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The summer of every even year is considered by the protein
structure prediction community as the Olympic Games
season, because in addition to a number of continuous
benchmarking experiments such as LiveBench, much effort
is invested in the blind prediction experiments CASP and
CAFASP. Here we report the major advances registered in
the field since the last Games of 2000, as measured by the
recently completed LiveBench-4 experiment. These results
provide a timely measure of the capabilities of current
methods and of their expected performance in the upcoming
CASP-5 and CAFASP-3 experiments. We also describe the
initiation of the two new, community-wide experiments,
PDB-CAFASP and MR-CAFASP. These new experiments
extend the scope of previous efforts and may have important
implications for structural genomics.
Keywords: CAFASP/CASP/LiveBench/protein structure
prediction/structural genomics

Introduction

One of the challenges of the post-genomic era is to assign three-
dimensional (3D) structures computationally to the proteins
encoded in genome sequences (Fischer and Eisenberg, 1997;
Abbott, 2001; Fischer et al., 2001a). As a result of the
various sequencing and structural genomics projects, structure
prediction methods are playing an increasingly critical role in
translating the information on the relatively small subset of
proteins whose structures will be solved into accurate models
for all proteins (Baker and Sali, 2001, Fischer et al., 2001a).
To understand the capabilities and limitations of current
methods, a number of assessment experiments have been
developed. In this paper we describe what we have learned
from recent experiments, focusing in the sub-area of fold
recognition (FR); for reviews, see elsewhere (Fischer and
Eisenberg, 1999; Jones, 1999; Kelley et al., 1999; Fischer,
2000; Rychlewski et al., 2000; Shi et al., 2001). FR methods
use the structural information of solved proteins to model the
structure of those proteins that share no significant sequence
similarity to any of the proteins of known structure.

We first briefly describe the major prediction experiments
and the main lessons learned from the 2000 session. In the
CASP (CASP4, 2000) blind prediction experiment, a few
dozen proteins of known sequence but unknown structure are
used as prediction targets. Human predictors file their models
before the experimental structures are determined. When the
structures become available, the predictions are evaluated by
expert human assessors. The Fully Automated version of
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CASP is the CAFASP experiment (Fischer et al., 2001b). In
CAFASP, the same prediction targets are used, but only the
predictions of automated servers are considered (i.e. there is
no human intervention in the prediction process). In addition,
in CAFASP the evaluation of the predictions is carried out by
fully automated evaluation programs, rather than by human
assessors as in CASP. Thus, the evaluation results are com-
pletely objective and reproducible. The Fully Automated
CAFASP experiments are valuable not only within the com-
munity of computational biologists, but also to biologists; what
biologists want to know is which program they should use for
their prediction targets and not which group was able to
produce the best predictions at CASP. With the advent of
genome sequencing projects and with the worldwide structure
genomics initiatives, the need for fully automated structure
prediction has become evident.

The large-scale version of CAFASP is the LiveBench (LB)
experiment. LB assesses the servers using a relatively large
number of prediction targets compiled every week from newly
released protein structures. Another advantage of LB is that it
runs continuously and not only once every two years. Thus,
it can provide a snapshot of the predicting capabilities of the
servers approximately every half year. Another related, large-
scale evaluation project, not discussed here, is EVA (Eyrich
et al., 2001), which mainly includes the evaluation of automated
homology modeling, secondary structure and contact prediction
methods. CASP5, CAFASP3 and LB-6 are currently under
way and their results were to be announced at the Asilomar
meeting in December, 2002. Over 150 predicting groups
worldwide have registered in CASP5; in CAFASP3 there are
over 70 automated servers of which 30 are also participating
in LB-6.

What have we learned from previous experiments?
Because the results of CASP-4, CAFASP-2 and LB-2 have
been published (CASP4, 2000), we only briefly summarize
some of the main findings, focusing on the FR servers.

Probably the most widely agreed upon conclusion is that
the evaluation of the accuracy of predicted 3D models is very
difficult (Siew and Fischer, 2001; Cristobal et al., 2001). While
most predictors agree on what could be considered an excellent
or completely wrong prediction, there is much controversy on
how to assess and grant credit to those that are only partially
correct. The problem of delineating an exact ranking of the
predictors arises because many groups file excellent predictions
for the ‘easy’ prediction targets and most groups file completely
wrong predictions for the hardest ones. Thus, the differences
among most groups are due mainly to those targets in the
middle, for which the assessment problem is most severe. In
addition, if the test set is not very large, then slight fluctuations
can have a significant effect in the final ranking.

Despite these difficulties, progress in evaluation methods
has been achieved and it seems that it is possible to distinguish
a group of best performing servers from the others. Taken
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Table I. LiveBench-4 sensitivity results

Sensitivity range (%) Names of servers

49–58 ORFs* SHGU* 3DPS INBG FUG2* FFAS MGTH FUG3*
41–43 GETH ORFb* FUGU SFAM* ST99
34 PDBb

The sensitivity indicates the percentage of correctly predicted targets (out of 108), based on MaxSub’s evaluation criteria. The performance of the LB-4 meta-
servers is described in the text.
*New servers.

together, the results of previous CASP, CAFASP and LB
experiments seem roughly to agree on a group of five top-
performing servers (referred to here with their four-character
code used in LB): 3DPS (3D-PSSM) (Kelley et al., 1999),
MGTH (Mgenthreader) (Jones, 1999), INBG (INBGU)
(Fischer, 2000), FFAS (FFAS) (Rychlewski et al., 2000) and
FUGU (FUGUE) (Shi et al., 2001), with ST99 (SAMT99)
(Karplus et al., 1998) following closely.

Another important lesson from the recent experiments has
been that the best human predictors still outperform the
automated methods. Understanding and analyzing the aspects
of human expertise that lead to a better human performance
is important to allow their future incorporation into automated
programs; this is and will continue to be one of the major
challenges for bioinformaticians (Siew and Fischer, 2001).
Nevertheless, CASP4 and CAFASP2 demonstrated that the
automated methods perform surprisingly well. Out of over 100
human groups that participated in CASP4, only 11 human
groups were ranked by the CASP4 assessor above the best of
the servers, 3DPS. Furthermore, at rank 7 was the semi-
automated method named CAFASP-CONSENSUS, that filed
predictions using the CAFASP results of the servers. This
demonstrated that the use of the automated predictions of a
number of servers could result in improved performance and
may probably be considered one of the most valuable lessons
from CASP4.

Owing to the large-scale nature of the LB experiments,
some quantification of the servers’ performance is possible.
The LB-2 results indicated that the best servers are able to
produce correct fold assignments for between one-third and
one-half of all newly released structures that show no sequence
similarity to other proteins of known structure. Another valu-
able quantitative measure computed in LB is the specificity
performance. Knowing the specificity of any prediction pro-
gram is essential for its wider applicability. LB-2 demonstrated
that the servers’ specificities need to be improved.

One of the most significant results of LB-2 was the superior
performance of the automated meta-predictor pcons
(Lundstrom et al., 2001). Pcons automates some of the pro-
cedures used by the CAFASP-CONSENSUS in CASP4 and
selects one of the models from those produced by a number
of servers. As expected, and consistently with the CASP4/
CAFASP2 results, pcons generally outperformed the indi-
vidual servers.

For further details on the LB-2 and CAFASP2 see (Bujnicki
et al., 2001; Fischer et al., 2001b) and the comprehensive
tables available at the corresponding web pages.

Since the publication of the LB-2 and CAFASP2 reports,
new servers have been developed and evaluated in subsequent
LB rounds. To obtain an updated snapshot of the predicting
capabilities of current servers, we report the main results from
the recently completed LB-4.
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LiveBench-4

LB-4 was run between November 2001 and April 2002.
Seventeen servers were evaluated using 108 newly released
structures as targets. For detailed evaluation information,
including separation between ‘easy’ and ‘hard’ targets, and
the four different evaluation methods used, see the LB-4 web
pages. Here we report the LB-4 results using a simplified
approach. Table I lists the performance of the LB-4 servers,
using a rough ranking based on overall sensitivity. Sensitivity
is defined here as the percentage of targets for which a
(partially) correct prediction is obtained, as assessed by the
MaxSub evaluation method (Siew et al., 2000). We deliberately
group similarly performing servers in one single range to
emphasize the fact that the differences among servers may not
be very significant and can be affected by the particular way
of evaluation. We should also note that some servers (e.g.
SFAM) are aimed at a particular type of prediction problems
and thus may not be fairly ranked by an overall number.

Table I shows that four of the five top-performing servers
identified in previous experiments still rank at the top (3DPS,
INBG, FFAS and MGTH). However, four new servers now
accompany them. FUG2 and FUG3 are variants of FUGU
developed by the same group. ORFs is a profile-to-profile
comparison server developed at bioinfo.pl by one of the authors
of this paper. SHGU (3D-SHOTGUN) is an enhancement over
the INBG method, developed by the other author of this paper
(Fischer, 2003). PDBb corresponds to a local implementation
of PSI-BLAST. It is clear that all FR servers outperform PDBb.

The sensitivity of the top ranking servers is above 50%
(Table I). Apparently, there has been a slight improvement in
the sensitivities of the ‘old’ LB-2 servers. However, this
improvement may not necessarily mean that these servers have
improved. It may merely be due to the differences in the test
sets (LB-4 may have included more ‘easier’ targets), to the
growth of the sequence and structural databases or both.

In a special category, LB-4 also evaluated the performance
of three meta-predictors: CNS2 (version 2 of pcons, described
above), 3DS3 and 3DS5 (two meta-predictors using the 3D-
SHOTGUN algorithm) (Fischer, 2003). We distinguish meta-
predictors from individual servers by the type of input required:
a meta-predictor cannot run independently, explicitly requiring
as input the predictions of at least one other participating
server. The meta-predictors’ sensitivity ranges between 56 and
60%, confirming that the use of information from more than
one server can result in increased performance. It seems
that the performance of these meta-predictors do effectively
represent an improvement.

Table II lists the overall specificities of the LB-4 servers.
The specificity is computed as a percentage by dividing the
total specificity calculated in the LB-4 web page by the total
number of targets (108), times 100. In LB-4, the total specificity
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Table II. LiveBench-4 specificity results

Specificity range (%) Names of servers

41–49 SHGU 21.9 FFAS 6.8 ORFs 6.0 INBG 21.8 FUG2 4.8 FUG3 5.2
34–36 SFAM 10–3 3DPS 0.1 FUGU 5.2 ORFb 35.9 ST99 18.5
25–32 PDBb 0.05 MGTH 0.6 GETH 0.6

The specificity is computed as the ‘total’ specificity computed in LB-4 divided by the total number of targets (108). The numbers following the servers’
names are rough estimates of their ‘5% confidence scores’.

is a rough estimate of the number of correct predictions a
server produces while producing up to five incorrect ones.
Table II also lists for each server the score of its fifth incorrect
prediction. For example, the FUG2 server had a specificity of
44% (total specificity of 47.6, divided by 108 targets). Its 5%
confidence threshold is 4.8. This means that FUG2 approxi-
mately produced 48 correct predictions plus five incorrect ones
with scores higher than 4.8.

Six of the individual servers that ranked highest in sensitivity
also rank at the top in specificity (SHGU, FFAS, ORFs, INBG,
FUG2 and FUG3). Surprisingly, in LB-2 MGTH ranked at the
top in specificity, whereas in LB-4 it performs significantly
worse. This may be due to a change in MGTH’s scoring
system introduced during LB-4. As expected, the servers’
specificities are lower than their sensitivities. For example,
while FUG2’s sensitivity was 50% (correctly predicting 54
out of the 108 targets), its specificity was only 44%. That is,
some of FUG2’s correct predictions had scores lower than its
5% confidence threshold.

The meta-predictors’ specificities are in the range 50–
56%, again higher than the individual servers, most probably
representing a significant improvement. The 5% confidence
scores of 3DS3, CNS2 and 3DS5 are 24.7, 1.2 and 4.2,
respectively. The 5% confidence scores reported in Table II
are of great value to the users of the servers, as they give an
indication of when a particular prediction may be reliable.
Depending on the way in which each server scores its predic-
tions, a more confident prediction can mean a larger or smaller
score. Probably the most valuable outcome of LB, rather than
attempting to provide an exact ranking of the servers, may be
the availability of these confidence thresholds. The LB-4 web
pages include detailed information listing the scores of the
first to tenth false positives of each server.

As specified above, one of the advantages of LB is that it
uses a relatively large test set (108 targets) compared with that
used in CAFASP (at most one or two dozen FR targets). Thus,
the relative ranking of the servers and the specificity analysis
provided by LB are more robust than those produced at
CAFASP. Despite the smaller test set used in CAFASP,
both experiments identify almost the same group of top-
performing servers.

The 2002 Structure Prediction Games
The results of the ongoing LB-6 and CAFASP-3 experiments
will be particularly interesting because of the presence of
new servers that have not been evaluated in LB-4. Another
interesting addition in 2002 is the introduction of two new
evaluation experiments, PDB-CAFASP and MR-CAFASP. The
goal of PDB-CAFASP, like CAFASP3 and LB, is to evaluate the
performance of fully automatic 3D protein structure prediction
servers. The difference in PDB-CAFASP is the set of targets
used. CAFASP uses CASP targets, LB uses newly released
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PDB entries, whereas PDB-CAFASP uses as targets pre-release
PDB entries. Pre-release PDB entries are entries soon to be
released, whose structures are not yet published, but whose
sequences are known. Thus, PDB-CAFASP is, like CAFASP,
a blind prediction experiment, where the predictions are made
before the experimental structures are available.

MR-CAFASP is an experiment aimed at evaluating the
potential of predicted models to be of aid during the experi-
mental structure determination process. The focus will be on
targets with no close homologue of known structure, where
molecular replacement (MR) techniques cannot easily be
applied, either because a parent of known structure is not
easily identified or because the sequence–structure alignment
is not reliable.

During previous LB experiments, it was discovered that in at
least two cases, highly confident predicted models significantly
differed from the experimental structure. In both cases, the
experimental structure was subsequently removed from the
PDB and, in one case, the replacement entry contained cor-
rected models very similar to the original in silico prediction
(Bujnicki et al., 2002a,b). This lead to the consideration of
whether in silico models may be of help during the structure
determination process – a very important issue for structural
genomics. Jones has also recently suggested that distant
homology fold-recognition models may be used as molecular
replacement phasing models (Jones, 2001).

The questions that MR-CAFASP aims to address are as
follows. Would a predicted model be of help to fit the chain
better into a low-resolution, hard to interpret, electron-density
map? Can a predicted model help detect shifts and errors in
the initial tracing of an electron-density-map? Can a predicted
model be used as a phasing model? How can NMR benefit
from an accurate predicted model? Because many predicted
models may not be accurate enough, is it worthwhile for the
experimentalist to spend some time verifying this?

In MR-CAFASP, highly confident fully automatic predic-
tions will be selected from the targets of PDB-CAFASP, before
the experimental structure is released. From these, a number
of tests will be carried out vis-à-vis the experimental data,
when the latter become publicly available.

For more information about PDB-CAFASP and MR-
CAFASP, see the main CAFASP3 web page.

Developers and the users of structure prediction programs
will again be watching the 2002 protein structure prediction
Games. The community will learn whether new servers, not
evaluated in LB-4, will demonstrate further progress or whether
the main findings of LB-4 will simply be confirmed. More
than ever, it will be interesting to see how useful the automated
predictions will be for human CASP5 predictors and, more
important, to see the performance differences between the
current best automated servers and the best human predictors.
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Disclaimer
It is important to state that the authors of this paper are at the
same time the organizers of CAFASP and LiveBench and the
developers of participating servers. Thus, even if the evaluation
is carried out by fully automated procedures, it cannot be
considered as independent. However, the generally consistent
ranking obtained at CASP provides a valuable and inde-
pendent control.

Note added after submission
The Asilomar CASP/CAFASP meeting was held shortly before
this paper was accepted for publication. The results of the
meeting largely confirmed the findings of LiveBench: (i) four
of the top-performing servers at CAFASP-3 were also at the
top in LB-4; (ii) the performance differences of many servers
are very slight and an exact ranking is not very meaningful;
and (iii) meta-predictors perform significantly better than
individual servers. Possibly one of the most important findings
was that owing to the improved performance of the meta-
predictors, the performance difference between the best human
predictors and the best servers is narrowing. A full report of
the 2002 Asilomar meeting will be published in a special issue
of Proteins. For updated information see the CASP5 site at
http://PredictionCenter.llnl.gov/casp5, the CAFASP3 site at
http://www.cs.bgu.ac.il~dfischer/CAFASP3 and the Live
Bench6 site at http://bioinfo.pl/LiveBench.
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