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How genetic variations affect gene expression dynamics of
field-grown plants remains unclear. Expression quantitative
trait loci (eQTL) analysis is frequently used to find genomic
regions underlying gene expression polymorphisms. This
approach requires transcriptome data for the complete set
of the QTL mapping population under the given conditions.
Therefore, only a limited rangeof environmental conditions is
covered by a conventional eQTL analysis. We sampled sparse
time series of field-grown rice from chromosome segment
substitution lines (CSSLs) and conducted RNA sequencing
(RNA-Seq). Then, by using statistical analysis integrating
meteorological data and the RNA-Seq data, we identified
1,675 eQTLs leading to polymorphisms in expression dynam-
ics under field conditions. A genomic region on chromo-
some 11 influences the expression of several defense-related
genes in a time-of-day- and scaled-age-dependent manner.
This includes the eQTLs that possibly influence the time-
of-day- and scaled-age-dependent differences in the innate
immunity between Koshihikari and Takanari. Based on the
eQTL and meteorological data, we successfully predicted
gene expression under environments different from training
environments and in rice cultivars with more complex geno-
types than the CSSLs. Our novel approach of eQTL identifica-
tion facilitated the understanding of the genetic architecture
of expression dynamics under field conditions, which is diffi-
cult to assess by conventional eQTL studies.The prediction of
expression based on eQTLs and environmental information
could contribute to the understanding of plant traits under
diverse field conditions.
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Introduction

Organisms respond to fluctuations in field environments vari-
ably, depending on their genetic backgrounds, developmental
stages and physiological status. This variability can cause miss-
ing heritability in crop breeding and low accuracy in medicine
(Eichler et al. 2010, Brachi et al. 2011, Wang et al. 2017).
Environmental stimuli can induce transcriptional responses
directly and/or indirectly (Kato et al. 2019, Ohnishi et al. 2019,
Savchenko et al. 2019, Abdelrahman et al. 2020, Nakayama
et al. 2020, Xie and Chen 2020, Mao et al. 2020). Measur-
ing transcriptome dynamics is a comprehensive method for
assessing environmental responses and their alteration due to
genetic, developmental and physiological factors (Han et al.
2020, Palit et al. 2020, Ye et al. 2020). The expression quanti-
tative trait loci (eQTLs) approach is frequently used to assess
the association between genetic variation and gene expression
polymorphism (Jansen and Nap 2001, Wang et al. 2010, 2014,
Horiuchi et al. 2015, Kuroha et al. 2017). Because this approach
requires transcriptome data for the complete set of a QTLmap-
ping population under the given conditions (Jansen and Nap
2001, Wang et al. 2010, 2014, Horiuchi et al. 2015, Kuroha et al.
2017), only a limited range of environmental conditions are
covered. Although dense time-series eQTL analysis can extend
the genetic and environmental cover range of eQTL, such study
requires numerous samples and will be unwieldy to perform.
Conversely, statistical models based on meteorological data,
circadian clock, and age-in-days have succeeded in describ-
ing transcriptome dynamics in the field (Nagano et al. 2012,
Matsuzaki et al. 2015, Iwayama et al. 2017), although suchmod-
els can only predict the transcriptome of one or a few genotypes
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Fig. 1 Concept and workflow of eQTLs detected in this study. (A) Conceptual differences in the cover range of eQTLs identified with the con-
ventional and our novel approach. (B) Workflow of eQTL detection and its evaluation using CSSLs. (C) Summary of the sampling design for
eQTL detection. The left panels show plots of meteorological data [air temperature (Temp., ◦C) and global solar radiation (Rad., kJ m−2 min−1)]
in Takatsuki from May to September in 2015. Vertical red lines represent the sampling time points. (D) Pearson’s correlations among the 854
samples used for developing the prediction model based on expression data of 23,294 expressed genes. White lines indicate the border of each
bihourly sampling set.

used as training data (Nagano et al. 2012, Matsuzaki et al. 2015,
Iwayama et al. 2017).

Rice (Oryza sativa), a major crop in the world, has a
sequenced genome (Kawahara et al. 2013, Sakai et al. 2018)
and abundant genetic resources are available (Huang et al.
2012). ‘Takanari’ is a high-yield, indica cultivar with some indica-
specific features, such as strong lodging resistance (Ookawa
et al. 2016) and high photosynthetic rate (Takai et al. 2014).
In addition to these attractive features, useful genetic resources
such as CSSLs and backcross-inbred lines (BILs) between ‘Taka-
nari’ and ‘Koshihikari’ (a leading cultivar in Japan) are available
(Adachi et al. 2014, Takai et al. 2014). These resources are useful
for QTL mapping of these beneficial traits.

In this study, to reveal loci relating to varietal differences in
gene expression, we integrated conventional eQTL analysis and
a statistical modeling approach based on meteorological data
and RNA-Seq data. This novel approach identified eQTL that
can elucidate genetic variation and transcriptome dynamics
under fluctuating field conditions.

Results

We identified eQTLs that determine polymorphisms in gene
expression dynamics under fluctuating field conditions. To
extend the environmental cover range of eQTL, we leveraged
statistical modeling based on meteorological data and sparse
time-series RNA-Seqof variable genotypes (Fig. 1A and Supple-
mental Fig. S1). Our approach consists of four steps: time-series
RNA sequencing (RNA-Seq), prediction model development,
eQTL detection, and evaluation of eQTL (See Methods, Fig. 1B,
and Supplementary Fig. S1). We used the rice (O. sativa L.)
cultivars ‘Koshihikari’ and ‘Takanari’, which would exhibit sub-
stantial polymorphisms in expression dynamics. Seventy-eight
reciprocal CSSLs and two BILs developed from the parental lines
were also used (Adachi et al. 2013, 2019, Takai et al. 2014)
(Fig. 1B and Supplementary Fig. S2A). To examine the effect
of plant age (days after seeding) in our model, we prepared
four different sets of rice plants transplanted at 2-week inter-
vals. Sixteen sets (days) of bihourly sampling for 24 h were
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conducted from May to September 2015 (cropping season in
Japan). At each sampling time, the youngest fully expanded
leaves were collected from two different genotypes in each
transplant set, while withered plants (gray points in Supple-
mentary Fig. S2B) were excluded from the sampling (Fig. 1C,
Supplementary Fig. S2B, and Table S2). Nine hundred and
twenty-six individual leaves were used in RNA-Seq analyses to
obtain transcriptome data. After filtering samples and genes
(Supplementary Fig. S3A, B) and confirming genotypes (Sup-
plementary Figs. S3C and 4, and supplementary information),
23,924 expressed genes from 845 samples were used. Corre-
lation analysis of the transcriptome data showed an obvious
transcriptome-wide diurnal variation in the genes expressed
(Fig. 1D).

We then developed two prediction models describing tran-
scriptome dynamics under fluctuating field environments in
‘Koshihikari’ and ‘Takanari’ (Fig. 2A). In this step, we used the
statistical modeling tool ‘FIT’ (Iwayama et al. 2017) for predict-
ing transcriptome dynamics under field conditions. As most of
the genome in the CSSLs was not substituted (Supplementary
Fig S2A), the expression dynamics of most genes was expected
to be identical to that of the background parent. Thus, the
RNA-Seq data of ‘Koshihikari’- and ‘Takanari’-background sam-
ples were used to develop the predictionmodel for ‘Koshihikari’
and ‘Takanari’ lines, respectively (Fig. 2A). Circadian clock and
meteorological data (air temperature and global solar radia-
tion) (Fig. 2A) were considered in model development and
‘scaled age’ was used to adjust differences in heading date
among rice genotypes (See Methods, Fig. 2A and Supplemen-
tary Figs. S5 and 6). We found polymorphisms in the predicted
expression dynamics of 3,696 genes (15.4% of the expressed
genes; Supplementary Fig. S3E andTable S3). For instance, the
‘Koshihikari’ model for Os09g0343200 showed obvious diurnal
oscillations in expression, whereas the ‘Takanari’ model showed
a constant low level of expression (Fig. 3A). Notably, in some
‘Takanari’-background CSSLs, SL1329 and SL1330, the expres-
sion of Os09g0343200 resembled that of the ‘Koshihikari’ model
rather than that of the ‘Takanari’ model (Fig. 3A), suggest-
ing that genetic substitution in the chromosome 9 affected
Os09g0343200 expression.

The CSSLs had been previously genotyped using 141 sim-
ple sequence repeat (SSR) markers (Supplementary Fig. S2A)
(Takai et al. 2014). As so, at the eQTL detection step, we
searched for the SSR markers explaining the expression dynam-
ics polymorphisms. We evaluated the decrease in the residual
error of each gene assuming eQTL around each SSR marker
(See Methods and Fig. 2B). For Os09g0343200, the sum of
residual errors significantly decreased only by assuming eQTL
on chromosome 9 (Fig. 2B and Supplementary Fig. S7A),
indicating that it was a cis-eQTL. The prediction models cho-
sen for each sample based on eQTL genotypes explained the
expression dynamics of Os09g0343200 better than their back-
ground genotypes (Fig. 3C). SL1329 and SL1330 commonly har-
bor a Koshihikari-type chromosomal segment, distinguishable
by the SSR marker RM3907 at 10.4M bp on chromosome

9 (Supplementary Table S1). This suggests that polymor-
phism around RM3907, in Koshihikari and Takanari, would
affect Os09g0343200, which is located at 10.6Mb on chromo-
some 9. Overall, eQTLs were identified for 1,675 genes (45.3%
of genes with expression dynamics polymorphism between
‘Koshihikari’ and ‘Takanari’, false discovery rate= 0.05; Sup-
plementary Fig. S7E), including 222 genes affected by trans-
eQTL (Fig. 3D). Forty-three genes were affected by multi-
ple eQTLs. For 33 of these genes, the sum of residual errors
based on all eQTLs was lower than that of the most signif-
icant eQTL alone (Supplementary Fig. S8). A cis-eQTL was
identified for Os02g0280700 (HIS1), which could contribute to
the differences in resistance against a popular herbicide, ben-
zobicyclon, between Koshihikari and Takanari (Akasaka et al.
2011, Maeda et al. 2019). Detailed results for individual genes
can be found in our database (https://ps.agr.ryukoku.ac.jp/
osa_eQTL). Among the 3,696 genes with expression polymor-
phisms, we identified 1,348 genes whose expression fluctuated
depending on time of day either in ‘Koshihikari’ or ‘Takanari’
(Supplementary Fig. S10). Genes involved in the oxidation–
reduction process were significantly enriched in the 1,348 genes
(Gene Ontology (GO): 0055114, adjusted P-value= 6.83E-04,
Supplementary Table S4). Also, 1,139 genes were identified
whose expression fluctuated depending on scaled age either
in ‘Koshihikari’ or ‘Takanari’ (Supplementary Fig. S10). Genes
involved in protein phosphorylation and defense response
were significantly enriched in the 1,139 genes (GO: 0006468,
adjusted P-value= 1.67E-06 and GO: 0006952, adjusted P-
value= 2.92E-05, Supplementary Table S5). For example, a
cis-eQTL could explain the expression dynamics polymorphism
of Os01g0537250 that could be specifically observed in young
plants (Fig. 3E, F). The expression depended on time of day
in both parental models, but scaled age was only important in
the ‘Koshihikari’ model (Fig. 3E, F and Supplementary Fig. S9).
Together, the eQTL affected 393 genes depending on the time
of day and 275 genes depending on scaled age (Supplementary
Fig. S10), suggesting that our method of eQTL detection clar-
ifies the genetic basis of varietal differences in environmental
responses.The genetic regions around the SSRmarkers RM3701
and RM5824 on chromosome 11 influence many time-of-day-
and scaled-age-dependent genes (Supplementary Tables S6
and S7). GO-enrichment analysis revealed that these genes sig-
nificantly enriched disease resistance genes (Supplementary
Table S8).

In the eQTL evaluation step, we first compared the predic-
tion performances based on the eQTL model and background
genotype model (BG model) under different environments
from where training data were obtained for model develop-
ment. ‘Koshihikari’, ‘Takanari’ and the CSSLs of two trans-
plant sets were cultivated in a field different from that used
in 2015 and sampled in August 2016; 139 RNA-Seq datasets
were obtained (Supplementary Fig. S2C and Table S2). Envi-
ronmental factors differed between the 2015 and 2016 fields
(Supplementary Fig. S11A). For 91.8% of the 1,675 genes
affected by the eQTL, the prediction was improved by the
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Fig. 2 eQTL detection in this study. (A) Predictive models of gene expression for ‘Koshihikari’ and ‘Takanari’ were developed with ‘FIT’ based on
RNA-Seq data (observed log2rpm), the corresponding precision weights, meteorological data and scaled age. Then, based on the models with
input ofmeteorological data and sample attributes, predicted log2rpmof ‘Koshihikari’ and ‘Takanari’ can be obtained. (B)Theassociation between
genetic variations and gene expression polymorphismswas evaluated by calculating the sumof residual errors in gene expression prediction. It was
assumed that the type of each gene expression dynamics is determined by SSRmarkers.The color of the enclosing lines of the circles, triangles and
quadrangles indicate the BGs of each line. The fill color of the circles, triangles and quadrangles indicate which ‘Koshihikari’ or ‘Takanari’ model is
used to predict gene expression. In the example, eQTL affecting gene i exist around SSR marker 3. In this case, the sum of residual errors on the
assumption that eQTL is SSR marker 3 is smaller than the other residual errors.
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Fig. 3 eQTL detection revealed cis- and trans-eQTLs that were involved in environmental responses. A, C, E, Observed and predicted expressions
(log2rpm) ofOs09g0343200 (A, C) andOs01g0537250 (E) in Takatsuki in 2015.Thepredicted expressionswere calculated using ‘FIT’ based on scaled
age and environmental information (time, air temperature and global solar radiation). Blue and red/pink lines indicate predicted expression levels
in ‘Koshihikari’ and ‘Takanari’ in transplant sets 1, 2, 3 and 4, respectively. Blue and red/pink points indicate the expression level obtained by RNA-
Seq for samples in transplant sets 1, 2, 3 and 4 of individuals with ‘Koshihikari’ BG and ‘Takanari’ BG in (a) or ‘Koshihikari’- and ‘Takanari’-type
eQTL in (C, E) respectively. In (C, E) strong colored points emphasized by the arrowheads indicate samples harboring eQTLs different from their
BGs, and light-colored points indicate the samples harboring eQTLs identical to their BGs. The upper gray bar indicates dark periods (global solar
radiation < 0.3 kJ m−2 min−1). (B, F) eQTLs regulating Os09g0343200 (B) and Os01g0537250 (F). (D) Position of the 1,675 eQTLs are shown as red
bars (false discovery rate= 0.05). X-axis and Y-axis represent the positions of markers with eQTLs and the positions of genes influenced by eQTLs,
respectively.

eQTL model compared with the BG model (Fig. 4A, B and
Supplementary Fig. S11B). Furthermore, the prediction of the
expressed genes for the validation dataset showed comparable
accuracy to that of the training dataset (Supplementary Fig.
S12). Thus, the identified eQTLs could explain the expression
dynamics polymorphisms in different years and locations.

For further verification, two BILs between ‘Koshihikari’ and
‘Takanari’ (HP-a and HP-b) (Adachi et al. 2013, 2019) were
cultivated at Takatsuki, Japan, in 2015, and five and six RNA-
Seq datasets were obtained for HP-a and HP-b, respectively
(Supplementary Fig S2B and Table S2), and the lines carried

‘Koshihikari’ alleles with the ‘Takanari’ genetic background in
16.3% and 19.9% of their markers, respectively (Supplemen-
tary Fig S2A). To evaluate the performance of the eQTL-based
prediction, we calculated the sum of prediction errors of all
eQTL-influenced genes using eQTL, ‘Koshihikari’, and ‘Taka-
nari’ models. Overall, the eQTL model provided the optimal
prediction (Fig. 5A–D). Permutation analysis of markers in
HP-a and HP-b genomes revealed the significant benefits of
the eQTL models even for trans-eQTLs (P< 0.01) (Fig. 5A–D).
For instance, because the genotype of the trans-eQTL for
Os03g0388300 comprised the ‘Koshihikari’ allele in the genome
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Fig. 4 eQTL-based prediction of gene expression dynamics under different environments. (A) Examples of prediction of expression dynamics in
Kizugawa in 2016 based on environmental information and eQTLs in transplant set 1. Points in intense colors emphasized by arrowheads indicate
samples harboring eQTLs different from their BGs and light colors indicate samples harboring eQTLs identical to their BGs. The upper gray bars
indicate dark periods (global solar radiation < 0.3 kJ m−2 min−1). (B) Effects of eQTLs on gene expression prediction dynamics in Kizugawa in
2016. Genes influenced by eQTLs are in the order of the positions on the chromosomes along the horizontal axis.

of HP-a and the ‘Takanari’ allele in the genome of HP-b (Fig.
5E), ‘Koshihikari’ and ‘Takanari’ models were used to predict
Os03g0388300 expression in the eQTL models for HP-a and
HP-b, respectively. The expression of Os03g0388300 fluctuated
with time and it was higher in ‘Koshihikari’ than in ‘Takanari’
(Supplementary Fig. S13A). The prediction of Os03g0388300
expression based on the eQTL models was better than the pre-
diction based on the BG models (Fig. 3F). Regarding OsKS3
(Os04g0611700) (Sakamoto 2004) in HP-b, the prediction based
on the eQTLmodel wasworse than that based on the BGmodel
(Supplementary Fig. S13B, C). True eQTLs might therefore
exist around SSRmarkers 52 and 53, which were not substituted
with the ‘Koshihikari’ allele inHP-b (Supplementary Fig. S13B).
Such challenges may be observed in some eQTL-based predic-
tions for the BILs, because several eQTLs identified by the CSSLs
can be unlinked to the substituted genome regions in the BILs.
Finally, we concluded that our approach successfully identified
loci linked to expression polymorphisms in field conditions.

Discussion

Our eQTL approach scans a broader range of conditions (Fig.
1A) but it is less sensitive when focusing on a specific con-
dition. This is because eQTLs are expected to show the same
effect on gene expressions in all samples used in the conven-
tional method. Conversely, in our approach some eQTLs were
expected to affect gene expressions in specific samples, depend-
ing on their environments.The lower sensitivity of the our eQTL
detection relative to that of the conventional eQTL approach
might explain the smaller fraction of trans-eQTL compared
with that of trans-eQTL in previous studies (13.3% and 62–
71% (Wang et al. 2010, 2014, Kuroha et al. 2017), respectively)
because trans-eQTLs have generally smaller effect sizes than
cis-eQTL/eQTLs (Wang et al. 2010, 2014).

Phenotypic plasticity plays key roles in plant’s environmental
adaptation (Sultan 1995, Fournier-Level et al. 2016). Neverthe-
less, as this is difficult to study in natural environments, the
genetic architecture of phenotypic plasticity under field con-
ditions remains largely unveiled. The eQTLs identified by our
novel method improve the understanding of the genetic archi-
tecture underlying the expression dynamics polymorphisms
between ‘Koshihikari’ and ‘Takanari’ in the field. Polymor-
phism(s) between Koshihikari and Takanari around RM3701
and RM5824 influenced the expression of many time-of-day-
and scaled-age-dependent genes, including genes related to dis-
ease resistance (Supplementary Tables S7 and S8). Defense
responses in plants can vary, depending on the circadian
rhythm and age (Lu et al. 2017). These eQTLs might contribute
to the time-of-day- and age-dependent differences in the innate
immunity, between Koshihikari and Takanari.

In addition, our method showed that rice gene expression
dynamics can be predicted based on genotypic and meteoro-
logical data. In crop breeding, polymorphisms of environmental
responses result in unexpected performance of a bred crop
under environments differing from experimental fields. Because
the transcriptome can be beneficial for trait prediction (Skelly
et al. 2009, Horinouchi et al. 2017, Kaur et al. 2017, Kremling
et al. 2018) and our approach allows transcriptome predictions
under various conditions, it contributes to crop breeding and
for understanding plant systems.

In summary, we developed a novel approach of eQTL identi-
fication to reveal the genomic architecture causing varietal dif-
ferences in expression dynamics under field conditions, which
is difficult to assess by conventional eQTL methods. By apply-
ing the method to field-grown rice (‘Koshihikari’, ‘Takanari’ and
their CSSLs), we succeeded in the identification of 1,675 eQTLs
leading to polymorphisms in expression dynamics under field
conditions. The fidelity was verified by predicting gene expres-
sion under environments different from the training environ-
ments and in rice cultivars with more complex genotypes than
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Fig. 5 eQTL-based prediction in cultivars with more complex genotypes than the CSSLs. (A–D) Prediction accuracy of gene expression regulated
by all eQTLs (A, B) and trans-eQTLs (C, D) based on eQTL model for HP-a (A, C) and HP-b (B, D). The blue, red and orange vertical lines indicate
the sums of prediction errors based on ‘Koshihikari’, ‘Takanari’ and eQTL models. The histogram shows the distribution of the sums of prediction
errors based on the eQTLmodel in 10,000 permutations ofmarkers inHP-a or HP-b genomes.Thedashed vertical line indicates the 0.1% percentile
of the distribution. (E) eQTL for Os03g0388300 and genotypes of HP-a and HP-b. Dark blue points indicate significant ‘Koshihikari’-type markers.
(F) Prediction of Os03g0388300 expression in HP-a and HP-b. Intense color lines are applied models for HP-a and HP-b.
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the CSSLs. Our method will contribute to an understanding
of the genomic basis of varietal differences in environmental
responses.

Materials and Methods

Overview of eQTL identification and verification
Our approach consisted of four steps (Fig. 1B). First, the parent rice lines and
their descendants were cultivated in a paddy field and sparsely sampled at sev-
eral time points for RNA-Seq (Time-series RNA-Seq, Fig. 1B and Supplemen-
tary Fig. S1). Second, by using the RNA-Seq data, scaled age, meteorological
information and ‘FIT’ (Iwayama et al. 2017), parental prediction models were
developed to describe environmental responses in ‘Koshihikari’ and ‘Takanari’
in termsof gene expression (Predictionmodel development, Fig. 1B).Most gene
expression dynamics would be identical among the CSSLs and the parent with
the same BG. Thus, we used ‘Koshihikari’- and ‘Takanari’-background CSSLs as
well as their parents to develop the parental models (Fig. 1B and Supplemen-
tary Fig. S1).Third, the dependency of expression dynamics polymorphisms on
genetic variationwas statistically evaluated based on comparisons between pre-
dictive gene expression and observed gene expression in CSSLs assuming that
genetic variation of SSR markers leads to expression dynamics polymorphisms
(Fig. 2B and Supplementary Fig. S7) (eQTL detection, Fig. 1B). Fourth, by inte-
grating the parental models and eQTL information, gene expression dynamics
was predicted based on environmental and genotypic information (Evaluation
of eQTLs). The detail of eQTL identification is described in Supplementary
information.

Plant materials
We cultivated the following rice (O. sativa) lines: the japonica variety ‘Koshi-
hikari’, the indica variety ‘Takanari’, 78 reciprocal CSSLs (40 ‘Koshihikari’-
background lines, except for SL1213, and 38 ‘Takanari’-background lines, except
for SL1306) (Takai et al. 2014) and two ‘Takanari’-background BILs (HP-a and
HP-b) (Adachi et al. 2013, 2019). Initially, we tried to use all CSSL lines. However,
genotype validation using RNA-Seq revealed that the genotypes of the lines ini-
tially labeled as SL1213 and SL1306 were nearly identical to that of SL1210 and
SL1308, respectively.Therefore, we treated the plants as SL1213 and SL1306; the
two CSSLs, SL1213 and SL1306, could not be included in this study. Each vari-
ety and line were sown in nursery trays. Approximately 1month after sowing,
seedlings were transplanted to a paddy field at Takatsuki, Japan (34◦51′19′′N,
135◦37′51′′E) in 2015 and at Kizugawa, Japan (34◦44′03′′N, 135◦50′18′′E) in
2016. To consider the effect of plant age in the prediction of gene expression
dynamics, four and two transplant sets were prepared in 2015 and 2016, respec-
tively (Fig. 1C and Supplementary Fig. S2B, C). Seed sowing and transplanting
were conducted according to the following schedules. In 2015, transplant set 1:
Seed sowing date ‘April 3rd , 2015’, Transplanting date ‘May 1st , 2015’; transplant
set 2: Seed sowing date ‘April 17th , 2015’, Transplanting date ‘May 8th , 2015’;
transplant set 3: Seed sowing date ‘May 1st , 2015’, Transplanting date ‘May 22nd ,
2015’; transplant set 4: Seed sowing date ‘May 15th , 2015’, Transplanting date
‘June 5th , 2015’. In 2016, transplant set 1: Seed sowing date ‘April 21st , 2016’,
Transplanting date ‘May 16th , 2016’; transplant set 2: Seed sowing date ‘May
19th , 2016’, Transplanting date ‘June 8th , 2016’.

Sampling and RNA extraction
Sixteen sets (2015) and three sets (2016) of bihourly sampling for 22 h, from
16:00 on one day to 14:00 on the next, were conducted on the following dates
(Supplementary Fig. S2B, C and Table S2): 5–6 May, 16–17 June, 22–23 June,
29–30 June, 6–7 July, 13–14 July, 20–21 July, 27–28 July, 3–4 August, 19–
20 August, 24–25 August, 31 August to 1 September, 7–8 September, 14–15
September, 21–22 September and 28–29 September in 2015; and 4–5, 11–12
and 25–26August in 2016.We applied a stratified randomization strategy to the

sampling schedule to avoid biased sampling of each line across seasons. We sep-
arated individual plants into four and two groups in each transplant set in 2015
and 2016, respectively, each containing a similar number of individuals per line.
Then, the order of samplingwas randomized in each group. Samplingwas begun
2weeks after transplantation in 2015 and in August in 2016 (22 May, 25 May, 6
July and 20 July in 2015 and 4August in 2016). According to the sampling sched-
ule, two plants from the 82 genotypes of each transplant set were sampled.
Due to the withering of aged rice, several samples were missed in the late peri-
ods of the cultivation (Gray points in Supplementary Fig. S2B). Transplant set
and sampling time for each sample are listed in Supplementary Table S2. The
youngest fully expanded leaf from each plant was collected, immediately frozen
in liquid nitrogen and stored at−80◦C until RNA isolation for RNA-Seq. Indi-
vidual plants were only sampled once to avoid wounding response. Therefore,
all the RNA-Seq data were obtained from independent plants. Frozen samples
were homogenized with TissueLyser II (Qiagen, Hilden, Germany), and total
RNA was then extracted using the Maxwell 16 LEV Plant RNA Kit (Promega,
Madison, WI, USA) andMaxwell 16 Automated Purification System (Promega).
}The concentration of RNA was measured using the Quant-iT RNA Assay Kit,
broad range (Thermo Fisher Scientific, Waltham, MA, USA).

RNA-Seq library preparation and sequencing
RNA-Seq libraries were prepared as described previously (Kashima et al. 2020)
except that mRNA enrichment was performed with enzymatical degradation
of abundant RNAs such as rRNAs (Nagano et al. 2015). The detail of RNA-Seq
library preparation is described in Supplementary information. Sequencing of
50-bp single ends using HiSeq 2500 (Illumina, San Diego, CA, USA) was carried
out by Macrogen (Seoul, South Korea).

Calculation, normalization and quality control of
RNA-Seq count data
Quality control and mapping of RNA-Seq data were conducted as described in
Ishikawa et al. (2017), with reference sequences of IRGSP-1.0_transcript (Kawa-
hara et al. 2013).The detail of the quality control andmapping of RNA-Seq data
are described in Supplementary information.

Of the 926 samples from 2015 and 143 samples from 2016, we used 887 and
139 RNA-Seq transcriptome datasets, respectively, with more than 105 total
read counts for all genes, except for the targets of selective depletion (Sup-
plementary Fig. S3A). We then filtered out rarely detected genes (number of
samples with read count > 0;≤ 20% of all samples in the 2015 dataset) from the
following analyses to focus on the 23,924 expressed genes only (Supplementary
Fig. S3B).

Correlation plot of transcriptomes
Pearson correlation coefficients of transcriptome data for all pairwise compar-
isons of the 854 samples from 2015 were calculated as follows:

ρm,n =

∑
i (yi,m − ȳm)(yi,n − ȳn)√∑

i (yi,m − ȳm)2
√∑

i (yi,n − ȳn)2
(1)

where ρm,n denotes the Pearson’s correlation coefficient between samples m
and n. Mean log2-transformed rpms are denoted as ȳm and ȳn , respectively.

The heatmap representing the correlations in the time-series order was
drawn with the ‘image.plot’ function in the R package ‘fields’ (version 9.0)
(Nychka et al. 2017).

Meteorological data
Meteorological data were obtained from weather stations close to the fields
in Takatsuki and Kizugawa. Data of average air temperature per 10min at the
Hirakata Weather Station (34◦48′53′′N, 135◦39′04′′E, 4.87 km away from the
Takatsuki field) in 2015 for Takatsuki and atNaraWeather Station (34◦40′27′′N,
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135◦49′56′′E, 6.77 km away from the Kizugawa field) in 2016 for Kizugawawere
obtained from the Japan Meteorological Agency. Data of air temperature per
minute for the FIT (version 0.0.4) (Iwayama et al. 2017) library were prepared
by linear interpolation of the data per 10min with the ‘approxfun’ function
in R (version 3.4.2) (R Core Team 2017). Data of global solar radiation per
minute at the Osaka Weather Station (34◦40′55′′N, 135◦31′05′′E, 21.84 km
away from the Takatsuki field) in 2015 for Takatsuki and at the Nara Weather
Station (34◦40′27′′N, 135◦49′56′′E, 6.77 km away from the Kizugawa field) in
2016 for Kizugawa were also obtained from the Japan Meteorological Agency.
The data at the study fields and the data from the close meteorological stations
were significantly correlated (P< 0.001); Pearson correlation coefficients of daily
mean temperature and radiation in August in 2015 were 0.99 and 0.97 (n= 31),
respectively, and Pearson correlation coefficients of hourly mean tempera-
ture and radiation in August in 2016 were 0.97 and 0.99 (n= 744 for 31 days),
respectively.

GO-enrichment analysis for hour- and
scaled-age-dependent genes
The database of GO terms in Rice Annotation Project Database (Sakai et al.
2018) was used. GO-enrichment analysis was conducted with a function:
fisher.test. Then, the adjustment for multiple comparisons against P-values was
performed using the Benjamini–Hochbergmethod [54] using the p.adjust func-
tion in R. Finally, we listed GO terms with the smallest adjusted P-value (<0.05)
(Supplementary Tables S4 and S5).

Supplementary Data

Supplementary data are available at PCP online.
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