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Recent rapid progress in deep neural network techniques
has allowed recognition and classification of various objects,
often exceeding the performance of the human eye. In plant
biology and crop sciences, some deep neural network frame-
works have been applied mainly for effective and rapid
phenotyping. In this study, beyond simple optimizations of
phenotyping, we propose an application of deep neural net-
works to make an image-based internal disorder diagnosis
that is hard even for experts, and to visualize the reasons
behind each diagnosis to provide biological interpretations.
Here, we exemplified classification of calyx-end cracking in
persimmon fruit by using five convolutional neural network
models with various layer structures and examined potential
analytical options involved in the diagnostic qualities. With
3,173 visible RGB images from the fruit apex side, the neural
networks successfully made the binary classification of each
degree of disorder, with up to 90% accuracy. Furthermore,
feature visualizations, such as Grad-CAM and LRP, visualize
the regions of the image that contribute to the diagnosis.
They suggest that specific patterns of color unevenness, such
as in the fruit peripheral area, can be indexes of calyx-end
cracking. These results not only provided novel insights
into indexes of fruit internal disorders but also proposed
the potential applicability of deep neural networks in plant
biology.
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Introduction

Noninvasive prediction of internal disorders in plants is an im-
portant issue for plant phenotyping, in both the experimental
and agricultural fields. Attempts have beenmade to capture the
indexes of internal reaction/responses from many viewpoints,
where recent interest might be moving toward molecular
regulation, including RNA-based characterization potentially

utilized as biomarkers. Notwithstanding, ‘empirical’ prediction
of the symptoms, with expertise and professional skills, can still
produce better diagnostic results in most cases. The problem is
more serious in agricultural sciences, where noninvasive and
rapid prediction of internal disorders with reasonable costs
would be indispensable for actual application. Such ‘empirical’
knowledge would, however, be attained only after several
decades of technical experience, and it would be difficult to
explain simply the regions of the image which are relevant to
the diagnosis.

Object recognition and classification by deep neural net-
works have made rapid and widespread progress in the past
few years. The Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al. 2015) based on the ImageNet data-
set (Deng et al. 2009) has promoted development of various
deep convolutional neural network (CNN) models involving
visualization-related issues (Simonyan et al. 2013, He et al.
2015, Szegedy et al. 2015, Singh et al. 2016, Singh et al. 2018).
Importantly, in 2015, a deep neural network model, named
ResNet50, was able to exceed the human standard in image
classification (He et al. 2015). This situation might imply that
deep neural networks can promptly reproduce professional
eyes to recognize specific objects, by learning the images
‘empirically’. For plants, deep neural network models have
been successfully applied mainly to detect symptoms of
stresses/diseases in many plant species (Ramcharan et al.
2017, Ferentinos 2018, Ghosal et al. 2018, Singh et al. 2018).
On the other hand, only a few applications of deep neural net-
works to predict internal (or invisible) characters in plants
organs have been reported, such as for detection of internal
physical damage of blueberry fruits (Wang et al. 2018). For ob-
ject classification in plants, deep neural networks have been
applied for the identification of the species depending on subtle
differences, such as moss species (Ise et al. 2017). A big issue in
object recognition or classification by deep neural networks
was that we could not detect or characterize the regions of
the image that are highly relevant to derive the result. To solve
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this issue, various feature visualization methods, such as Layer-
wise relevance propagation (LRP) (Bach et al. 2015) and its
derivates (Iwana et al. 2019), Gradient-weighted Class
Activation Mapping (Grad-CAM) (Selvaraju et al. 2016) and
Guided backpropagation (Springenberg et al. 2015), have
been proposed recently. Application of these methods to
physiological analyses would allow cell- or site-specific analyses
in early reaction steps.

Here, we exemplified prediction of an internal disorder in
persimmon fruits. Persimmon is one of the major fruit crops,
especially in East Asia. Similar to other fruit crops, persimmon
fruit has some internal disorders, represented by quick soften-
ing or internal cracking, which substantially reduce the quality
of fruit. Calyx-end cracking, also called ‘hetasuki’ in Japanese, is a
typical physiological disorder of persimmon (Fig. 1). This intern-
al disorder has been well classified into five grades (Yamada
et al. 1988), in which higher degrees not only visually spoil
the fruit quality, but often become a trigger of quick softening
(Yamada et al. 1988, Yamada et al. 2002). There are some gen-
etic or environmental factors affecting the incidence of the
calyx-end cracking, whereas for each fruit, clear outer symp-
toms or biomarkers have not yet been identified. Importantly,
it is suggested that only a limited number of experts in the field
of fruit selection, who have been engaged in the actual cultiva-
tion of persimmon for several decades, can distinguish calyx-

end cracking from its external appearance (Supplementary Fig.
S1). Here, with application to this internal disorder in persim-
mon, we examined the utility of deep neural networks and their
backpropagation for diagnosis of internal reactions in fruit.

Results

Deep neural networks allowed binary classification
of calyx-end cracking

The experimental flow of this study is summarized in Fig. 1. A
total of 3,173 persimmon fruits from cv. Fuyu were harvested at
the fully ripened stage, in late November 2017, at Gifu city
(N35.441721, E136.699894), Japan. Images were taken from
the fruit apex side using a digital camera (NIKON COOLPIX
P520), with a uniform gray background (Supplementary Fig.
S2; see theMaterials andMethods for details of the conditions).
The degree of calyx-end cracking in persimmon fruits is cate-
gorized into five grades (level 0–4) (Yamada et al. 1988, Yamada
et al. 2002; Supplementary Table S1). Two experts on the se-
lection of persimmon fruits classified the grade of calyx-end
cracking by visual observation of dissected fruit according to
Yamada et al. (1988). Here, we attempted to use deep neural
networks for classifying positive–negative (binary) categories
using various thresholds for the cracking levels, employing

Fig. 1 Flow of the diagnosis and its visual explanation of calyx-end cracking in persimmon. Images from the apex side of a total of 3,173 cv. Fuyu
persimmon fruits were subjected to CNN deep learning analysis to classify them into two categories of various thresholds of the degree of cracking.
Backpropagation of the well-trainedmodels allowed a visual explanation of the diagnosis, which renders ‘biological’ interpretation of the symptom
of calyx-end cracking. CC, calyx-end cracking; Cx, dissected calyx; Fl, fruit flesh.
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AlexNet, VGG16, InceptionV3, ResNet50 and
InceptionResnetV2, implemented in Keras 2.2.4 (https://
keras.io/) and pre-trained with ImageNet (http://www.
image-net.org/) (see Supplementary Table S2 for the detailed
settings).

All of these five neural networks make good classifications of
calyx-end cracking and the control in most positive/negative
categorizations except level 0–3 (as negative) vs. level 4 (as
positive) (Table 1, Supplementary Fig. S3). This exception in

level 0–3 vs. level 4 would be mainly due to the imbalance being
too severe, because we have only 65 fruits with level 4 calyx-end
cracking, as discussed later. Among the neural network models,
InceptionResnetV2 gave the highest accuracy (<90%) in the
classification of the calyx-end cracking and the control, al-
though even AlexNet, with only eight simple layers, showed
reasonable classification with >75% accuracy for any categori-
zations (Table 1). With InceptionResnetV2, evaluations of clas-
sification performance with confusion matrix, distribution of
predictions, receiver operating characteristic (ROC) curve and
precision recall (PR) curve (Fig. 2) supported that the model
could make good predictions in any categorizations [area under
curve (AUC) value >0.77], while classification of level 0–1 vs.
level 2–4 or level 0 vs. level 1–4 would be reliable for actual
social/experimental implementation, due to the shape of the
ROC and the prediction distribution.

In themodels classifying level 0 and level 1–4, and level 0–1 and
level 2–4, the predictions tended to be increased along with the
levels of calyx-end cracking (Fig. 3). Levels 1 and 2 in particular
showed statistically significant differences in the distribution of the
predictions in both models (P¼ 0.37e–8 and 0.0022 for models
classifying 0 vs. 1 and 1 vs. 2, respectively). This situation is

Table 1 Prediction accuracy in training samples, in each model with
four binary classification tasks

Model Binary classification of calyx-end cracking levels

0 vs. 1–4 0–1 vs. 2–4 0–2 vs. 3–4 0–3 vs. 4

AlexNet 0.75 0.87 0.85 0.99a

VGG16 0.79 0.89 0.83 0.99a

InceptionV3 0.81 0.87 0.89 0.99a

ResNet50 0.81 0.91 0.85 0.99a

InceptionResnetV2 0.79 0.89 0.86 0.99a

aDue to the severe imbalance between level 0–3 and level 4. Level 0–3 occupied
>98% of the samples.

Fig. 2 Evaluationof the trainedmodels in each categorization.Confusionmatrix (A), distributionofprediction (B), ROCcurve (C) andPRcurve (D) in
the four categorizations of binary classification, level 0 vs. 1–4, level 0–1 vs. 2–4, level 0–2 vs. 3–4 and level 0–3 vs. 4. Although no substantial
differences were observed in ROC-AUC values and in confusion matrix among the categorizations, the prediction distribution and PR curves
suggested that categorization of level 0–1 vs. 2–4 could construct the most reliable model.
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reminiscent of that which we would be able to apply in regression
on this internal disorder.

Visualization of ‘the reason for diagnosis’
To visualize the image regions relevant to the diagnosis of calyx-
end cracking, we applied the following feature visualization
methods: Guided backpropagation (Springenberg et al. 2015),
two LRP derivates [LRP-Epsilon, and LRP-Sequential B which
uses LRP-Alpha/Beta for convolution layers and LRP-Epsilon
for fully connected layers (Iwana et al. 2019)], Grad-CAM
(Selvaraju et al. 2016, Selvaraju et al. 2017) and Guided Grad-
CAM (Selvaraju et al. 2017). The neural network models with
highly complicated layer structures, such as InceptionsV3,
ResNet50 or InceptionResnetV2, which tended to show higher
classification performance (Table 1), are thought to be harder
to apply to backpropagations to the upper layers. Here, to
characterize the performance and the potential applicability
of backpropagations, we mainly selected a simple model,

VGG16, which showed sufficient performance in classification
of calyx-end cracking (Table 1).

We visualized the regions of the images relevant to the diag-
nosis of 93 test images by each feature visualization method.
The highly relevant regions by Grad-CAM were too coarse to
specify the relevant regions at the pixel level (Fig. 4A, B for four
images of each 0–3 cracking level; Supplementary Fig. S4 for a
further 10 images). On the other hand, Guided backpropaga-
tion, LRP-Sequential B, LRP-Epsilon and Guided Grad-CAM pro-
vided finer heatmaps (Fig. 4C–F, Supplementary Fig. S4).
However, the relevant regions were often inconsistent among
the feature visualization methods. To analyze the regions with
higher relevance to the diagnosis of calyx-end cracking, the
distribution of the relevance values along with the distance
from the outer contour of the fruit was calculated by using
all validation images. As shown in Fig. 5A–D, the distribution
is shown as a two-dimensional histogram H(r, d), where r is
the relevance level of a pixel and d is the normalized distance
of the pixel from the contour. Higher relevance levels tend to be
located mainly around the apex (approximately d 2 [0.75,1.0])
in all feature visualization methods. The higher relevant levels
are also found on peripheral (i.e. near-contour) parts of fruit
(approximately d 2 [0,0.2]) (Fig. 5A, B, D), except in LRP-
Epsilon (Fig. 5C). It is noteworthy that these objective analysis
results were at least partially consistent with ‘conventional
empirical diagnosis’, where color unevenness in the pericarp,
especially in the area close to the calyx (or peripheral parts in
pictures from the fruit apex side), is thought to be an index of
certain stresses (Yamada et al. 1988). In reality, dissection of the
fruit with severe cracking suggested that reddish coloration was
extended from the calyx end to the peripheral area, on the
cracking side (Fig. 5E). On the other hand, substantial relevance
peaks around the apex (Fig. 5A–D) would not be interpretable
from conventional empirical diagnosis; this result may provide
novel insights into physiological reactions in the signaling of
internal disorders.

Discussion

In this study, we applied only approximately 3,000 images of the
fruits to successfully predict an internal disorder and visualize
the index of the disorder. This is only ‘an example’ to show the
potential of deep neural networks to predict physiological reac-
tions, potentially exceeding the performance of the eyes of the
professional. In reality, calyx-end cracking is very hard to predict
from the outer appearance of the fruit, even with the eyes of
professionals honed over decades, while simple neural network
models could classify them well and unveil ‘the reason for the
classification’, as shown in this study. This would suggest that
wemight be able to access more detailed or earlier physiological
reactions by combining deep neural networks and omics
approaches. For instance, rapid prediction and visualization
of the symptoms of disorders in plant organs or of regeneration
in calli would enable transcriptomic or metabolomic
approaches specific to the tissues with the symptoms, and char-
acterization of the early reactions in these specific tissues. The

Fig. 3 Comparison of the prediction in the five degrees of calyx-end
cracking. Themodels trained with the categorizations of level 0 vs. level
1–4 (A) and level 0–1 vs. level 2–4 (B) were used for the detection of
prediction in each level. There is a clear tendency that prediction was
increased according to the cracking level. In both models, statistically
significant differences (P< 0.01) were detected between level 0 and
level 1 (and >1) and between level 1 and level 2 (and >2), by
Student’s t-test.
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symptoms would not be limited to visual images, but any signals
which can be converted into arrays, such as the spectrum of
absorbance in chemicals, would be applicable to deep neural
networks and their backpropagation.

For actual use of deep learning in biological experiments,
imbalances among the classes would be one of the biggest issues
in any models, since the ‘case’ (or presence) would normally be
rarer than the controls. We implemented class weights
(Sarafianos et al. 2018) to overcome the class imbalances of
calyx-end cracking. In our classification of the presence/absence
of cracking, at least 75% of the samples were labeled as ‘no
symptom’ (absence). This situation would substantially reduce
the prediction accuracy if we had no information regarding the
class weights (Supplementary Fig. S5). The better prediction
would also depend on the fitting of learning rates (Sutskever
et al. 2013). In our analysis, change of the learning rate in some
models could result in different classification performance,
although the trends are dependent on the models
(Supplementary Table S3).

In the comparison of the characteristics of backpropaga-
tions, biological experiments may often need to visualize finer
relevant regions (or contributing parts) than those outputted
from Grad-CAM, to narrow down the explanatory cells/organs,
while Grad-CAM can visualize weights in each layer (Selvaraju

et al. 2016). On the other hand, other backpropagations used
in this study could visualize very fine relevant regions in the
image in this study. Hence, in the application of feature visu-
alization techniques to plant sciences, proper selection of
methods depending on situations might be a key to allow
‘novel biological interpretations’, as used in molecular bio-
logical modeling (Hochuli et al. 2018) or in the characteriza-
tion of stress-induced symptoms in plants (Fujita et al. 2016).
A visual explanation from multiple aspects would shed light
on the hidden explanations or indexes of internal disorders
in plants, and propose novel interpretations and analytic-
al approaches.

Materials and Methods

Assessment of calyx-end cracking in persimmons
Persimmon cv. Fuyu has been maintained in the Agricultural Technology
Center, Gifu. A total of 3,173 fully matured fruits from four (38, 57, 58 and
92 years) trees were located on a gray background sheet to take photos from the
fruit apex side, according to conventional fruit sorting for marketing, using a
digital camera (NIKON COOLPIX P520) (Supplementary Fig. 2). The exposure
and white balance were default (auto), and the size of the image was
1,600� 1,200 pixels. The fruits were dissected to visually categorize the degrees
of calyx-end cracking into five levels (Supplementary Table S1) by two experts
in Gifu Prefectural Agricultural Technology Center, who have been trained for

Fig. 4 Visualization of explanatory factors in the prediction of the regions relevant to the diagnosis of calyx-end cracking. (A) Original images of the
fruits with level 0–3 calyx-end cracking. The relevant regions in theVGG16model were visualizedwithGrad-CAM (B), Guided backpropagation (C),
LRP-Sequential B (D), LRP-Εpsilon (E) andGuidedGrad-CAM (F). For Grad-CAM (B), relevant regions in the block5_conv3 (immediately before the
fully connected layer) are visualized very coarsely, while they still capture the areaswith color unevenness in the sampleswith high levels of calyx-end
cracking (levels 2 and 3). The other four feature visualization methods (C–F) exhibited finer relevant regions, although they were not completely
consistent among the methods. In particular, in the samples with high cracking levels (levels 2 and 3), these methods commonly visualized relevant
regions around the areas with color unevenness.
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selection of cv. Fuyu persimmon fruit for >20 years. For access to the original
picture data, contact the corresponding author.

Image processing and construction of the
neural networks
We resized each image sample to the size of 224� 224 pixels and then aug-
mented them by flipping them horizontally and vertically and by rotation. The
image data were rescaled in the range of 0–1. We randomly selected 70% of
images for training and 30% for testing. We use the standard deep neural net-
work models called VGG16, InceptionsV3, ResNet50 and InceptionResnetV2.
These models are implemented in Keras 2.2.4 (https://keras.io/). AlexNet was
manually constructed according to Krizhevsky et al. (2012) with the sequential
model API of Keras. Each model was pre-trained with the standard image
data set called ImageNet (http://www.image-net.org/), and then, their fully
connected layer was customized for binary classification. We used the class
weight option, which is prepared in Keras for balancing the two categories
with different sample numbers. Training and testing with those models were
run on Ubuntu 18.04 (DeepStation DK1000, 16GB RAM, GPU¼ 1). The detailed
setting of the neural networks is summarized in Supplementary Table S2.
The performance of the trained models was evaluated with the distribution

of predictions, confusion matrix, ROC-AUC values and PR curves in the test
samples. The differences in prediction distribution among the calyx-end levels
were examined with Student’s t-test.

Feature visualization methods
Feature visualization methods reveal the input image regions that are highly
relevant to the final classification. An implementation of the following feature
visualization methods using the iNNvestigate library (Alber et al. 2019) can be
found at https://github.com/uchidalab/softmaxgradient-lrp; this implemen-
tation was used in our experiments. Guided backpropagation, Grad-CAM and
Guided Grad-CAM are similar because they commonly assume that relevant
regions give a larger gradient (i.e. a large impact) to the class likelihood by the
deep neural networks. Guided backpropagation (Springenberg et al. 2015) tries
to find the input pixels that have a large impact on the class likelihood using the
orthodox backpropagation procedure (used for training the networks), except
that the gradient value in the procedure undergoes the rectified-linear function
to change the negative gradient values to zero. Grad-CAM (Selvaraju et al. 2017)
tries to find the high-impact regions not in the input image but in the feature
map by the last convolutional layer. Since the feature map is smaller than the
input image, it is necessary to enlarge the relevance map to obtain the size of the
original input image—this is the reason why it can only give coarse

Fig. 5 Distribution of relevance levels in fruits. (A–D) Two-dimensional histogram H(r, d), where r is the relevance level of a pixel and d is the
normalized distance of the pixel from the contour, by four feature visualization methods: Guided backpropagation (A), LRP-Sequential B (B), LRP-
Εpsilon (C) andGuidedGrad-CAM (D). Higher relevance levels tend to be locatedmainly around the apex (d2 [0.75,1.0]) in all feature visualization
methods. The higher relevant levels are also found on peripheral (i.e. near-contour) parts of the fruit (approximately d2 [0,0.2]) (A, B andD), except
in LRP-Epsilon (C). Observation of a dissected fruit with partially severe calyx-end cracking, from the calyx side (E), might support this distribution.
Only the sidewith severe cracking showed color unevenness expanding to the peripheral part, probably due to the stress responses and the signaling.
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visualizations. Guided Grad-CAM gives its visualization by simply multiplying
Guided backpropagation and Grad-CAM to utilize the merits of both methods.
Different from the above gradient-based visualization methods, LRP and its
variants (Montavon et al. 2019) try to reveal the input pixels that are highly
relevant to the results by decomposing the class likelihood into the input pixels.
This decomposition is made by applying a simple weighted reallocation rule
from the output layer to the input layer, where the weights are the same as
those of the individual neurons. The variants, such as LRP-Sequential B and LRP-
Epsilon, are derived by slightly modifying the parameters in the reallocation rule.

Distribution of relevance levels in fruit
The distribution, i.e. the two-dimensional histogram H(r, d) (Fig. 5A–D), is
derived by the following procedure (https://github.com/Takeshiddd/persim
mon_GuidedGradCAM_visutalize). First, the fruit region is extracted from
each fruit image using color clustering after increasing the color saturation.
Since simple binarization fails to have the accurate fruit region around the
shaded part of the fruit, color clustering was employed with a k-means algo-
rithm (k¼ 2). Second, mathematical morphology operations are applied to the
fruit region image to remove noisy regions. Third, distance transformation is
applied to determine the distance from the fruit contour at each pixel. The
distance is normalized so that the maximum distance becomes 1. Finally, the
two-dimensional histogramH(r, d) is obtained by counting the number of pixels
with the relevance level r (given by a feature visualization method) and the
normalized distance d.

Supplementary data

Supplementary data are available at PCP online.
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