-
ical in super-Eddington accretors, since the strong radiation
from the disk can blow off a large amount of gas to form
mildly relativistic, uncollimated hot outflow so that the
photons emitted from the underlying disk body can experi-
ence inverse Compton scattering when passing through the
hot outflow (Kawashima et al. 2009). In contrast with the
two sites mentioned above (i.e., RIAFs and disk coronae),
Comptonizing outflow is characterized by (relatively) low-
temperature (∼ a few keV), optically thick (τ es ∼ 2–5)
Comptonization (e.g., Kitaki et al. 2017). Therefore, mul-
tiple scatterings dominate over single scatterings there.

Precise modeling of the Compton scattering process
should be a critical issue but it is not an easy task, espe-
cially for relativistic plasmas under strong gravity. Several
semi-analytic or simple numerical approaches are known
for calculating radiation transfer with Compton scattering
in accretion flow; see Rybicki and Lightman (1979) and ref-
erences therein. However, more accurate and more realistic
transfer calculations are now required, since high-resolution
spectral data are now available thanks to the rapid progress
in observational instrumentation (e.g., NuStar, etc.).

The Monte Carlo method is the most widely used, pow-
erful tool for calculating radiation transfer with Compton
scattering (e.g., Pozdnyakov et al. 1977; Dolence et al.
2009; Kawashima et al. 2012; Mościbrodzka et al. 2014).
The great advantage of this method is that it can relatively
easily calculate the scattering process, which is very com-
plex in high-temperature gas layers and/or in a scattering
medium moving with relativistic speed. In this method, we
deal with statistics of the trajectory of photon packets in
phase space; that is, photons experience Compton scat-
tering with electrons, obeying the a priori prescribed statis-
tics. The disadvantage of the Monte Carlo approach, how-
ever, is that the precision is limited by the photon statistics.

This limitation appears to be most severe when we handle
photons with much higher energy than the seed pho-
tons, since the number of the former (up-scattered) pho-
tons could be very small, leading to rather poor statistics.
Other disadvantages are difficulty in time-dependent cal-
culation, lack of stimulated Compton scattering, and spa-
tial resolution of physical quantities, although there are
some studies of time-dependent or spatially resolved Monte
Carlo calculations (see, e.g., Kinch et al. 2016; Ryan &
Dolence 2020).

Another approach is solving the Boltzmann radiation
transport equation to obtain the distribution function of
photons in six-dimensional space: three-dimensional (3D)
real space and 3D momentum space; see, e.g., Sumiyoshi
and Yamada (2012), Nagakura, Sumiyoshi, and Yamada
(2014), and Takahashi and Umemura (2017). The merit of
this approach is its capability of simulating the time evolu-
tion of the medium, since we know the distribution function
at all the spatial points and can thus calculate the feedback
effects on the interacting medium. Another advantage is
that this method can naturally be connected to the radia-
tion hydrodynamics (RHD) simulation software, which will
make it possible to perform frequency-dependent RHD sim-
ulations in future. The weak point of this method is a dif-
ficulty in calculating the Compton scattering process, since
it is highly complicated when bulk and/or thermal veloc-
ities are relativistic or when we consider the high-energy
regime. Another concern is the treatment of multiple scat-
terings. The scattering timescale is generally much shorter
than that of the fluid or light crossing time. Usually, the time
interval �t is determined by the light crossing time and so
the gas–radiation interaction term should be calculated by
the implicit method. Then, the number experiencing scat-
tering in one time-step should be much smaller than in
the realistic case, since the scattering kernel describes only
a single scattering. That is, multiple scattering cannot be
precisely calculated by Boltzmann solver calculations, espe-
cially when the time interval �t is taken to be much longer
than the scattering timescale.

To summarize, the Monte Carlo method is easier to
handle but has difficulty in solving time-dependent prob-
lems, while the Boltzmann method is advantageous in
solving time-dependent problems but does not easily prop-
erly calculate multiple scattering processes. In the present
study, therefore, we propose a new methodology to com-
bine these two methods, and we apply our method to
solving the problem of low-temperature, optically thick
Comptonization as realized in super-Eddington flow. On
the basis of the probability function of single scattering
calculated by the Monte Carlo method, we can recon-
struct the probability function of multiple scattering. The
time evolution is then solved by the Boltzmann equation,
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Fig. 1. Time-averaged GRRMHD data in a quasi-steady state (Takahashi et al. 2018). Color contours of the gas density, the gas temperature, and the
gas velocity are displayed in the left, middle, and right panels, respectively. The right panel is overlaid with the velocity vectors. The black (yellow)
dotted contour lines in the right panel indicate the loci of |v/c| = 0.2 (0.5). (Color online)

and the source term is calculated by the probability func-
tion of multi-scatterings. This enables us to calculate
time-dependent radiation fields with multiple thermal/bulk
Compton scatterings. The present study will mark an
important milestone towards the construction of frequency-
dependent general relativistic, radiation magnetohydrody-
namic (GRRMHD) simulation code for accretion flow in
a general context. We first explain the basic methodology
in section 2, and then show the results of typical cases in
section 3. The final section is devoted to a discussion.

2 Method

In the present study we have developed new code for a grid-
based Boltzmann solver of the radiation transfer, incor-
porating the Compton scattering process, in the curved
space-time described by the Schwarzschild metric, and we
calculate the observed spectra of super-Eddington accre-
tion flow and outflow by post-processing. We set G =
c = 1 so that the units of the length scale are 1M =
15(M/10 M�) km and those of the timescale are 1M = 5 ×
10−5(M/10 M�) s.

2.1 GRRMHD background data

We use the GRRMHD data (ρ, T, v) for calculating the
radiation field in our simulation, where ρ is the density,
T is the temperature, and v is the velocity of the fluid.
These data are obtained by the 2D axisymmetric simula-
tions of Takahashi, Mineshige, and Ohsuga (2018), who
solved the GRRMHD equations in polar coordinates on the
basis of the Kerr–Schild metric around a non-spinning black
hole. Here, we summarize the properties of the GRRMHD

simulation data used

� The simulation domain (r [M], θ [rad]) ∈ [1.96, 245]
× [0, π] is divided into 264 × 264 cells. A 10 M� black
hole was placed at the origin (r = 0).

� The simulation was started from an equilibrium torus
composed of pure hydrogen plasma threaded with single
poloidal magnetic fields. The inner edge of the initial torus
was at r = 20 M and the pressure maximum at r = 33 M.

� The super-Eddington accretion flow and radiatively
driven outflows were reproduced. The mass accretion rate
onto the central black hole was about 300 LEdd in the
quasi-steady state, which was achieved after an elapsed
time of 3000 M.

� In the quasi-steady state, no unphysical flares (which are
occasionally observed in simulations based on the M1
scheme) or artificial abrupt heating occurred.

We employ simulation data that are time-averaged over
the time span t = 3000–3300 M (in the quasi-steady state).
Figure 1 shows, from left to right, contour maps of the den-
sity, temperature, and velocities overlaid with the velocity
vectors. We see a two-phased structure composed of a
dense, low-temperature torus region and a tenuous, high-
temperature outflow region.

Before performing the radiation transfer calculation we
transformed the values described in the Kerr–Schild metric
into those in the Schwarzschild metric. We also reduced
the numerical resolution of the data from 264 × 264 grid
points to 32 × 64 grid points because of the limitations of
the calculation resource. The electron temperature in our
calculation is assumed to be equal to the proton tempera-
ture, for simplicity (this approximation will be discussed in
subsection 4.4).
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2.2 Basic equation

The basic equation that we solve in the present paper is
the conservative form of the Boltzmann equation in the
Schwarzschild coordinates (t, r, θ , ϕ) derived by Shibata
et al. (2014),
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= Srad, (1)

where f, M, and Srad are the distribution function of pho-
tons, the mass of the central black hole, and the source
term via gas–radiation interactions, respectively. The set
(ν, θ̄ , ϕ̄) represents the coordinates in the momentum space
of photons, in which ν is the frequency of photons mea-
sured by an Eulerian observer, θ̄ is the angle between the
direction of the photon propagation and the r-direction,
and ϕ̄ is the angle between the θ -direction and the pro-
jected photon momentum vector on the plane perpendic-
ular to the r-direction. Note that we use fluid data provided
by the 2D axisymmetric simulation so that the derivative
∂/∂ϕ vanishes.

We solve the left-hand side of equation (1) (i.e., the
advection term) by the second-order upwind method with
the min-mod limiter (although it is slightly modified, as will
be shown in subsection 2.4 and the Appendix). The right-
hand side, which is the source term of gas–radiation interac-
tions, is solved using interaction tables (see subsection 2.5).

2.3 Simulation setup

We perform the radiation transfer simulations within
the 5D simulation domain of r [M] = 2.1–250, θ =
0–π , hν [keV] = 0.01–500, θ̄ = 0–π , and ϕ̄ = 0–2π . The
grid points are uniformly distributed in the θ -, θ̄ -, and
ϕ̄-directions, and uniformly distributed in logarithm in
the ν- and r-directions. The numbers of grid points
are (Nr , Nθ , Nν, Nθ̄ , Nϕ̄) = (32, 64, 50, 9, 8). As the opacity
sources, bremsstrahlung by a pure hydrogen plasma and
electron scattering (with a Klein–Nishina cross-section) are
included.

At the inner and outer boundaries, r [M] = 2.1 and 250,
we employ free (no-gradient) boundary conditions for the
outgoing radiation, and the incoming radiation is set to
zero. We use the reflective boundary condition at θ = 0
and π , as well as at θ̄ = 0 and π . At the boundaries of the
frequency grid we employ the dumping boundary condition
(i.e., we assign small values there). We use the periodic
boundary condition at ϕ̄ = 0 and 2π .

Initially we assume no radiation field in the whole simu-
lation domain and calculate the time evolution of the radi-
ation fields by solving equation (1).

2.4 Advection terms

In our simulations, the time interval �t is determined
by the Courant–Friedrichs–Lewy condition for the advec-
tion terms. Hereafter, we write each grid in the 5D real-
momentum space by (r j , θk, νi , θ̄m, ϕ̄n). The grid of the
photon frequency is set regularly in the fluid-rest frame
for convenience in calculating the source term, since the
scattering table which we refer to is defined in the fluid-rest
frame. Note that the scattering probability depends on the
scattering angle and the frequency of an incoming photon
in the fluid-rest frame. In contrast, the grid for the direction
of the photon propagation (θ̄ and ϕ̄) is set regularly not
in the fluid-rest frame but in the laboratory frame, since
then the advection term can be solved more easily and the
grid regularity in the fluid-rest frame does not facilitate this
calculation.

This sort of grid setting is the same as that adopted
by Nagakura, Sumiyoshi, and Yamada (2014). In such a
grid setting the grid of frequency in the laboratory frame is
different for each grid, (r, θ, φ, θ̄ , ϕ̄)— see the Appendix for
more details. For instance, if two neighboring grids have
different fluid velocities, the ith frequency in the laboratory
frame (which corresponds to the ith frequency in the fluid-
rest frame, ν i) is different. This is because the frequency in
the laboratory frame depends on the Doppler factor, which
is a function of the direction of the photon propagation
and the fluid velocity. We thus need to turn the variable
frequency grid into a regular one in the laboratory frame to
solve the advection terms.

The numerical procedures can be summarized as:

1. Interpolate the distribution function in the co-moving
regular grid points to obtain the values in the laboratory
regular grid points.

2. Calculate numerical fluxes in each direction other than
the frequency differential in the laboratory regular grid
points.

3. Interpolate the numerical fluxes in the laboratory reg-
ular grid to obtain the values in the co-moving regular
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grid and evaluate the numerical flux in the frequency
direction.

4. Update the values of the radiation intensity by using the
numerical fluxes obtained in step 3.

More detailed procedures are presented in the Appendix.

2.5 Source term

Although the distribution function should be updated by
solving (1–2 M/r)−1/2∂f/∂t = Srad, evaluating the source
term is basically difficult, especially when the Compton
scattering process is involved, because information in any
position of the 3D momentum space (ν, θ̄ , ϕ̄) is coupled
and entangled with each other, unlike the cases with
absorptions and/or Thomson (and other elastic) scattering
only. In other words, the non-elastic scattering process
(e.g., Compton scattering or even Thomson scattering by
thermal electrons) can be considered as the flow in the
3D momentum space of photons, while the elastic scat-
tering (e.g., Thomson scattering by electrons, whose motion
is negligibly slow) can be considered as the flow on the
constant-energy surface, which has a 2D structure, in the 3D
momentum space of photons. It is thus difficult to integrate
the scattering kernel whenever the Compton scattering is
effective.

For this reason, we calculate two interaction tables
(Sabs,scat

i,m,n;i ′,m′,n′ and Semit
i,m,n) beforehand and update the distri-

bution function by

f (νi , θ̄m, ϕ̄n; t + �t) =
∑

i ′,m′,n′
Sabs,scat

i,m,n;i ′,m′,n′ f (νi ′ , θ̄m′ , ϕ̄n′ ; t)

+Semit
i,m,n. (2)

The first term on the right-hand side corresponds to the
photons travelling from (νi ′ , θ̄m′ , ϕ̄n′ ) to (νi , θ̄m, ϕ̄n) in 3D
momentum space while suffering from absorption and scat-
tering. Also, Semit

i,m,n means an increase in the distribution
function by emission. In the following subsections, we intro-
duce how we obtain Sabs,scat

i,m,n,i ′,m′,n′ and Semit
i,m,n.

We omit the subscripts indicating the spatial grid points
here, since the gas–radiation interaction occurs in a local
grid.

2.5.1 Single scattering function
To prepare for numerical calculations we first estimate the
single scattering distribution function by Monte Carlo sim-
ulations, in which we take into account the Compton scat-
tering by thermal electrons and the Klein–Nishina cross-
section. These Monte Carlo simulations provide us with the
total cross-section κ total(ν in, Te) and the single scattering dis-
tribution function P1(νout, �, ν in, Te), where νout, �, ν in, and
Te are the photon frequency after the scattering, the angle
between the incoming photon direction and the outgoing

photon direction, the frequency of the incoming photon,
and the electron temperature.

For a set of (ν in, Te), we perform Monte Carlo sim-
ulations with 108 injected photons, and scattered pho-
tons are collected for each �� = π/100 bin in the range
0 ≤ � ≤ π and each �log hνout [keV] = 0.055 bin in
the range 4 × 10−7 ≤ hνout [keV] ≤ 4 × 104. We repeat the
above procedure 200 × 30 times for each pair of (ν in, Te)
in order to cover the ranges 4 × 10−7 ≤ hν in [keV] ≤ 4 ×
104 and 10−3 ≤ Te [keV] ≤ 103.

2.5.2 Interaction table for multi-scattering and absorption
Using the single scattering distribution function P1 obtained
above, we produce the table for the multiple scattering and
absorption. The time interval �t in the present simulations
becomes much larger than the scattering timescale in the
high-density cells where the multiple scattering intricately
changes the distribution function. Thus, we employ a sub-
time interval, �tscat (= �t/N), to treat multi-scattering more
accurately, where the controll parameter N is fixed to 7 in
our simulations. We performed the same simulation with N
= 14, finding no appreciable changes (less than 10%). By
starting from f̃ 0 = δi

i0δ
m
m0δ

n
n0, we solve the equation

f̃ l+1(νi , θ̄m, ϕ̄n) = [1 − φ(νi , θ̄m, ϕ̄n, T, ρ, v,�tscat)]

×[1 − φabs(νi , θ̄m, ϕ̄n, T, ρ, v, �tscat)]

× f̃ l (νi , θ̄m, ϕ̄n)

+
∑

i ′,m′,n′
φ[(νi ′ , θ̄m′ , ϕ̄n′ , T, ρ, v, �tscat)]

×[1 − φabs(νi ′ , θ̄m′ , ϕ̄n′ , T, ρ, v,�tscat)]

×P1(νi , �m,n;m′,n′ , νi ′ , T)

× f̃ l (νi ′ , θ̄m′ , ϕ̄n′ )�p3
i ′,m′,n′ (3)

for i = 1–Nν , m = 1–Nθ̄ , n = 1–Nϕ̄ , where f̃ is the
working distribution function, φ is the scattering proba-
bility function, φabs is the absorption probability function,
�m,n;m′,n′ indicates the angle between the photon directions
of (θ̄ , ϕ̄) = (θ̄m′ , ϕ̄n′ ) and (θ̄m, ϕ̄n), and the superscript l
denotes the number of iterations of the sub-time-step. It is
notable that the scattering/absorption probability depends
on the fluid velocity and the direction of photon propaga-
tion. After solving the above equation N times repeatedly,
we obtain the table for multiple scattering and absorption
as Sabs,scat

i,m,n;i0,m0,n0 = f̃ N(νi , θm, φn) for i = 1–Nν , m = 1–Nθ̄ ,
n = 1–Nϕ̄ .

By repeating the above procedure Nν × Nθ̄ × Nϕ̄ times
while changing (νi0, θ̄m0, ϕ̄n0), we obtain the full set of coef-
ficients of Sabs, scat in equation (2). This is the table for
multiple scattering and absorption.
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Fig. 2. Left: Time evolution of the total luminosity over the time span 0–1250 M. Right: Observed spectra (in the quasi-steady state) viewed by a
distant observer located at angles of θview [radian] = 0.02 (∼0◦, red), 0.32 (∼20◦, green), 0.52 (∼30◦, blue), and 1.01 (∼60◦, purple). The closed circles
denote the calculated data points, whereas the curves represent the spline fits to the three-point average of the data points. (Color online)

2.5.3 Emission
In the previous subsection, the emitted photons during the
time interval �tscat were not considered. The emitted pho-
tons also suffer from multiple scattering and absorption,
so that the coefficient for the emission can be obtained by
repeating the following equation N times:

f̃ l+1(νi , θ̄m, ϕ̄n) = [1 − φ(νi , θ̄m, ϕ̄n, T, ρ, v,�tscat)]

× f̃ l (νi , θ̄m, ϕ̄n) + κabs(νi , θ̄m, ϕ̄n, T, v)ρ�tscat Bν(T)

1 + κabs(νi , θ̄m, ϕ̄n, T, v)ρ�tscat

+
∑

i ′,m′,n′
φ([νi ′ , θ̄m′ , ϕ̄n′ , T, ρ, v, �tscat])P1(νi , �m,n;m′,n′ , νi ′ , T)

× f̃ l (νi ′ , θ̄m′ , ϕ̄n′ ) + κabs(νi ′ , θ̄m′ , ϕ̄n′ , T, v)ρ�tscat Bν(T)

1 + κabs(νi ′ , θ̄m′ , ϕ̄n′ , T, v)ρ�tscat
�p3

i ′,m′,n′ (4)

for i = 1–Nν , m = 1–Nθ̄ , n = 1–Nϕ̄ as Semit
i,m,n = f̃ N(νi , θm, φn),

where κabs is the opacity for the absorption, Bν is the Planck
function, and f̃ 0 is set to be zero.

In the present simulations we investigate the time evolu-
tion of f using equation (2). The Monte Carlo simulations
are necessary to produce the table, but not required for
every step.

3 Results

3.1 Simulation overview

We calculate the observed luminosity at frequency ν seen
from a viewing angle of θ view, Lν(θ view, t), by

Lν(θview, t) = 4π

∫
{θ,θ̄ ,ϕ̄}∈�(θview)

Iν(t, r = rout, θ, θ̄ , ϕ̄) dS, (5)

where the set �(θ view) contains all elements (θ, θ̄ , ϕ̄) sat-
isfying the condition where the direction determined by
(θ, θ̄ , ϕ̄) is parallel to the direction of the observer (θ view)
and where it is outward-directing on the outer boundary
of the simulation domain, and the area element dS is that
on the screen of the distant observer, and the bolometric

luminosity, Lbol(t), by

Lbol(t) = 1
2

∫∫
Lν(θview, t) dν d(cos θview) (6)

at each time. Here, we assume that the photons go straight
without suffering gravitational redshift outside the com-
putational box, since the distance from the black hole is
sufficiently far that the general relativistic (GR) effect is
negligibly small. We plot how the bolometric luminosity
grows, starting from the initial zero-luminosity state, in the
left panel of figure 2. The bolometric luminosity reaches
∼1040 erg s−1 (∼10 LEdd) in four light crossing times (where
we define the light crossing time to be tcross ≡ rout/c =
250 M). We see that the radiation field settles down to a
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Fig. 3. Contour maps of the total radiation energy density (upper left) and the radiation density at different energy bins: 1 (upper right), 10 (bottom
left), and 100 keV (bottom right). The lines in the last three panels indicate the loci of τeff = 1 and 10 (black solid and dotted lines), and τes = 1 and 10
(yellow solid and dotted lines). The dashed line in the upper left panel is the line with polar angle θ = 30◦, which indicates the approximate position
of the funnel wall. (Color online)

quasi-steady state at t > tqss ≡ 4tcross (see the left panel of
figure 2).

The right panel of figure 2 shows the observed spectra in
the quasi-steady state, Lν(θ view, t = tqss) for various viewing
angles. We see a clear trend that the larger the inclination
angle, the lower the hard X-ray component, and hence the
softer the spectrum. This can be easily understood, since the
high-energy photons (with energy > 10 keV) are mostly gen-
erated in the funnel region. Therefore, they can be observed

only by a nearly face-on observer (with a viewing angle θ view

≤ 30◦) and are not seen by a nearly edge-on observer, for
whom they are effectively blocked by optically thick out-
flow. The lower-energy photons (with energy < 10 keV), by
contrast, originate from the much wider region surrounding
the funnel and disk, and hence are always observable: they
can directly propagate even to an edge-on observer.

We next examine the two-dimensional distributions of
the radiation energy density in the simulation box. The
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upper left panel of figure 3 shows the color contours of
the total radiation energy density (integrated over photon
energy) overlaid with the total energy flux vectors, while the
other three panels of figure 3 illustrate the color contours
of the energy density of radiation with ν = 1 (upper right),
10 (lower left), and 100 keV (lower right). The loci of the
effective optical depth of τ eff = 1 and 10 are indicated by
the black solid and black dotted lines, respectively, while
those of the Thomson optical depth of τ es = 1 and 10
are indicated by the yellow solid and yellow dashed lines,
respectively.

The strongest is the 10 keV emission from the optically
thick disk region. (This is the reason why the total radi-
ation energy density reaches its maximum value there.)
Further, we find in the lower two panels that the high-
energy photons, �10 keV, emerge from hot regions within
the jet funnel region. Here, by the funnel region we mean
the region which is full with hot (T > 108 K), tenuous (with
Thomson optical depth τ es < 1), and rapidly outflowing
(with v > 0.1 c) gas (Kitaki et al. 2017). Crudely, this funnel
region has an opening angle of 30◦ (the region above the
black dashed line in the upper left panel) and is surrounded
by the slower (with velocity v < 0.1 c) and denser outflow
region. Such high-energy photons propagate along the polar
axis or are advected by the optically thick outflow, which is
launched from the inner hot region and propagates toward
the direction of a polar angle of 20◦–40◦. The 10 keV pho-
tons are produced mostly within the disk and some in the
funnel, whereas the 1 keV photons originate from a much
wider space in and around the disk. The photons emitted
from the disk can effectively lose their energy via Compton
scattering, whereas those from the funnel can partly leak
into the slower and denser outflow region.

3.2 Dependence of intensity map on viewing
angle and photon energies

We next show in figure 4 how the super-Eddington accre-
tion flow and outflow look in X-rays to distant observers
at different viewing angles (measured from the polar axis),
θ view. The upper panels show images of the flow seen from
a viewing angle of θ view ∼ 0◦ at photon energies of 1, 10,
and 100 keV from left to right. In all the panels the polar
cap region around (x, y) = (0, 0) is brightest and the region
around θ ∼ 50◦ is the second brightest, about one third of
the former. Although the emission from the latter is not so
strong, it has a much wider area than the former.

The three panels in the middle row show the same but
seen from θ view ∼ 20◦. A large fraction of the hard photons
(�10 keV) come from the funnel region, whereas lower-
energy ones originate from more or less the entire region.
The brightest region at 1 keV is the off-polar regions of

θ = 20◦–50◦. The same trend can be seen in the bottom
panels for the cases with θ view ∼ 30◦. Since gas is rotating
around the black hole, radiation tends also to go around
the polar axis after undergoing multi-scattering, especially
in the optically thick region. This effect can be clearly seen in
the middle and lower rows of figure 4. From all the panels
in figure 4 we understand that very high-energy emission
(above a few tens of keV) is very sensitive to the viewing
angle, while softer emission is not so sensitive to the viewing
angle.

3.3 Comparison with isotropic scattering

In order to investigate the importance of anisotropic scat-
tering effects dependent on photon energy in Compton
scattering, we repeat the same radiative transfer simula-
tion but adopting an isotropic scattering kernel; that is, we
now use an angle-averaged scattering probability function,
P′(ν, ν ′, T) ≡ ∫

P1(ν, �, ν ′, T) d�/4π . For convenience,
the superscript “iso” means a value obtained by simulation
using the isotropic scattering kernel, and we write the rela-
tive difference of any physical quantity, Q, between the two
simulations (one with anisotropic scattering kernel and the
other isotropic) as εR(Q) ≡ (Q − Qiso)/Q.

The middle panel of figure 5 shows the relative difference
of the observed spectrum for several viewing angles. The
biggest difference is found at photon energies of ∼10 keV,
especially when the viewing angle is large. The maximum
relative difference amounts to ∼20% at around 10 keV.
This difference stems from the different angular dependence
of the scattering, but we wish to understand for which
region a big difference arises. We carefully compare the
images for the cases with and without anisotropic scat-
tering effects, and find the biggest difference in the funnel
region, especially for higher-energy photons. Further, we
find a large difference in Fr, the radial component of the
radiation flux. Interestingly, Fr grows upward, since high-
energy photons are generated within the funnel (see the
lower right panel of figure 3). Since the funnel wall region
corresponds to the region where the fluid velocity is rela-
tively higher, we suggest that these big differences may be
consequences of the bulk Comptonization rather than the
thermal Comptonization (see next subsection).

3.4 Contribution of bulk Comptonization

To check the importance of the bulk Comptonization, we
repeat the same transfer simulation but excluding the bulk
Compton scattering, by assigning zero velocity in the funnel
region (with θ < 30◦). The calculated observed spectrum
shows the biggest difference in the high-energy regime (see
the right panel of figure 5). We can understand this trend
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Fig. 4. Images observed by a distant observer located at viewing angles (measured from the polar axis) of 0◦ (upper row), 20◦ (middle row), and
30◦ (bottom row) for photon energies of 1 (left column), 10 (middle column), and 100 keV (right column). The yellow line represents the intersection
between the funnel wall (defined by the polar angle of θ = 30◦, see figure 1) and the outer boundary of the simulation box. The plus marker indicates
the position of the origin, where the black hole is located. (Color online)

through figure 4, which shows that the high-energy pho-
tons (� 20 keV) come from the interior of the funnel region
for all viewing angles, where the bulk Compton scattering
plays an important role. We therefore conclude that the
high-energy photons are mainly made by the bulk Compton
scattering near the funnel wall. By contrast, we see smaller
differences in the low-energy spectrum, since low-energy

photons (�10 keV) are generated outside the funnel, espe-
cially in the disk and surrounding slow outflow region
(see the upper right panel of figure 3).

3.5 Spectral variability caused by a flare

It is well known that black hole objects commonly exhibit
significant degrees of variability on various timescales. Such
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Fig. 5. Left: Angular dependence of the observed spectrum in the fiducial model (with anisotropic scattering effects, dashed line) and that in the
isotropic model (solid line). Middle: Relative errors of the observed spectrum, εR(νLν), between the fiducial model and the isotropic model. Right:
As the left panel but for the case with no bulk Comptonization. The closed circles denote the calculated data points, while the solid curves in the left
and right panels are the third-order spline fit to the data points. (Color online)

variabilities were already known in the dawn of X-ray
astronomy (e.g., Oda et al. 1971), but their origin remains
an open issue (see, e.g., Done et al. 2007; Falanga et al.
2015, and references therein). One of the most promising
possibilities is assembly of flare-like events (Galeev et al.
1979). The frequent occurrence of magnetic flares is very
likely in hot accretion flow like RIAF and in an accretion
disk corona, since both seem to be composed of hot magne-
tized plasmas, like solar coronae. This has led to the idea of
the lamppost model, in which a compact hard X-ray emit-
ting source above a black hole illuminates a surrounding
accretion disk (e.g., Martocchia & Matt 1996; Miniutti &
Fabian 2004). It is thus interesting to see how the spectra
change with time in response to a flaring event occurring in
the innermost region.

Prompted by such considerations, we calculate the spec-
tral variation of a super-Eddington accretor in response
to a sudden heating of the innermost zone caused by a
flaring event (i.e., magnetic reconnection). Using the simu-
lation data at t0 = 1000 M, in which a quasi-steady state
is achieved, we suddenly raise the gas temperature Tgas in
the innermost funnel region (r < 20 M and τ es < 10, where
τ es is the optical depth by electron scattering calculated
from the polar axis) by a factor of 10 for a time interval
of 200 M (corresponding to 10 times the light crossing time
of the flare region), and then suddenly drop the gas tem-
peratures to their original values (we do not consider any
specific mechanisms but simply assume sudden cooling;
this issue will be improved in a future work). We calcu-
late how the spectrum changes with time with the occur-
rence and termination of the flare, and show the results
in figure 6.

As is clearly shown in this figure, the spectra are largely
deformed during the flare, especially in the hard X-ray range
above ∼20 keV. Notably, such variations are sensitive to

Fig. 6. Time evolution of the observed spectra in response to a flare that
occurred at t = t0 in the innermost zone viewed by a face-on observer
(with θview = 0◦). The color of the line changes from blue to red to green,
as time goes on. The number near each line indicates the order of the
time evolution: t − t0 [M] = 50, 300, 350, 400, 450, 500, 550, 800, and
1000 for the numbers 1 to 9, respectively. Note that the time of 1000 M
corresponds to ∼0.05 (M/10 M�) s. (Color online)

the viewing angle; the smaller the view angle, the larger the
variation amplitude. In the face-on case, the high-energy
photon (�20 keV) counts begin to increase at t = 1250 M
(∼t0 + tcross, between numbers 1 and 2 in figure 6), reach
their maximum value at t ∼ 1400 M (between numbers 4
and 5 in figure 6), and then decay to the steady-state values.
The maximum amplitude of the variation is by a factor of
∼3 at a photon energy of ∼60 keV.

Why is the variability amplitude larger in hard X-rays to
a face-on observer? This is because the hard X-ray emitting
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region is much more compact than the soft X-ray emitting
region (see figure 3), and because the hard X-rays can only
reach nearly face-on observers and are blocked to observers
at larger viewing angles (see the right panel of figure 2; see
also figure 4).

Another noteworthy feature is the time delay in response
among different energy bands: 60–100 keV photons rise
more quickly than 15–30 keV photons, but the decay is
similar among the different energy bins. This time delay
between the arrival of harder and softer photons shown
in figure 6 indicates that the hard photons generated in the
funnel area close to the black hole are down-scattered at the
funnel wall during the propagation to the outer boundary
and thus their arrival is delayed. This mechanism is the
same as that claimed by Kitaki et al. (2017). We may thus
conclude that the spectral variability reflects the geometry
of the hard X-ray emitting region.

We must admit, however, that it is practically impossible
to detect such rapid hard X-ray variation with the existing
or any planned X-ray satellites for the case with stellar-mass
black holes. The timescale will be much longer, though, in
cases with massive black holes: on the order of ∼400 M =
2 × 104(M/106 M�) s. It might then be feasible to detect
spectral variations with a future mission with good hard
X-ray sensitivity. Application to massive black holes will
be a future issue (see next section).

4 Discussion

In the present study we develop a new method for solving
the Boltzmann radiation transport in the Schwarzschild
space-time, incorporating the Compton scattering pro-
cesses, and calculate the observed spectra of super-
Eddington accretion flow and associated outflow. In this
section we discuss the observational implications, compare
with past simulation studies, and consider remaining future
issues.

4.1 Observational implications: ULXs

The best objects we consider for the application of the
present study are ultra-luminous X-ray sources (ULXs):
compact, bright X-ray sources with luminosities compa-
rable to or exceeding 1039 erg s−1 found in off-nuclear
regions of nearby galaxies. There are several scenarios pro-
posed to explain the nature of ULXs, but we favor the
super-Eddington model (e.g., King et al. 2001; Watarai
et al. 2001); that is, high luminosities of ULXs can be
explained by super-Eddington accretion onto a stellar-mass
black hole (with a mass of several tens of M� at most).
One of the reasons for believing in the occurrence of super-
Eddington accretion is the discovery of ULX pulsars, which

comprise magnetized neutron stars (although we do not
consider ULX pulsars in this discussion). Another reason is
that high-mass, binary companions are seemingly observed
in some ULXs, and high mass-transfer rates via Roche-lobe
overflow are expected there; see subsection 4.5 in the review
by Kaaret, Feng, and Roberts (2017) and the references
therein.

Rather unique ULX spectra, in comparison with the
(sub-Eddington) Galactic X-ray binaries containing black
holes, also support the super-Eddington model. There are
several distinct spectral states known for the X-ray spectra
of ULXs: the broadened disk (BD) state, hard UL state,
soft UL state, the supersoft UL (SSUL) state, etc.; see, e.g.,
figure 2 of Kaaret, Feng, and Roberts (2017) for typical
spectra. Interestingly, some of them (BD and hard UL states)
show a rather broad spectral bump in the several to 10 keV
range, which is consistent with the present study. To be
more precise, hard UL spectra show rapid decay above sev-
eral keV, whereas the typical X-ray spectrum extends over
10 keV and is very reminiscent of our calculated spectrum
(see the right panel of figure 2). It is not clear yet why our
model is consistent only with one particular state; this issue
is left for future consideration. We just add that such a
hard X-ray spectrum reflects very high temperature in the
funnel region obtained by the GRRMHD simulation (see
the discussion in the next subsection).

We should also mention that our spectra show rather
weak soft X-ray emission compared with observations,
especially below a few keV. This is because of the fluid
model assumption (see subsection 2.1). The GRRMHD
simulations started with an initial dense torus located at
several to several tens of M, from which super-Eddington
accretion flow is initiated; that is, a surrounding thin and
cool disk (at r > several tens of M), which should exist
in real systems, is totally missing in the simulation so that
the soft X-ray emission which would be produced in the
thin and cool disk does not appear. This point needs to be
improved in future studies (see also subsection 4.4).

4.2 Comparison with past simulation studies

We next discuss the connection with past simulation
studies. The spectral study of super-Eddington accre-
tors based on RHD simulation data was first performed
by Kawashima et al. (2009, 2012), who calculated the
observational X-ray spectra by using a Monte Carlo
method and could reproduce the basic features of the
observed X-ray spectra of ULXs, namely a spectral rollover
around 5 keV and a hard power-law component extending
up to 10 keV. They also pointed out the significance
of bulk Comptonization and suggested that the face-on
luminosities could exceed the luminosities of bright ULXs,

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/73/3/701/6276630 by guest on 19 April 2024



712 Publications of the Astronomical Society of Japan (2021), Vol. 73, No. 3

Lx > 1040 erg s−1. Such features are consistent with our
results.

Kitaki et al. (2017) investigated the spectral properties
of super-Eddington accretion flows with a Monte Carlo
approach. Their results can explain the typical spectral fea-
tures of ULXs, such as the hard excess above several keV.
Although the accretion rate they adopted is near what we
adopted, the spectral shapes are distinct between the two.
Such differences arise because of the different fluid models.
We find that the gas temperatures differ by a factor of two
or more in the optically thick region near the black hole.
Much larger differences are found in the funnel region; the
temperature in their simulation is ∼108 K (see their figures 1
and 2), which is more than one order of magnitude lower
than our fluid data, ∼109 K, at most.

What causes such a difference? These major differences
may arise from the inclusion/absence of GR effects and/or
magnetic fields, since the data they use is based on 2D
RHD simulation (which includes neither GR effects nor
MHD processes). The GR effects provide deeper gravita-
tional potential, which will give rise to a larger amount of
energy released and thus result in higher gas temperatures.
Magnetic fields can produce more energetic phenomena,
such as magnetic reconnection, and may thus result in even
higher gas temperatures. This is the main reason why the
spectrum of our result is much harder than theirs. However,
we should also point out that the observed spectral rollover
around several keV is nicely reproduced by Kitaki et al.
(2017), and thus supports relatively low (∼108 K) funnel
temperatures.

Narayan, Sa
↪
adowski, and Soria (2017) investigated the

spectra of super-Eddington flows, incorporating both GR
and magnetic field effects. Their spectrum from the model
SANE (the green line in their figure 4) is also in good agree-
ment with ULX BD-state spectra. Big differences from our
results are that (i) they adopted a large outer boundary of
the fluid data, i.e., 105 M, which is 400 times greater than
ours, and that (ii) they approximately handled the Compton
scattering by using the Kompaneets equation and isotropic
scattering, while we handle it nearly perfectly by directly
solving the Boltzmann equation except for the induced scat-
tering. The difference in the outer boundary may affect the
spectrum, as mentioned above (see also their figure 13),
since the optical depth of the outflow can become more
than our result and because the soft photons from the disk
may increase.

The Kompaneets equation is derived under the assump-
tion that the radiation field is isotropic and that the Fokker–
Planck approximation would be a good approximation. In
the funnel, the radiation field is highly anisotropic and the
energy shift by the single scattering is very large, �ε/ε > 1
(with ε being the photon energy). This fact should inevitably

affect the calculated spectra in the high-energy regime.
They also showed a brightness map (see their figure 5),
in which the funnel region is clearly seen when viewed
from a low viewing angle. This feature is shared with our
result.

It is notable that they estimated the gas temperature in a
self-consistent fashion by considering the balance between
radiation cooling and viscous heating, reporting that the
observed spectra are significantly changed (see the red lines
in their figure 4) by using the self-consistent temperature.
In our method, the gas temperature is considered to be
calculated in the GRRMHD simulation. For a more precise
analysis of the spectra of ULXs, we should use the self-
consistent temperature. This will be done in future work
(see also subsection 4.4).

4.3 On the long-term spectral variability of ULXs

ULXs are known to exhibit rather complex X-ray spectral
variations. A good example is displayed for the case with
Ho IX X-1, see figure 3 of Vierdayanti, Mineshige, and
Ueda (2010), where significant spectral variabilities were
found on timescales of several to 100 d or even longer.
Obviously, there is no one-to-one correspondence between
the spectral shape and the X-ray luminosity. It seems that
the broad soft X-ray component (in the range 0.5–5 keV)
and the hard X-ray component (above 5 keV) vary inde-
pendently. In some epochs the former totally dominates,
with the latter being missing; in other epochs, the latter
dominates with the former being weak. There also exists an
epoch in which both components are bright. How can we
understand this?

Since the timescale of the spectral variations of the sort
we encounter here is much longer than the flaring timescale
(see subsection 3.5), the variations cannot be of flare origin.
We need to consider variations over a much wider spatial
range. It is important to note in light of the present analysis
that the soft, broad spectral component and the hard-band
component have different origins: the latter originates from
the funnel region, while the former from the disk and sur-
rounding outflow. To understand the complex spectral vari-
ation of Ho IX X-1, we first need to require that it should be
seen from nearly the face-on direction, since otherwise hard
X-ray emission is difficult to observe. This agrees with the
fact that its luminosity exceeds the Eddington luminosity,
since mild beaming of radiation is one of the most promi-
nent features of the super-Eddington flow. It then follows
that the broad soft X-ray component and the hard X-ray
component should change in a similar way, as long as the
mass accretion rate (Ṁ) is roughly constant in space. The
existence of complex spectral variability thus means that
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accretion should be time-dependent. If so, the expected vari-
ation timescale is the viscous timescale, namely

τvis ≡ 1
α�K

(
R
H

)2

� 104.2 s
( α

0.1

)−1

×
(

M
10 M�

)(
R

102 RS

)3/2 (
R/H
102

)2

, (7)

where the Keplerian angular frequency is �K ≈
√

GM/R3

and we estimated the aspect ratio of the standard-type disk
at R ∼ 102RS (with RS = 2 M being the Schwarzschild
radius) to be

H
R

∼ cs

R�K
� 10−2

(
T

107 K

)1/2 (
R

102 RS

)1/2

(8)

(with cs being the sound velocity) from the hydrostatic bal-
ance in the vertical direction (see sub-subsection 3.2.3 of
Kato et al. 2008). We may thus conclude that Ṁ modula-
tion over spatial ranges of several hundreds of RS should
be responsible for the observed spectral variabilities on
timescales of several days or longer. Although we do not
specify the origin of Ṁ variations here, this is a universal
conclusion regardless of the cause of variability.

Here, we should again add a note of caution that a
standard-type disk (which should be located around the
initial torus) is not simulated in the present study. We thus
perform a thought experiment here. Suppose that the mass
injection rate suddenly increases at large radii, say at sev-
eral hundreds of RS. Then, enhanced mass inflow is initi-
ated there and propagates inward on the viscous timescale
on the order of several days or even longer. Accordingly,
the broad soft X-ray component first grows, as the Ṁ burst
propagates inward, but the hard X-ray component does
not respond immediately, since it is generated only in the
funnel region. The hard X-ray component starts to rise
only after the Ṁ burst reaches the innermost region, but
in the meantime Ṁ in the outer parts may start to decay.
Hence, there exists some time delay, comparable to the
viscous timescale, between the rise of the soft X-ray com-
ponent and that of the hard X-ray one. In this way, we can
qualitatively understand the spectral behavior reported by
Vierdayanti, Mineshige, and Ueda (2010), but more
detailed, time-dependent study is left as a future issue.

4.4 Future prospects

We finally summarize some remaining issues and future
work to inmprove the present code.

First, our code cannot currently calculate cases in which
the central black hole is rotating. Since Kerr black holes
seem to be more common than Schwarzschild black holes in

the universe, we need to upgrade our code to solve radiative
transfer around a spinning black hole. When the rotation of
a black hole is prograde, the Blandford–Znajek mechanism
will work to possibly produce an energetic jet. Narayan,
Sa

↪
adowski, and Soria (2017) reported the dependence of

the spectra on the black hole spin; the spectrum will be
notably harder when the black hole is rapidly spinning.
This implies that the hardness ratio of the observed spectra
may contain useful information regarding the black hole
spin.

Second, induced scattering is not considered in our
present code. Although this is a second-order (f2) effect
in Compton scattering, it may play an important role in
the mildly optically thick region. In the effectively optically
thick region (i.e., in the disk region), frequent absorption
and re-emission take place, giving rise to blackbody radia-
tion, and thus scatterings are not so important. In the effec-
tively optically thin but Thomson thick region (i.e., near the
funnel wall), in contrast the Compton scattering could be
effective. Since the radiation field in the co-moving frame
is highly collimated (i.e., more coherent in momentum
space) in the funnel region, especially near the funnel wall,
the induced scattering might not be negligible. Since the
anisotropy of the radiation field is larger in the higher-
energy band (�10 keV) in our calculation, the spectrum
will be softer than the present result by the contribution of
the induced scattering occurring near the funnel wall (with
temperature T ∼ 10 keV). Hence, we should more accu-
rately calculate the Compton scattering in future work.

Third, Narayan, Sa
↪

adowski, and Soria (2017) also
reported the important fact that the emerged spectrum
largely changes if we calculate the gas temperature self-
consistently with radiation fields. The temperature at the
innermost funnel region is much lower than that obtained
by the GRRMHD simulation without such considerations,
and thus the spectrum is softer. This ultimately requires the
calculation of radiation field and fluid simultaneously.

Fourth, the initial torus should be placed at much larger
radius so as to correctly calculate lower-energy spectra in
particular. In our calculation, the disk is truncated at r ∼
250 M or less, whereas soft photons are expected to emerge
from more distant regions (see figure 13 in Narayan et al.
2017). For this reason, a much larger calculation box size
in the GRRMHD calculation is necessary. There is another
reason why we should put an initial torus at as large a
radius as possible. Kitaki et al. (2020) performed a long-
term, large-box RHD simulation of a super-Eddingtion
accretion flow and achieved a self-consistent (i.e., quasi-
steady) steady accretion flow and outflow structure over a
large spatial range at r < 1200 M. They reported that the
calculated outflow rate is much less, by one order of mag-
nitude or even more, compared with the value obtained by
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Fig. 7. Schematic diagrams showing the different 2D grid distributions, the frequency grid on the horizontal axis vs. that of some other quantity X on
the vertical axis, in the co-moving regular grid (CRG; the black boxes in the left panel) and in the laboratory regular grid (LRG; the red boxes in the
right panel). The grid distribution is regular in the LRG (right), but is not in the CRG (left). (Color online)

a previous study in which the quasi-steady state is achieved
within a much smaller range (i.e., less than several tens of
the Schwarzschild radius). Setting a much larger computa-
tion box is ncecssary to avoid artificial results.

Finally, it would be interesting to apply our method-
ology to investigate Fe Kα line diagnosis of the super-
Eddington flow and moderately sub-Eddington accretion
flow around massive black holes. Calculated line profile
variations will be directly compared with future observa-
tions by the Athena satellite to explore the gas and radi-
ation dynamics (and hopefully the space-time geometry as
well) near the black hole (see, e.g., Dovciak et al. 2013).
Incidentally, strong Fe line emission is not expected in the
simulation data which we used in this study, since the disk
surface is very hot, with temperatures exceeding ∼107 K, so
that metals including Fe will be fully ionized.
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Appendix. Procedure for calculating

numerical fluxes

In this appendix we explain some technical details of the
conversion of the grid points between the laboratory frame
and the fluid-rest frame.

Step 1

When calculating the numerical flux of the advection term,
i.e., the left-hand side of equation (1), we should keep in

mind that photon frequencies are calculated in the fluid-
rest frame, while the frequency ν used in equation (1) is
evaluated in the laboratory frame. The difficulty resides in
the fact that the 2D distribution of the frequency grid and
other grids of some quantity X (one of r, θ , ϕ, θ̄ , or ϕ̄) is
not lattice shaped in the laboratory frame; see figure 7, and
see also Nagakura, Sumiyoshi, and Yamada (2014). This is
because the energy shift by the Doppler effect is a function
of all the variables.

Suppose that we solve the numerical flux on the interface
at (j + 1/2) between the jth and the (j + 1)th cells of some
variable X. The number of regular grids in the laboratory
frame (LRG: laboratory regular grid) is set in such a way
that each grid point should be in between the neighboring
grid in meshes regular in the fluid-rest frame (CRG: co-
moving regular grid). If the cell center νs in the LRG frame
lies between the CRG cells of ν i and ν i + 1 (which we denote
as ν̄i and ν̄i+1 in the co-moving frame), the interpolated
value, fs, j at νs, is calculated by

fs, j = fi, j + fi+1, j − fi, j

ln νi+1 − ln νi
(ln νs − ln νi ). (A1)

Step 2

After the interpolation, we calculate the advection terms of
each differential X (other than the frequency differential) in
the LRG by the second-order upwind method.

Step 3

The numerical fluxes we obtain in Step 2 are those in the
LRG frame; however, we need to update the distribution
function in the CRG frame. Therefore, we should inter-
polate again now from the LRG frame to the CRG frame.
Since the interface of an LRG cell (denoted as s) lies between
the ith and (i + 1)th CRG cells, the numerical flux in the
X-direction in the sth cell in the LRG, F j+1/2

s,LRG , should be
split into these two CRG cells. Here, we define the CRG
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numerical fluxes in the cell surface (j + 1/2), (j − 1/2) of
the jth cell of a variable X, F j+

i,CRG, as

F j+
i,CRG =

∑
s∈�

j
i

ln min(νs+1/2, ν
j
i+1/2) − ln max(νs−1/2, ν

j
i−1/2)

ln ν
j
i+1/2 − ln ν

j
i−1/2

×F j+1/2
s,LRG , (A2)

F j−
i,CRG =

∑
s∈�

j
i

ln min(νs+1/2, ν
j
i+1/2) − ln max(νs−1/2, ν

j
i−1/2)

ln ν
j
i+1/2 − ln ν

j
i−1/2

×F j−1/2
s,LRG , (A3)

�
j
i = [s|(ν j

i−1/2, ν
j
i+1/2) ∩ (νs−1/2, νs+1/2) �= ∅], (A4)

where the quantity ν
j
i is the frequency in the laboratory

frame of the ith cell of the frequency (which is defined in
the comoving frame) and the jth cell of the variable X. It
is notable that the numerical fluxes F j+

i,CRG and F ( j+1)−
i,CRG are

the flux at the interface at (j + 1/2) but are not always the
same, since the numerical fluxes also depend on physical
quantities in the (i + 1, j), (i − 1, j), etc. cells because of the
Doppler (frequency) shift.

Step 4

After calculating the numerical flux in the CRG, we update
the primitive value f (distribution function) following the
equation

fi, j (t + �t) = fi, j (t) − �t
�xj

(F j+
i,CRG − F j−

i,CRG). (A5)

Note that the grid-based Boltzmann solver inevitably
suffers from incorrectness for the dynamic diffusion
problem. Suppose the interacting fluid has velocity v and
a reasonably large optical depth τ . In this case, the radia-
tion moves with the same velocity as the fluid and diffuses
by an amount determined by the optical depth. This is the
dynamic diffusion problem. In the case of the grid-based
Boltzmann solver, the limitation of resolution for the direc-
tion and the time make it difficult to solve the diffusion–
advection problem correctly. To avoid this issue, we adopt
a method analogous to that described by equation (34) in
Ohsuga and Takahashi (2016), where the numerical flux is
made by a combination of numerical flux from the Boltz-
mann equation and that from the assumption that the radi-
ation moves with the fluid.
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Mościbrodzka, M., Falcke, H., Shiokawa, H., & Gammie, C. F.

2014, A&A, 570, A7
Nagakura, H., Sumiyoshi, K., & Yamada, S. 2014, ApJS,

214, 16
Narayan, R., Sa

↪
adowski, A., & Soria, R. 2017, MNRAS,

469, 2997
Oda, M., Gorenstein, P., Gursky, H., Kellogg, E., Schreier, E.,

Tananbaum, H., & Giacconi, R. 1971, ApJ, 166, L1
Ohsuga, K., & Takahashi, H. R. 2016, ApJ, 818, 162
Pozdnyakov, L. A., Sobol, I. M., & Syunyaev, R. A. 1977, Soviet

Ast., 21, 708
Ryan, B. R., & Dolence, J. C. 2020, ApJ, 891, 118
Rybicki, G. B., & Lightman, A. P. 1979, Radiative Processes in

Astrophysics (Chichester: Wiley)
Shibata, M., Nagakura, H., Sekiguchi, Y., & Yamada, S. 2014, Phys.

Rev. D, 89, 084073
Sumiyoshi, K., & Yamada, S. 2012, ApJS, 199, 17
Takahashi, H. R., Mineshige, S., & Ohsuga, K. 2018, ApJ,

853, 45
Takahashi, R., & Umemura, M. 2017, MNRAS, 464, 4567
Vierdayanti, K., Mineshige, S., & Ueda, Y. 2010, PASJ,

62, 239
Watarai, K., Mizuno, T., & Mineshige, S. 2001, ApJ, 549, L77

D
ow

nloaded from
 https://academ

ic.oup.com
/pasj/article/73/3/701/6276630 by guest on 19 April 2024


