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ABSTRACT

The equations governing the movement of the melt and the matrix of a partially molten material are
obtained from the conservation of mass, momentum, and energy using expressions from the theory of
mixtures. The equations define a length scale dc called the compaction length, which depends only on
the material properties of the melt and matrix. A number of simple solutions to the equations show that,
if the porosity is initially constant, matrix compaction only occurs within a distance ~<5C of an
impermeable boundary. Elsewhere the gravitational forces are supported by the viscous stresses
resulting from the movement of melt, and no compaction occurs. The velocity necessary to prevent
compaction is known as the minimum fluidization velocity. In all cases the compaction rate is
controlled by the.properties of the matrix. These results can only be applied to geological problems if
the values of the permeability, bulk and shear viscosity of the matrix can be estimated. All three depend
on the microscopic geometry of the melt, which is in turn controlled by the dihedral angle. The likely
equilibrium network provides some guidance in estimating the order of magnitude of these constants,
but is no substitute for good measurements, which are yet to be carried out. Partial melting by release
of pressure at constant entropy is then examined as a means of produced melt within the earth.

The principal results of geological interest are that a mean mantle temperature of 1350 °C is capable
of producing the oceanic crustal thickness by partial melting. Local hot jets with temperatures of
1550 °C can produce aseismic ridges with crustal thicknesses of about 20 km on ridge axes, and can
generate enough melt to produce the Hawaiian Ridge. Higher mantle temperatures in the Archaean can
produce komatiites if these are the result of modest amounts of melting at depths of greater than
100 km, and not shallow melting of most of the rock. The compaction rate of the partially molten rock
is likely to be rapid, and melt-saturated porosities in excess of perhaps 3 per cent are unlikely to persist
anywhere over geological times. The movement of melt through a matrix does not transport major and
trace elements with the mean velocity of the melt, but with a slower velocity whose magnitude depends
on the distribution coefficient. This effect is particularly important when the melt fraction is small, and
may both explain some geochemical observations and provide a means of investigating the compaction
process within the earth.

I N T R O D U C T I O N

There is an obvious need for a simple physical model which can describe the generation of
a partially molten rock, and the separation of the melt from the residual solid, which will be
referred to as the matrix. If such a model is to be useful it must lead to differential equations
which can be solved by standard methods. The principal aim of this paper is to propose such
a model, derive the governing equations, and obtain some solutions for particularly simple
cases. The model is concerned with the physics, rather than the chemistry, of the process,
though the formulation is sufficiently general to allow the inclusion of complicated phase
equilibria. Several effects whose importance is unclear have not been included, in order to
obtain the simplest model which can describe the generation and extraction of magma.

Generation of a magma containing few solid crystals requires two operations. A partially
mohen rock must first be generated, either by supplying heat or by reducing the pressure and
so changing the solidus temperature. Once such a rock has been formed, the melt must
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714 D. P. McKENZIE

separate from the residual solid matrix. Such separation is only possible if there is relative
motion between the matrix and the melt, and therefore this process involves two phase flow.
In practice these two processes are unlikely to be independent, since melt extraction will occur
at the same time as melt is being generated.

There has been considerable interest for some time among geophysicists and petrologists in
the dynamics of partially molten rocks. All of this work has been hindered by the difficulty of
describing the fluid mechanical behaviour of the crystalline residue. Several authors (Walker
et ai, 1978; Ahern & Turcotte, 1979; Maalee & Scheie, 1982) have argued that the rate at
which the matrix will compact will be governed only by the rate at which the melt can be
expelled, and not by the mechanical properties of the matrix. The equations obtained below
show that this argument is not correct, and that the expulsion rate always depends on the
properties of the matrix. Some other authors have attempted to take account of matrix
deformation. Sleep (1974) wrote down the equations governing conservation of mass and
momentum for two phase flow, though he made little attempt to obtain solutions. He did not,
however, include the bulk viscosity of the matrix. Stolper et al. (1981) attempted to take
account of the matrix deformation without obtaining the general equations, but their results
do not agree with those obtained below. Waff (1980) has argued that static solutions exist in
which finite melt fractions are stationary with respect to the matrix. No such solutions are
obtained here, and it is unlikely that they are stable. Maaloe & Scheie (1982) have proposed
the form of the flow between melt and matrix, and have even attempted to investigate its
stability. They also did not start from the conservation equations. Their problem is
considerably more complicated than any of those examined below, and it remains to be seen
whether their proposals are correct.

The approach taken below most closely resembles that of Sleep (1974), and starts from the
general differential equations which govern two phase flow in a material which is melting
(Appendix A). These equations govern the conservation of mass, -momentum and energy in
the material, and therefore provide the mathematical basis for all further investigations. They
are, however, rather complicated, especially the energy equation, and experience in other
areas of fluid dynamics shows that it is useless to attempt to solve such equations directly and
to include every effect which is believed to be important geologically. The way to proceed is to
solve a succession of simplified problems of gradually increasing complexity, using the
understanding gained from the simpler problems to understand the behaviour of the more
complicated ones. This process is familiar to igneous petrologists when it is applied to phase
diagrams of coexisting minerals, but is is perhaps less obvious that this is the correct
approach when the problems involve mathematial equations, especially when some of the
simpler problems have limited geological interest

Various model problems are examined below. The first simplification made is to separate
the melting problem from that of compaction. This result is achieved by not allowing relative
motion between the melt and matrix during melting, and then considering the compaction of a
partially molten region as a separate problem. Since the equations governing compaction are
new, the nature of their solutions must be investigated systematically. The first step in doing
so is to obtain analytic solutions where possible. Several such solutions are obtained in
Appendix B, and demonstrate that there are two types of flow in such regions. Boundary
layers exist in which compaction of the matrix occurs. The interior flow consists of uniform
movement of the melt without any associated compaction. These analytic solutions must
form the basis of any investigation of the non-linear behaviour which occurs when
appreciable compaction has taken place. Though the initial and boundary conditions of these
analytic solutions are not those appropriate to, for instance, magma generation beneath ridge
axes, it is essential to understand how simple systems behave before attempting to investigate
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PARTIALLY MOLTEN ROCK 715

real geological problems. There would, for instance, be little point in studying the melting
behaviour of a garnet peridotite in the laboratory if the existence of eutectics in two
component systems was unknown.

The equation governing the conservation of energy is more complicated than those
governing the conservation of mass and momentum. It contains terms which take account of
the latent heat of melting, the transport of heat by the separate movement of the melt and the
matrix, and the heat generated by the deformation of the melt and the matrix. Little is yet
known about the solutions to this equation, so once again a number of simplified problems
must first be considered. The two discussed here are melting at constant entropy produced by
upwelling, with no motion between melt and matrix (Appendix D), and the distribution of
heat generation by deformation of the melt and matrix (Appendix B). Melting at constant
entropy is probably a reasonable approximation to the behaviour of the mantle beneath both
ridge axes and intraplate volcanoes, though probably not beneath island arcs, and therefore an
attempt is made to obtain empirical relationships between the temperature, pressure and melt
fraction, and to carry out realistic calculations.

Modern geochemistry makes much use of trace element distributions, and it is of interest to
examine how both major and trace elements move during two phase flow. The governing
equation resembles that of energy conservation, and an analytic solution can be obtained to a
simplified problem of melt moving through a matrix which is neither compacting nor melting
(Appendix E).

A major advantage of approaching problems in the manner outlined above is that
analogies between different problems can be exploited. For instance there are at least four
problems of geological interest which are concerned with the fluid dynamics of two phase
flow. One is the magma extraction problem. Another is the compaction of sediments during
burial by the expulsion of water. This problem is better understood than that of magma
extraction, because of its importance to the oil industry. Many of the effects which are
investigated below using simplified model problems, such as fluidization, dispersion and
differential transport of solutes, are well known in other contexts. Several other more
complicated effects which are known to take place in compacting sediments, and which are
less easily modelled, should also occur in partially molten rocks.

A third problem of geological interest which involves two phase flow is the movement of
fluids, such as water and carbon dioxide, during crustal metamorphism (Elliot, 1973; Durney,
1976; Rutter, 1976). This problem is obviously similar to the igneous problem, but it is more
difficult because the fluids involved cannot be directly sampled and the minerals of the matrix
are often undergoing phase changes. Some useful results can nonetheless be obtained (Bickle
& McKenzie, in preparation).

A further example of two phase flow is the growth of the inner core. The molten iron of
which the outer core consists probably also contains a small proportion of a lighter element
The solid inner core must grow as the earth cools, forming a solid matrix containing a melt
fraction in a layer on its outer boundary. Little is yet known about this process, which is still
largely conjectural.

Examples of compaction and of two phase flow are also common in fields remote from
Geology. In Materials Science especially, systematic investigations of the physical
mechanisms involved in compaction have been carried out, and the processes involved are
now reasonably well understood. Though this work has some relevance to the geological
problem, the shape of individual pores depends on whether they are filled with melt, as they
are in the mantle, or are empty, as they often are in engineering problems. Two phase flow
also occurs in fluidized beds and forms the basis of the science of Hydrology. Again these
problems are better understood than is that of magma extraction, and can provide
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716 D. P. McKENZIE

understanding of a variety of model problems which are simpler than the real geological
problem, but which are relevant to it. It is, however, important to understand the physical
processes involved in all these examples if they are to be helpful in understanding the
geological problem. It is also important to start from differential equations which describe the
conservation of mass, momentum and energy, since no one doubts that these constraints
must be satisfied during the melting process.

T A B L E 1

Notation

Variable Meaning Value used Dimensions

10-'

103

io-10

10-"

?-81

m
none
Jkg-
Jkg"
Jkg-
none
none
m2s-
m2s"
m2 s~
m2 s"
m2 s"

ms"2

m
none
JK- '
Wm"
Wm-
Wm-

K-'
K- '
K- '

K-
K~

a particle radius
«, unit vector in vertical
Cp specific heat at constant pressure
CJ specific heat of melt at constant pressure
C ' specific heat of matrix at constant pressure
cr concentration by weight in the melt
c, concentration by weight in the matrix
Dn horizontal diffusivity
D33 vertical diffusivity
Db grain boundary diffusivity
Dr diffusivity of melt (Hofmann & Magaritz, 1977)
D, diffusivity of matrix (Hofmann & Hart, 1978; Miyamoto & Takeda,

1983)
g acceleration due to gravity
H rate of internal heat generation
h depth of a layer
Kc = c,/cf partition coefficient between matrix and melt
k Boltzmann's constant
fc,. effective thermal conductivity of melt and matrix equation (A38)
Idj thermal conductivity of melt
k\ thermal conductivity of matrix
kt specific permeability
I body force on the matrix from melt movement
L latent heat of melting
/ length scale

D y ^ the rate of conversion of matrix into melt/unit volume, measured in a
Dr frame fixed to the matrix
P pressure
Pr pressure in melt
P, presure in solid
Ra Rayleigh number for convection in a porous medium equation (3.9)
Re = Ivl l/t> Reynolds number
Sr entropy of the melt
S, entropy of the solid
AS entropy change on melting
T absolute temperature
Tt solidus temperature
AT temperature difference between liquidus and solidus
/ time
/' = t/r0 dimensionless time
/, total melt thickness
V = (U, V, W) velocity of matrix
v = (u, v, w) velocity of melt in pores

AV

362

volume change on melting JL.L)

m
kg m"3 s-'

Pa
Pa
Pa
none
none
J kg-' K.-'
Jkg - 'K- '
J kg-' K-'
K
K
K
s
none
km
us-'
ms" '

m3 kg'1
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PARTIALLY MOLTEN ROCK 717

Variable Meaning Value used Dimensions

W

X
x,y
X

y1

z
z'

••}

5

\
C
C
1
n*
e

v
P,
P,
P
a
&
&
&
z

n
v

= Wlw0 dimensionless vertical matrix velocity
= w/w0 dimensionless vertical melt velocity
transport velocity of solute, equation (5.3)
reference vertical velocity, the minimum fluidization velocity,

equation (B7)
melt fraction by weight
horizontal coordinates
= x/5c dimensionless
= yldz horizontal coordinates
vertical coordinate, positive upwards
= z/6c dimensionless vertical coordinate

thermal expansion coefficient of melt (Dane, 1941)
thermal expansion coefficient of matrix
grain boundary energy between matrix and melt
grain boundary energy between matrix gTains
grain boundary thickness

compaction length

6-8 x 10"'
4 x 10"'

= (1 — f) f effective bulk viscosity of matrix
bulk viscosity of matrix
= (1 — f) tf effective dynamic shear viscosity of matrix
shear viscosity of matrix
dihedral angle, Fig. Aa
effective thermal diffusivity of melt and matrix, equation (A40)
dynamic shear viscosity of melt (Murase & McBirney, 1973)
= fi/Pt kinematic shear viscosity of melt
density of melt
density of matrix
= (1 — fS)Pi + fpf mean density of melt and matrix
« a{J stress tensor
= ajj deviatoric stress tensor in matrix
K a'j stress tensor in melt
a a'j stress tensor in matrix
a characteristic time
reference time, characteristic time for compaction equation (B11)
porosity of matrix
initial porosity of matrix
isolated porosity
Atomic volume
= Jc V dimensionless vector operator

1015

1013

50°

10-*
1

2-8 x 103

3-3 x 103

none
none
m s"1

ms"1

none
m
none

m
none

K-1

K-1

Nm"1

Nm"1

m

m

Pas
Pas
Pas
Pas

m2!"1

Pas
m2s- !

kgm-3

kgm"3

kgm-J

Pa
Pa
Pa
Pa
8

S

none
none
none
m3

none

2. THE GOVERNING EQUATIONS
The equations governing the conservation of mass, momentum, energy and each element

individually are obtained in Appendix A. Those governing the conservation of melt and
matrix separately are

86 _

dt~
where 6 is the volume fraction occupied by the melt, called the porosity, v is the mean velocity
of the melt and V that of the matrix. An alphabetic list of all the variables used will be found
in Table 1. Equation (2.1) applies only if the matrix does not melt. If it does then the melt and
the matrix are not individually conserved.

(2.1)
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718 D. P. McKENZIE

The equation governing the difference in the velocity of the melt and matrix is a
modification of D'Arcy's law

v - V = - ^ V ( P + /Jfgz) (2.2)

where n is the viscosity of the melt, kt the permeability, P the pressure pr the density of the
fluid and g the acceleration due to gravity, z is the vertical distance, taken to be zero on the
surface of the layer and to be positive upwards. The factor <j> dividing the right-hand side
arises because k^ is usually determined by measuring the average velocity with which a fluid
passes through a permeable solid, and not the velocity of the fluid in the pores (see for
instance Dullien, 1979, p. 78). This equation has been widely used in the geological literature,
generally with the matrix velocity taken to be zero (Sleep, 1974; Ahem & Turcotte, 1979;
Walker etal., 1978; Stolper et al, 1981). The physical meaning of the equation is that the flow
is driven by the difference in the actual pressure P and the hydrostatic pressure —prgz. It is
usually written down as an empirical law, though its form can be derived from the theory of
two phase flow, as is done in Appendix A. The reason why it is useful to do so is that the force
which the matrix exerts on the melt, which leads to (2.2), also acts on and can deform the
matrix.

The equation which governs the motion of the matrix has not been found in the literature,
and may be written in a variety of ways. It can also be obtained directly by a physically
plausible argument. If the pressure is sufficient to support the weight of the overlying partially
molten material, no compaction will occur. This condition is satisfied if the pressure gradient
obeys

dP
— = -K (2-3)

dz

where p is the mean density of the material:

p = (l-t)ps+tpr (2.4)

and ps is the density of the matrix. If (2.3) is not satisfied then the matrix will expand if

dP
— + pg>0 (2.5)
az

or compact if this expression is less than zero. Though the physical meaning of the equation
governing compaction is clearest when it is expressed in terms of the pressure, it is generally
more convenient to solve the equation when it is written in terms of v and V, because the
boundary conditions are generally given in terms of velocity, not pressure. When (2.3) is not
satisfied and the matrix deforms, it probably does so like a viscous fluid, at least at low
stresses. This behaviour arises because diffusion through the melt provides a means of
changing the shape of the individual crystals of which the matrix consists, without deforming
the crystals internally. Hence the viscosity of the matrix is an average property, and applies
only to regions large enough to include a large number of crystals and pores. The deformation
of viscous fluids whose density is constant can be described by the familiar shear viscosity T\.
If, however, the mean density of the porous matrix is not constant, as it is not in the problem
considered here, two viscosities are required to describe the deformation, the shear viscosity
and the bulk viscosity C (see Landau & Lifshitz, 1959, p. 48). These two constants are
independent, though they can often be related to each other if deformation mechanism is
understood. The bulk viscosity of a two phase system was calculated by Taylor (1954) for a
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PARTIALLY MOLTEN ROCK 719

suspension of gas bubbles in a liquid. A similar calculation is carried out below to obtain the
bulk viscosity of the matrix (Appendix C).

An expression similar to that derived here was proposed by Sleep (1974) for the
deformation of the matrix. He, however, assumed that the bulk viscosity was zero. If this
assumption were true the matrix would exert no resistance to isotropic compaction (see
Appendix C). Such behaviour is implausible, and is not compatible with any of the proposed
mechanisms which change the shape of individual crystals of the matrix (Artz et al., 1983).
Therefore the equations containing the bulk viscosity should be used.

Two other equations can be derived from the conservation of energy and of individual
elements. The energy equation is complicated and contains a large number of terms. A
detailed investigation of its solutions will require numerical experiments. The conservation
equation for each element is simpler because source terms are absent.

Various important assumptions have been made in the derivation of the governing
equations, all with the aim of producing equations which contain enough of the physics of the
problem to be interesting while still remaining sufficiently simple to solve by standard
methods. The first assumption is that the creep rate of the matrix depends linearly on the
stress. Under the low stresses prevalent in the partially molten regions of the upper mantle this
assumption is probably valid (Pharr & Ashby, 1983). It is certainly premature to attempt to
use a more complicated rheology.

The second assumption is that the pressure in the melt is the same as that in the matrix, or
that the surface energy of the matrix grains has no influence on the dynamical behaviour.
Bulau et al. (1979) and Waff & Bulau (1979) have clearly demonstrated that the surface
energy of the matrix controls the detailed morphology of the melt distribution. Drew & Segal
(1971) discuss the inclusion of such surface energy terms in the momentum equations, but the
resulting expressions appear to be somewhat intractable. It therefore seemed worthwhile to
explore first the simpler system of equations in which the surface energy is neglected.

3. THE PHYSICAL PROCESSES INVOLVED IN COMPACTION

The melt fraction present in the mantle must vary with depth, since it is zero at the surface
and presumably also at great depths. It is therefore of interest to examine how this variation
affects the movement of the melt and matrix. The simplest model in which the melt fraction ^
varies is one in which § changes from zero to some constant value on a horizontal boundary
z = 0. It is then easy to show that there is no solution to the equations if the velocities of the
matrix and melt are both zero. If the melt velocity was zero the pressure would have to be
hydrostatic

dP
— —PrS (3-D

If, however, the matrix is not to deform by compaction, (2.3) requires

(3.1) and (3.2) can only both be true if f = 1, which requires the matrix to be absent. For any
other value of <j> no solution can exist without compaction. This result was first pointed out by
Waff (1980), but he did not believe that real partially molten rock behaved in this way.
Instead he argued that the difference between the two pressure gradients (3.1) and (3.2) was
maintained by surface forces, and therefore that the pressure within the fluid differs from
that within the solid. He was then able to construct a non-uniform static distribution of melt
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DIMENSIONLESS HEATING RATE
0 0-01 0O2

Matrix
Velocity

-01 0 I
DIMENSIONLESS VELOCITY OIMENSIONLESS EXPANSION RATE

FIG. 1. (a) Dimensionless matrix velocity W and melt velocity v/ as functions of dimensionless height above an
impermeable layer at z' = 0 (equations (B16) to (B18)) for j = 0-1. The boundary condition at z' = 4 is that the
stress on the matrix should be zero. Upward velocities are positive. (6) Dimensionless expansion rate, M^djldf,
and dimensionless dissipative heating produced by the deformation of the matrix and movement of the melt

corresponding to the flow in (a). All quantities have been scaled using (B25) to (B28).

and matrix. He did not examine the stability of his solution, nor did he explain how the
proposed distribution could arise. Until clear geological evidence requires the existence of
such static models it seems preferable to assume that they are not stable solutions to the
problem.

The flow within a layer with a free upper boundary across which melt can flow, compacting
onto an impermeable horizontal plane (Fig. 1; Appendix B) illustrates the general form of the
behaviour. Both the velocity of the matrix W and melt w' are dimensionless. In a layer near
the lower boundary the upward velocity of the melt increases with height until it is sufficiently
great to balance the pressure gradient produced by the mean density. Thereafter all the weight
of the melt and matrix is supported by the upward percolation of the melt, and no compaction
occurs. This behaviour is most clearly seen in the plot of the dimensionless expansion rate
l/f> d<f>/dt', which is negative when compaction is occurring. Compaction occurs most rapidly
at the base of the layer, and the rate decreases exponentially with height. This behaviour can
be used to define the thickness of the compacting boundary layer. The characteristic length
over which the compaction rate decreases by a factor e will be referred to as the compaction
length, <5C, and is given by

<5C = (3.3)

where C and t] are the bulk and shear viscosities of the matrix of permeability k4, and ft is the
viscosity of the melt. As is demonstrated in Appendix A this length is a fundamental length
scale of the problem, and will govern the behaviour of all compacting layers. The discussion
in section 4 shows that the permeability can be written as aH($, where a is the radius of the
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PARTIALLY MOLTEN ROCK 721

grains making up the matrix and f ($ is a function which depends only on the porosity. Hence

. (3.4)

and depends on the ratio of the viscosity of the matrix to that of the melt. It is scarcely
surprising that both the viscosities of the melt and of the matrix are involved, because the melt
can only be expelled if the matrix can compact. What is perhaps more surprising is that <5C
does not depend on the gravitational forces, since it is independent of g and pt — pf.

The example in Fig. 1 also allows the dissipation rate in the melt and matrix to be
calculated. Dissipative heating occurs in the melt because it is flowing through the porous
network formed by the matrix and in so doing generates heat. Heating by matrix deformation
is restricted to the region in which compaction (or expansion) is occurring. It is of interest that
the maximum rate of dissipation by each mechanism is the same. This result does not depend
on the values of the viscosities of the melt and matrix, or on the porosity.

In the example shown in Fig. 1 the layer depth h is 4dc. An important limiting case occurs
when h < Sc. The melt is then free to escape from the matrix, and the velocities and the
compaction rate should be independent of yt and k4. The solutions to this problem when
h < <5C show that the velocities and compaction rate depend only on the expression

i
where w0 is the relative velocity between the melt and matrix where no compaction is
occurring

^±^zA{ ^ (3.7)

substitution of (3.7) and (3.3) into (3.6) gives

81
(3.8)

This expression therefore confirms the physical argument above, and shows that the
velocities and compaction rate are independent of melt viscosity and the permeability. The
resulting variation of the dimensionless velocities and expansion rate with dimensionless
height in this case (Fig. 2) is rather different from the case when h = 4<5C in Fig. 1.

These two examples demonstrate that the compaction is either controlled by the properties
of both the matrix and the melt, or by those of the matrix alone, depending on the value of
h/5c. No solutions exist in which the behaviour is controlled by the properties of the melt
alone. It is therefore essential to take into account the deformation of the matrix when
discussing the extraction of magma from a partial melt.

Two familiar examples illustrate that it is the value of h/5c, not h alone, which controls the
behaviour of a compacting layer. The first is the behaviour of an oil-water mixture such as
salad dressing. When this mixture is shaken and then left to stand, an oil layer forms at the
surface in which the oil bubbles are separated by a small amount of trapped water. The
upward motion of the oil and downward motion of the water are easily visible. Since the
viscosity of the oil is small, though greater than that of water, h/Sc > 1, even though the
physical size of the experiment is small.

The second example is the movement of water in a thick layer of sand. Many excellent
aquifers consist of a sand horizon between less permeable shales. On a geological time scale a
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D I M E N S I O N L E S S HEATING RATE
0 O-OJ O02

Melt
Velocity w'

-0 01 0 0-1
DIMENSIONLESS VELOCITY

FIG. 2.

-O5
DIMENSIONLESS EXPANSION RATE

s for Fig. 1, but for a layer whose depth is small compared with <5C (equations (B21) to (B23)).

process known as pressure solution occurs in which the quartz dissolves in the water adjacent
to the points of contact between the quartz grains and is redeposited elsewhere. This process
allows the matrix to deform, but, because the solubility of quartz in water is small, it proceeds
very slowly even in thick beds. Hence the effective viscosity of the matrix is large, and
h/Sc < 1 even if the bed is 100 m or more thick. It is clear that the rate of compaction of the
bed does not depend on the viscosity of the water or the permeability of the matrix, since such
beds can act as aquifers.

The most striking feature of the solution in Fig. 1, with h/5c = 4 is the existence of a region
towards the top of the layer in which negligible compaction is occurring and the gravitational
forces are supported by the upward percolation of melt. The relative velocity between melt
and matrix in this region is H>0, given by (3.7), and is independent of the viscosities of the
matrix. The existence of such a velocity is a well known feature of the two phase flow which
occurs in fluidized beds, and is known as the state of uniform fluidization. It is also sometimes
called the quick condition, since the behaviour of quicksands depends on the existence of an
upward flow of water. There is, however, a considerable difference in the behaviour of
fluidized beds and of partially molten rocks. Under most conditions the particles in fluidized
beds are not deformable. Hence if the upward flow of fluid is sufficient to support the weight
of the material the particles are free to move. It is this ability which gives such beds their fluid
properties. Unless the melt fraction exceeds about 20 per cent (section 4), however, a partially
molten rock consists of a network of interlocking grains. These will deform and expel melt if
the melt velocity is less than w0. Even if the velocity is greater than H>0 they still remain inter-
locked. Such a material will still possess a large viscosity t], controlled by the rate of
deformation of the matrix, when deformed in shear.

A third solution illustrated in Fig. 3 has a different upper boundary condition from those in
Figs. 1 and 2. Instead of a free upper boundary, both the matrix and melt velocities are
required to be zero on both boundaries. The solution then has two boundary layers, both with
a thickness comparable to Sc. In the lower boundary layer compaction occurs to generate the

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/25/3/713/1394279 by guest on 18 April 2024



PARTIALLY MOLTEN ROCK 723
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FIG. 3. (a)(A) As for Fig. 1, but with the matrix and melt velocities zero on both z' = 0 and 4 (equations (B12) to
(BU)).

upward movement of the melt with relative velocity H>0. In the upper boundary layer
expansion occurs to accommodate the melt expelled from the base layer. This solution is valid
only if the grains of the matrix remain in contact, and the relevant conditions which must be
satisfied are discussed in section 4. When, however, ^ 3> 0-2 the grains will disaggregate and
the solution will cease to be valid. Since the porosity increases most rapidly at the upper
boundary, disaggregation will first occur there. When it does so a layer of pure melt will start
to accumulate, and the upper boundary condition on the matrix will be that the stress, and not
the velocity, is zero on the upper surface of the compacting layer. The solution will then be
that shown in Fig. 1.

These solutions are valid only if the porosity is initially constant, and then only when / = 0.
The governing equations can obviously be solved numerically to discover how the porosity
varies with time as a function of z. No such integrations are carried out here, though a variety
of solutions have been obtained (Richter & McKenzie, in preparation). It is also important to
investigate whether the resulting solutions are stable. It is likely that stable solutions exist if
both the initial porosity and permeability are monotonically increasing functions of z only, or
are constant, though this result has not been proved. Two related problems have been studied
which are known to be unstable. Saffman & Taylor (1958) showed that the displacement of a
fluid filling the pores of a porous medium by another, less viscous, fluid results in fingering,
with long tongues of the less viscous fluid penetrating into the medium. Preliminary results
suggest that a similar type of instability occurs in the problem discussed above wherever the
permeability decreases upward.

The other type of instability which may be relevant to the partial melt problem occurs in
fluidized beds, and has been widely studied (Anderson & Jackson 1968, 1969; Homsy et al.,
1980; Didwania & Homsy, 1982; Liu, 1982). It occurs when the fluid velocity exceeds H ^
and takes the form of porosity waves travelling in the z direction. These waves may be
unstable to transverse structures, and also to bubbling, in which bubbles of fluid form without
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724 D. P. McKENZIE

any particles (El-Kaissy & Homsy, 1976; Didwania & Homsy, 1981). Corresponding
solutions probably exist to the partial melting problem.

Instabilities in compacting regions are likely to be of considerable importance in geological
problems. The existence of igneous dykes is probably the expression of the instability which
arises when the permeability decreases with height, and when the melt and matrix separate.
The existence of diapirs of partially molten material suggest that there is another class of
instability in which the melt and matrix move in the same direction. Certain sedimentary
features are also likely to result from the same instabilities. Dyke-like bodies of sandstone are
commonly found intruding an overlying less permeable shale, and are called neptunian dykes.
The movement is believed to occur during the early stages of compaction, when the porosity
of both sandstone and shale is large. The other observation which suggests instabilities are
important is the occurrence of sand boils or volcanoes during earthquakes. In regions where
the water table is shallow and saturated unconsolidated sediments occur, for instance in the
flood plains of rivers, shaking produced by earthquakes produces fountains of a sand—water
mixture from a series of vents. These two phenomena may well be related. Both suggest that
the existence of a region of low permeability overlying a more permeable bed is unstable.

A rather different type of instability can arise from thermal buoyancy. If the vertical
temperature gradient dT/dz exceeds the adiabatic temperature gradient (dT/dz), within the
melt over a sufficiently large region, thermal convection can occur within the partial melt. The
condition which must be satisfied is that the appropriate Rayleigh Number Ra denned by

[ d r tdT

"*'*»-s-(dr
R

where kr is the effective thermal conductivity given by (A38), af the thermal expansion
coefficient of the fluid of density pf and specific heat C{

p, and h the depth of the layer, should
exceed 4n2. Convection of the melt can then occur. Equation (3.9) assumes that horizontal
temperatures gradients are absent. If they are present then thermal convection will occur
irrespective of the value of Ra. However, the resulting velocities are small unless Ra > 4TI2.

At first sight the results obtained in this section may appear somewhat remote from the
geological problem of partial melting. They certainly cannot be directly applied to, for
instance, the movement of melt beneath a ridge axis. But a number of features of these
solutions must be relevant to all regions where partially molten material exists. Compaction
boundary layers must occur wherever the permeability changes. The mantle at sufficient
depth is generally believed to be solid, so melting beneath ridges must produce compaction
boundary layers. Where the lithosphere t)as formed by heat loss to the earth's surface, the
permeability of the lithosphere must be less than that of the underlying asthenosphere. Here
another boundary layer must form, which is probably unstable. Similar remarks apply to a
partially solidified sill, which will also undergo compaction. Further progress in understanding
all these problems will need to exploit the understanding provided by the simple solutions
obtained above.

4. CONSTANTS IN THE GOVERNING EQUATIONS

Further progress requires estimates of the values of the various constants which enter the
governing equations. Many of these are adequately known and are listed in Table 1 with
references where necessary. But kt, r] and C, are not well determined, and all three depend on
the detailed geometry of the melt phase.

Melting must first occur at the contacts between mineral grains of different composition. At
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grain corners four different minerals may be in contact at a point, and the first melt will
therefore be generated at these sites. If the melt remained there it would not form an
interconnected network of pores and could not be extracted. However, simply because the
melt is formed at grain corners does not mean it has to stay there. Whether it does so will
depend on whether this configuration has the least energy, and if not, on how rapidly the pore
geometry can be changed to achieve the minimum energy configuration. These questions are
discussed in this section.

The rate at which the pore geometry can change by diffusion in a partial melt of basalt with
an olivine matrix has been investigated by Vaughan & Kohlstedt (1982), who showed that
equilibrium geometries are achieved in the laboratory in less than 200 h. The grain size used
in these experiments was about 10 fim, and equilibrium will therefore be established more
quickly than it will be in the geological problem, where the grain radius is around 1 mm.
Nonetheless it is likely that the compaction time scale in the earth is sufficiently long for
equilibrium to be reached. If, for instance, the time taken to do so depends on the square of
the grain size, 1 mm grains will achieve an equilibrium geometry in less than 103 yrs.
However, in other geological situations, such as the rapid transport of xenoliths by a basaltic
magma, equilibrium geometry is probably not established (Maalee & Printzlau, 1979). All the
discussion below is based on the assumption that the pore geometry is in equilibrium, and is
that of minimum energy. This important question should be examined by using laboratory
experiments to determine the adjustment time as a function of grain radius and composition.
If the adjustment time is short compared with the compaction time it should be possible to
estimate the matrix viscosities by investigating the rate at which small perturbations to the
equilibrium geometry decay.

The equilibrium geometry of two dispersed phases has been considered in some detail by
Beere (1975a, b), and some beautiful SEM photographs of pore shapes have been obtained
(Beere, 1981). The morphology is controlled by the ratio of the grain boundary energy
between two grains yss to that between a grain and the melt ysf. The forces at the point of
contact between two grains and the melt must balance (Fig. 4a) and hence the dihedral angle
0 can be obtained by resolving the forces parallel to the grain boundaries:

cos9/2 = yj2ys[ (4.1)

As Beere (1975a, b) shows, the value of 9 controls the geometry and stability of the pores.
Provided 6 < 60° the pore space at the grain corners remains interconnected by pores along
the grain edges at all values of the porosity $. Furthermore small pores at the corners grow at
the expense of large ones. Therefore regions of closed porosity do not form by collapse of
the grain edge porosity, nor do the large pores grow at the expense of small ones. If, however,
9 > 60° there is a minimum value of 0 which must be exceeded before an interconnected
network of pores can exist. As Beere (1975a) remarks, most liquids in equilibrium with solid
grains have values of G < 60°, and therefore the melt network will be stable. Furthermore he
shows that such a network absorbs melt if placed in contact with a completely molten zone, a
process which causes swelling. Such behaviour has also been observed in silicates by Watson
(1982), who placed melt in contact with a basalt-peridotite analogue system and showed that
the melt penetrated grain boundaries. The experiments of Waff & Bulau (1979) suggest that
0 ~ 50° for a basalt-olivine system and therefore that the behaviour of silicate melts
resembles that of other partially molten ceramics. This value of 9 was determined from SEM
photographs and may not be very accurate. It is, however, likely that 9 > 0, since Vaughan
& Kohlstedt (1982) were unable to find melt on all grain boundaries.

The behaviour of the porosity networks when 9 > 60° is considerably different, as Beere
(1975a, b) shows. At low values of porosity closed pores are formed at grain corners, and the
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(a)

(b)

(c)

0=180"

FIG. 4. (a) The angle between two grain-melt interfaces at a grain boundary is the dihedral angle 8. (b) and (c)
The shapes of the channels on grain edges depend on the dihedral angle. If the pores are occupied by melt (6) 9 is
small and the boundaries concave, whereas if the pores are rilled with gas or are empty, & is large and the

boundaries convex.

larger pores are more stable than the smaller. Since all observations of silicate and other
ceramic melts are compatible with & < 60°, there is no reason to believe that such behaviour
has geological relevance to the partial melting of mantle rocks. However, a great deal of
experimental work on compaction has been carried out by materials scientists, with the pores
either gas filled or evacuated. The compaction process is known as sintering when it takes
place at atmospheric pressure and is driven by the reduction of surface area alone, and as hot
isostatic pressing, or hipping, when a hydrostatic pressure is applied to the surface of the
compacting material. When the pores are empty or filled with gas, 0 generally exceeds 60°.
Therefore the pore geometry in such solids is rather different from that of partially molten
materials, and results of sintering and hipping experiments may not be directly relevant to the
behaviour of the matrix.

One important consequence of the melt network being a minimum energy configuration at
all times is that its geometry is independent of whether the material is compacting or
expanding. Hence the equations obtained in Appendix A should be valid in either case.
Furthermore, since Waff & Bulau (1979) have determined a value of 6 of about 50° for
silicate melts, Beere's (1975a) curves can be used to estimate that disaggregation will not
occur until $ % 0-2. As is shown in the next section, such large values of ^ are not likely to
occur in partial melts produced' by mantle processes. Therefore the equations in Appendix A
are likely to provide a good description of the dynamics of such material inside the earth. It is
perhaps worth pointing out that similar arguments do not apply to the grain geometries of
compacting sediments.
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This discussion suggests that the permeability and matrix viscosities should be taken to be
a function of &, as well as of ^ and the grain radius a. The inclusion of both a and & as
independent variables takes some account of Hashin's (1964) concern that the geometry of
the matrix and melt must affect the material constants. In most mixtures there is no single
variable controlling the geometry of the phases, and therefore the behaviour of partially
molten material may for this reason be simpler to analyse than that of most composite
materials.

The other important conclusion which follows from this discussion is that the melt will not
remain at the sites where it is produced but will be distributed along all the grain edges to form
an interconnected network.

One further remark which should be made at this stage is that the surface forces which
control the melt geometry were neglected in deriving the governing equations. As Watson
(1982) has shown, on a small scale this approximation is not valid. It is possible, but probably
unlikely, that these forces are important on a large scale. Their principal effect is probably to
control the melt network, which indirectly has a major influence on the large scale motions.

If the pore geometry is interconnected and stable, all regions of porosity will contribute to
the permeability k4. Ahem & Turcotte (1979) and Maaloe & Scheie (1982) do not accept this
argument, and have proposed that the isolated porosity ^, can be taken into account by
allowing k4 to be a function of f — $x rather than $. The discussion above does not support
this proposal. Isolated porosity forms at grain corners when 0 > 60°. As the porosity
increases this pore space will become part of the interconnected network, and when it does so
its porosity should be included in the permeable porosity. Hence at sufficiently large values of
^ all pore space will be permeable and the permeability will be independent of ^,. Therefore
their proposal is not likely to provide a satisfactory description of kr Fortunately this
question is unlikely to be important, because all available evidence indicates that the porosity
network will remain interconnected at all values of 0.

The variation of k^ with ^ has been widely investigated, principally because it governs the
flow of water and oil in porous rocks. Models of viscous flow in networks and measurements
of the permeability of porous beds show that

k0 oc a2 (4.2)

where a is the radius of the grains (see Bear (1972), fig. 5.5.1). The dependence of k4 on
porosity is more controversial. Dullien (1979, p. 161) lists a variety of proposed relationships
and suggests that Rumpf & Gupte's (1971)

agrees best with observations made on porous beds of randomly packed spheres with
porosities between 0-35 and 0-65. These porosities are considerably greater than those which
are likely to exist within the earth, and the geometry of the pores must also be different.
Another relationship which has been proposed is

and is often known as the Blake-Kozeny-Carman equation (Dullien, 1979). The constant
factor K can be adjusted to match experimental observations. The value of K given by Bear
(1972) is 45, but the predicted values of k^ exceed those measured by Maaloe & Scheie
(1982) by more than an order of magnitude at small values of $. Therefore a value of K of
1000 was chosen to fit Maaloe and Scheie's measurements (Fig. 5).
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FIG. 5. The ratio of the permeability to the melt viscosity as a function of the porosity for a grain radius of 1 mm
and a viscosity of 1 Pa s, obtained from equation (4.3), shown as a dashed line, and (4.4), shown as a solid line.

The dots show Maaloe and Scheie's observations converted to the same grain radius using (4.2).

The variation of k4 with f is very rapid at low porosities no matter which expression is
used. Fig. 5 shows curves of kjn for a = 1 mm and fi = 1 Pa s, together with Maaloe &
Scheie's values converted to the same grain size using (4.2). The plot shows that k4 may
change by as much as a factor 103 between ^ = 0-1 and 0-01. As has previously been
emphasized (Frank, 1968; Sleep, 1974; Ahern & Turcotte, 1979), this variation dominates
the movement of melt through the matrix in the absence of compaction. Whether it does so
also in the compacting layer depends on the behaviour of £ and tj.

Little is yet known about the variation of either the bulk viscosity or the shear viscosity
with if). Artz et al. (1983) have developed a thepretical microscopic model which can
successfully account for compaction rates observed during hipping and the vertical
compaction of ice. Their equation for the compaction rate when <j> < 0-1 can be used to obtain
an expression for £((£) (Appendix C). Fig. 6 shows that { varies by about a factor of 3 over the
range 0-1 > <j> > 0-02. The value of { cannot be estimated from (C12) because the relevant
constants have not been determined. It is unlikely that the shear viscosity r\ varies as rapidly
with <f> as does C

The expressions obtained by Artz et al. (1983) do not include the influence of the partial
melt on the compaction rate, nor are the spherical pores at grain corners, which they use to
obtain d<j>/dt when § < 0-1, likely to be a good approximation to the interconnected porosity
of a partial melt with & < 60°. The existence of a melt phase is very widely used to increase
the densification rate during sintering, though the mechanism by which it does so is rarely
well understood. Several investigations have demonstrated a considerable increase in com-
paction or creep rate as the temperature crosses the solidus. Bowen et al. (1976) found that
the sintering rate of silicon nitride, which contained silica as an impurity, was proportional
to the concentration of MgO which they added. They also showed that the activation energy
changed at the lowest temperature at which the system MgO-SiO2 could form a liquid. The
change in activation energy is presumably caused by a change in the mechanism by which the
sintering occurs. Podob (1977) hipped Astroloy powder below and above and solidus of the
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FIG. 6. The ratio of the bulk viscosity to that at a porosity of 0-1, obtained from the expression of Artz et al.
(1982) (equation (C12)).

/ phase, Ni3 (Al, Ti), and showed that the resulting grain boundary structures were different.
However, he did not measure the compaction rate. Verrall & O'Connell (1981) measured the
creep rate of porous halite cylinders saturated with brine, and showed that the creep rate
decreased by several orders of magnitude when the temperature decreased below the solidus
of hydrohalite at 0-1 °C. One mechanism by which the creep rate can be increased by a
second phase has been studied in detail by Gessinger & Fischmeister (1972). They showed
that the increase in sintering rate of tungsten in the presence of a small amount of nickel is not
produced by a continuous film of melted nickel, but by the migration of nickel to grain
boundaries where it increases the diffusion rate of tungsten by about three orders of
magnitude. This behaviour occurs whenever the temperature is sufficiently high for the nickel
to migrate, and does not require melting. Perhaps the most useful experiments on the
influence of a melt phase on the creep rate were carried out by Pharr & Ashby (1983) on
creep in porous KC1 and sugar. They compressed cylinders of KC1 along their length whose
pores were filled with a saturated solution of KC1 in water-methanol mixtures, and showed
that the creep rate is proportional to the solubility of the salt in the pore fluid. They also found
that the creep rate is proportional to the stress, and depends on the temperature through an
activation term with an activation energy of 19 kJ mol"1. Sugar cubes behaved in a similar
way. These results are similar to those of Verrall & O'Connell (1981), who carried out a less
extensive series of experiments on NaCl. The principal difference is in the stress dependence.
Verrall & O'Connell found that the creep rate depended on aiS, where a is the stress, rather
than the linear dependence of Pharr & Ashby. Neither of these experiments determined the
dependence of the creep rate on grain size. Creep experiments have also been carried out at
high temperature on a y?-spodumene by Raj & Chung (1981) using three point bending. They
showed that the creep rate was proportional to the stress and to the reciprocal of the grain
size.

The principal problem with all these experiments is that they cannot be used to determine {
and t) independently, nor can they determine the variation of either with porosity.
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Experiments like those of Pharr and Ashby could do so if the rate of increase in the diameter
of the KC1 cylinders is measured, as well as their longitudinal strain rate (Appendix C). It
may, however, be better to measure £ and v independently. { can be determined from the
radial strain rate of a porous sphere enclosed in a membrane from which the fluid is allowed
to escape. The rate of contraction can be determined by measuring the rate of loss of fluid
(Appendix C). The shear viscosity can be measured by twisting a hollow cylinder, where the
couple is transmitted to the cylinder by the means of teeth at each end, in the same way as
Kamb (1972) deformed ice. The experiments should aim to determine dependence of C and n
on the grain size and porosity, as well as on the variables investigated by Pharr and Ashby,
and should also involve detailed examination of the resulting microstructure of the matrix.

An obvious alternative to laboratory measurements of £ and n is to use geological
observations to estimate their values within the earth. There are a number of areas where
partially molten rock is likely to be present at depth from which estimates of the viscosity can
be obtained. One such region is the Basin and Range, where Lake Bonneville provided a
water load during the Pleistocene which has since evaporated. Crittenden (1963) estimated
the viscosity to be 1020 Pa s, or a factor of ten less than that from Fennoscandia where little
melt is likely to be present. Estimates from the shape of the axial valley (Sleep, 1969) and the
thermal instability of the thermal boundary layer beneath plates (Parsons & McKenzie, 1978;
Houseman & McKenzie, 1982) all lie between 1018 and 1020 Pa s. Discussion of the force
balance on plates (Richter & McKenzie, 1978) also yields similar values for a thin low
viscosity layer which is required to decouple the plates from the mantle below. All these
estimates are of the shear viscosity t], and none is yet available for £ Useful estimates of
(C + If) c a n perhaps be obtained from studies of thick basic sills whose cooling time can be
calculated. The extent to which the olivine, which has crystallized from the melt, has
compacted may provide a better estimate of the matrix viscosity than do any larger scale
geophysical measurements.

It is clear from this discussion that values of C and n for the matrix of partial melts are at
present unknown. It is, however, clear that the situation can be improved considerably by
carrying out a number of simple experiments. It is also clear that geophysical observations
imply that the matrix viscosity is likely to be reduced by a factor of at least 103 by the
presence of melt Verrall & O'Connell (1981) found a reduction by a factor of at least 106. A
value of 1013 Pa s is therefore used for £ t] and all combinations thereof, such as (C + f n).
Dependence of these viscosities on porosity, grain size and dihedral angle will be ignored.
Clearly such a procedure is unsatisfactory. But until detailed experiments have been carried
out and interpreted with a simple microscopic theory, any other procedure will suggest a
spurious accuracy.

5. GEOLOGICAL APPLICATIONS

The composition of a magma erupted at the surface depends on the composition of the
source material, the extent to which it melted, how much of the melt was extracted and how it
was affected by fractionation and other processes on its way to the surface. All these
phenomena must be understood if the composition of the magma is to be used to determine
that of its source rock. The investigations in the previous sections can be used as a guide to all
but one of these processes, the exception being fractionation.

Melt generation

The amount of melt is commonly estimated from some proposed geotherm by
superimposing the geotherm on a phase diagram of, for instance, a garnet peridotite. This
procedure is valid only if the geotherm is controlled by thermal conduction. If the temperature

D
ow

nloaded from
 https://academ

ic.oup.com
/petrology/article/25/3/713/1394279 by guest on 18 April 2024



PARTIALLY MOLTEN ROCK 731

is dominated by thermal convection, then the geotherm is controlled by the temperature of the
upwelling material before it reaches the solidus and by the variation of melt fraction with
pressure and temperature. Bickle & McKenzie (in preparation) have examined whether the
heat transport by magma percolation is likely to dominate the conductive heat transport, and
find that it will do so in all places where appreciable volumes of magma are being erupted.
Therefore, except within about 5 km of the surface, conductive heat transport is of little
importance and can be neglected.

The equation governing the conservation of energy (Appendix A) is the most complicated
of all the conservation equations, and therefore it is important to investigate simplified models
before attempting to understand geological problems. Somewhat surprisingly, these can be
used to obtain reasonably accurate estimates of the fraction of the rock which melts during
upwelling, and the volume of magma which will be erupted. Furthermore the relevant
equation is sufficiently simple to allow solutions to be obtained for geologically important
rock compositions.

The assumptions which are required to produce such a model are that the melt and matrix
do not move relative to each other during partial melting of the rock, and that heat
conduction and heat generation by viscous dissipation in the melt and matrix can be
neglected. It is, however, straightforward to estimate how the relative movement affects the
solutions, and, as is demonstrated below, the effects are comparable with the uncertainty in
the latent heat of melting.

If there is no movement between the melt and matrix, the partially molten material will rise
towards the surface at constant entropy, or isentropically. This result follows from the
definition of entropy, and can also be obtained from the full equation governing the
conservation of energy (Appendix D). As solid material rises it will first meet the solidus and
start to melt Since most rocks are not monominerallic, melting will occur over a temperature
range. The simplest example is one in which the difference in temperature AT between the
solidus and the liquidus is constant, and the solidus T, is a linear function of pressure. If the
latent heat of melting is known it is then straightforward to integrate the equation governing
the conservation of energy to obtain the variation in melt fraction with depth if the melt and
matrix are not allowed to move with respect to each other. An example is shown in Fig. 7,
and illustrates the paths followed for various initial temperatures. As the material upwells it
meets the solidus and starts to melt. Its temperature then decreases more rapidly than it does
along either the solid or the liquid adiabats, because heat is absorbed by the melting process.
The variation of melt fraction with temperature (Fig. la) shows that substantial quantities of
melt can be present by the time the material reaches the surface. Once the porosity as a
function of depth has been calculated, the total amount of melt produced by isentropic
upwelling can be obtained by integration. This is shown in Fig. 1c in kilometres for each path.
If such calculations are to be useful they must provide reasonably accurate estimates of the
amount of melt generated, and that likely to be erupted. The amount which is likely to remain
within the matrix is discussed below, and is probably less than 3 per cent. Therefore the melt
will move with respect to the matrix as melting occurs, and accurate modelling will require the
full energy equation to be solved. The effect of retaining 3 per cent of the melt within the
matrix on the volume of melt which can be extracted is shown in Fig. 7c.

It is possible to estimate how important motion between melt and matrix will be from simple
physical arguments (Appendix D). Movement of the melt has two major effects: it transports
heat towards the surface and releases gravitational potential energy. The first effect occurs
because the melt temperature falls less than that of the melt and solid in equilibrium during
isentropic ascent. Hence the melt can melt some matrix as it ascends. The release of
gravitational energy occurs because the melt density is less than the matrix. This difference
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Fio. 7. (a) Melt fraction by weight A' as a function of temperature for a number of isentropic melting paths (heavy
arrowed lines) obtained by integrating (D7) and (D8) with AS = 362 J kg"1 K"1. The fine lines mark isobars, with
the pressure marked in GPa. (b) The variation of temperature with depth (heavy solid lines) followed by rock
upweliing at constant entropy, obtained by integrating (D7) and (D8). The continuous fine lines join points at
which 0 = constant. The change in gradient of the heavy lines occurs where melting starts. The dashed line shows
the path of the melt alone upweliing at constant entropy. The temperatures marking the heavy lines are those at
which they cross the solidus. (c) The continuous lines show the total volume of melt present below a given depth,
obtained by integrating (D9). The dashed lines illustrate the amount of melt which can be extracted if 3 per cent

remains in the matrix. The temperatures marking the lines indicate the temperature on the solidus.
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FIG. 7. (continued)

120

leads to viscous dissipation during the ascent of the melt, and hence also increases the amount
of melting. Fig. 8 shows the effect of including the two additional sources of heat on the total
thickness of melt generated. These changes can be compared with that produced by changing
the latent heat of melting at 1350 °C from 590 kJ kg-1 to 400 kJ kg"1 (140 cal gm"1 to 100
cal gm"1). Such a change is within the uncertainty of the present estimates of the latent heat,
and has a comparable effect to the non-isentropic effects. Therefore isentropic upwelling
should provide useful estimates of the amount of melting, and of the volume of melt produced
at the surface. It will not, however, provide accurate estimates of the porosity variation with
depth, or of the composition of the melt.

Further progress towards a useful geological model for melting during isentropic upwelling
depends on obtaining empirical estimates of AS, the entropy difference between solid and
liquid/unit mass, and the variation of melt fraction by weight, X, with pressure and
temperature. Probably the best available estimate of AS is that made from Tt(P) and the
change in volume AV on melting. A recent determination of Tf(P) for a garnet peridotite by
Takahashi & Kushiro (1983) in Fig. 9 shows that a straight line with a gradient of
120 °C/GPa fits their observations well. As they point out, the shape of the solidus should
depend on the phases present in the matrix. However, the difference between the straight line
in Fig. 9 and their proposed solidus is considerably less than that between their curve and that
of Mysen & Kushiro (1977); therefore their observations are probably adequately
represented by a straight line. The value of AS can then be obtained from the thermodynamic
relationship between dT/dP on the solidus and the volume change/unit mass AV

dT AV

~d~P~~AS
(5.1)
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40 12080
Depth km

Fio. 8. The continuous lines show the total amount of melt generated when the heat transport by the melt and the
gravitational energy released are taken into account, and AS = 362 J kg"1 K"'. The dashed lines show the melt
generated by isentropic upwelling when AS = 250 J kg"1 K"1. The temperatures marking the lines indicate the

temperatures on the solidus.

1100

Temperature

1300

FIG. 9. The determination of the solidus by Takahashi & Kushiro (1983). Open circles correspond to runs in
which melt was produced, closed circles ones in which no melting occurred. The straight line corresponds to

( r - 2 7 3 ) = 1115+ 120/>where/MsinGPa.
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Taking dT/dP = 120 °C/GPa and AV = 4-34 x 10"5 m3 kg-' (Herzberg, 1983) gives AS =
362 J K - 1 kg"1. This estimate cannot be regarded as accurate and may be in error by more
than 20 per cent. It is not yet possible to estimate how AS will vary with the pressure and melt
composition. The variation of melt fraction with pressure and temperature for garnet
peridotite has, however, been determined by Mysen & Kushiro (1977) and by Jaques &
Green (1980) by two different methods. The principal difficulty with both methods is the
problem of crystal growth during quenching. Both sets of experiments, which are plotted in
Fig. 10, may have underestimated X. An obvious feature of these results is the major change
in behaviour which occurs between 1-5 and 2 GPa. It is probably produced by the different
methods used by the two groups. It is not difficult to produce an empirical expression for
7\X,P) which agrees well with the observations (Appendix D, Fig. 10) and hence to obtain
isentropic melting paths (Fig. l la , b) and melt volumes corresponding to these experimental
results. Though these curves differ in detail from those in Fig. 7, Takahashi & Kushiro's
(1983) results disagree with those of Mysen & Kushiro by about 100 °C, and therefore it is
not clear that the differences between Fig. 7 and 11 are outside experimental error.
Furthermore the shape of the solidus in Fig. 1 \b is improbable, and disagrees with that in Fig.
9. Its curious shape is the result of attempting to fit both sets of experimental results to a
single expression between 1-5 and 2 GPa. Hence the complicated expression for T(X,P)
given in Appendix D may be unrealistic. The calculations were therefore repeated using

( 7 - 2 7 3 ) = 1115 + 120P + ( 6 0 0 - 136P)X, /><3-5GPa
= 1115+ \20P+ 124X,P> 3-5 GPa (5.2)

where T is the temperature in K, P the pressure in GPa and X the melt fraction by weight.
This expression corresponds to a linear decrease in the temperature, AT, between solidus and
liquidus with pressure, from 600 °C at zero pressure to 124 °C at 3-5 GPa. This behaviour is
similar to that seen experimentally, though it differs in detail. It also is consistent with
Herzberg's (1983) argument that AT for a garnet peridotite should decrease with pressure.
The isentropic upwelling curves for (5-2) in Fig. 12a differ little from those in Fig. 7 and 11.
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FIG. 10. (a) Solid circles with vertical error bars show determinations of X(T, P) by Jaques & Green (1980) at 0-5
and 1-5 GPa for 'pyrolite', open rectangles and circles with horizontal error bars similar measurements by Mysen
& Kushiro (1977) using a garnet peridotite of almost the same composition as the 'pyrolite'. The continuous lines
show isobars obtained from the empirical expression (D15) designed to fit the experimental observations, (b) Melt
compositions as a function of T and X from Jaques & Green (1980). The isobars were obtained from (D15), as in
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MOO 1300 1500
Temperature °C

Temperature °C

1700

Fio. 11. (a)(A)(c) Isentropic melting paths like those in Fig. 7, but obtained using (D15) instead of (D8), with AS
= 362 J kg"1 K.-1.

A useful test of these melting calculations is to examine whether they are compatible with
the relevant geological observations. Most melting occurs beneath ridge axes. Since there is
no evidence of any association between ridges and upwelling limbs of convection cells,
adiabatic upwelling of the mantle material whose temperature is the mean temperature of the
mantle should be capable of producing oceanic crust 6 km thick. If the mean temperature is
1350 °C, Fig. 12c shows that upwelling can produce about 7 km of melt. A temperature of
1350 °C is compatible with other geophysical evidence (Parsons & Sclater, 1977) and the
melt will emerge at a temperature of about 1210 °C, which is also reasonable.
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Depth km
FIG. 11. (continued).

80

Convection within the mantle is driven by lateral temperature variations. Houseman (1983)
has demonstrated that spreading ridges will travel across the surface of the convection pattern
and leave it relatively undisturbed. Numerical models of mantle convection show that the
probable magnitude of the temperature variations in the hot rising jets is no more than
200 °C above the mean temperature. Therefore the temperature of material rising into the
melting region may be as great as 1550 °C when the ridge is on top of a hot rising region. As
Fig. 12c shows, such an increase in temperature has a considerable effect on the volume of
melt produced, and hence the crustal thickness over the hot regions should be between 20 and
25 km. Such values are in good agreement with seismic estimates of the crustal thickness
beneath the Iceland-Faeroe Ridge (Bott & Gunnarsson, 1980), the Afar region
(Berckhemer et al., 1975; Ruegg, 1975) and the Madagascar Ridge (Goslin et al., 1981;
Sinha et al., 1981), all of which are believed to be the result of ridge axis vulcanism when the
ridge axis was on top of a hot rising region in the mantle.

The other environment where major effusions of magma occur is remote from plate
boundaries. In oceanic areas major volcanic edifices such as Hawaii are built rapidly on old
lithosphere. The gravity, geoid and residual depth anomalies (Watts, 1976; McKenzie et al.,
1980) show that the volcanism is at the centre of a larger region of positive residual depth and
geoid anomalies which resembles that which is expected above a hot rising jet in the mantle. It
is therefore of interest to examine whether the quantity of melt produced by such a jet is
sufficient to account for the size of the Hawaiian ridge. The approximate width of the ridge is
100 km and its crustal thickness is 20 km. Therefore the cross sectional area of the ridge is
about 2000 km2, and it is being transported at a rate of about 100 mm yr"1 (Minster &
Jordan, 1978) relative to the melting region by the motion of the Pacific plate. The output rate
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FIG. 12. (a)(6)(c) Isentropic melting paths like those in Fig. 7, but obtained using (D16) instead of (D8) with AS =

362Jkg-'K-'.

is therefore about 2 x 10* m3 yr~' or 6 m3 s~'. This estimate is about an order of magnitude
greater than that of Wadge (1980), who considered only the volume erupted at the surface.
This difference suggests that most of the ridge is built by intrusion, not extrusion. A
reasonable estimate of the amount of partial melting which is required to produce alkali
basalts is 0-10 (Sun & Hanson, 1975), with tholeiites requiring perhaps 0-2 (Jaques &
Green, 1980, see Fig. \0b). If therefore the melt fraction required beneath Hawaii is 0-15,
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80
. Depth km

FIG. 12. (continued)

120

about 1-3 x 109 m3 yr~' of mantle material must pass through the melting zone. If the
upwelling rate is 30 mm yr~' and the jet has a circular cross section, its radius must be about
120 km. The thickness of the vertical part of the jets observed in two dimensional numerical
calculations is about 100-150 km (see McKenzie et ai, 1980). There is therefore no obvious
difficulty in generating the observed quantities of melt in this way. The required fraction of
partial melt should be present at a depth of about 70 km if all the melt can be extracted..

An obvious feature of the geotherms in Fig. Mb is that the temperature differences within
the zone in which partial melting occurs are smaller than those in the solid part of the mantle,
because melting acts as a buffer on the temperature. Therefore the temperature difference of
about 200 °C between the hot rising jet and the surrounding mantle is reduced to 70 °C by
partial melting, with presumably a corresponding reduction in the conductive heat flux. If the
melt is removed, as it is beneath Hawaii, the latent heat will be released in the vulcanism, and
not in the mantle.

This discussion has shown that the magnitude of the likely variations in temperature pro-
duced by the convective circulation can account for the known major volcanic features in
some detail. This success suggests that Fig. 12 can be applied to problems about which less is
known, such as continental vulcanism within plate interiors and sedimentary basins. Cox
(1980) has argued that the extensive tholeiitic plateau basalts are produced by differentiation
of a picritic magma. If such basalts are the surface expression of a hot rising jet, then Fig. 12c
shows that the quantity of magma required can easily be generated.

The other situation in which major quantities of melt are sometimes, but not always,
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Fio. 13. (a)(b)(c) As for Fig. 12 but with greater initial temperatures.

produced is during the extension of continental crust to produce sedimentary basins. Fig. 12
can be used to estimate the thickness of the volcanic layer which can be produced in this way.
If, for instance the lithosphere is stretched by a factor of 3, its base will be at a depth of about
40 km after the stretching event if it is instantaneous. Fig. 12c shows that such thinning could
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200

Depth km
FIG. 13. (continued)

produce as much as 10 km of melt if the stretched region was above a rising jet But smaller
amounts of extension above mantle whose temperature is that of the mean should give rise to
little or no vulcanism. These results are therefore compatible with McKenzie's (1984)
suggestion that substantial additions to the volume of the continental crust sometimes occur
during extension.

Fig. 76 also illustrates the importance of the adiabatic decompression of the melt. The
resulting change in temperature depends on the depth at which the melt and matrix separate,
and is likely to be as large as 100 °C for magma such as those in Hawaii which have
separated below the plate.

The agreement between the calculated melt volumes and those observed is encouraging,
and suggests that these simple calculations are sufficient to understand the main features of
magma generation beneath ridge axes and intraplate volcanoes. In contrast, beneath island
arcs the temperature, composition and volatile content are all too poorly known for such
calculations to be carried out It is, however, possible to use the same model to investigate the
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742 D. P. McKENZIE

conditions required for the generation of komatiites by isentropic melting. Komatiites were
generated during the Archaean, when the mean temperature of the mantle was probably
between 200 and 300 °C hotter than at present, or 1550-1650 °C. Because the mean
viscosity of the mantle must have been considerably smaller than it is now, the excess
temperature of the hot rising jets was probably less than at present, perhaps 100 °C.
Isentropic upwelling paths in Fig. 13 show that these initial conditions could produce melt
fractions of up to about 40 per cent, with eruption temperatures of less than 1400 °C. Such
paths would produce enormous volumes of melt (Fig. 13c). The problem with such an origin
for komatiites is that the magma temperatures at the surface must have been nearer 1600 °C
for those containing more than 30 per cent MgO (Nisbet, 1982), and melt fractions of greater
than 40 per cent are suggested by some interpretations of the trace element data (Sun &
Nesbitt, 1977, 1978), and by laboratory experiments (Fig. 106). Fig. 136 shows no isentropic
paths which satisfy both these constraints, because the temperature is buffered by melting.
Such an origin for komatiites therefore seems improbable, especially since they are relatively
uncommon even in the Archaean. The enormous volumes which isentropic melting would
produce would dominate exposures of Archaean rock. An alternative origin for magmas
whose surface temperature is 1600 °C is to generate them at considerable depths, where they
separate from the matrix and upwell isentropically. Such a path is shown in Fig. 136, and
would require the magma to be generated at a depth of about 150 km by melting relatively
small amounts of the rock. This proposal is similar to that made by O'Hara et al. (1975).
They also argued that such origin is consistent with the melting relationships observed in
garnet peridotites. At high pressures small melt fractions contain a greater percentage of
MgO than do those at low pressure. The only important objection to such a proposal is the
rare earth abundances (Sun & Nesbitt, 1977, 1978). However, all arguments which depend
on such observations depend on assumptions about the composition of the rock undergoing
partial melting and about the distribution coefficients between melt and matrix at high
pressures. Neither is well determined.

Melt extraction

The arguments in sections 2 and 3 and in Appendices A and B show that melt extraction
from partially molten material is always controlled by the rate of deformation of the matrix,
and may or may not also be governed by the permeability of the matrix and the viscosity of
the melt. The solutions shown in Figs. 1-3 illustrate the type of behaviour which can occur in
compacting regions. The magnitude of the fluidization velocity w0, the compaction length dc

and the compaction time scale r0 have been calculated for two relationships between
permeability and porosity (see section 4). These calculations use the values of the quantities
given in Table 1, several of which are uncertain. But they do illustrate some important features
of the flow. The fluidization velocity is likely to exceed 10 mm yr~' for values of ^ > 0-03.
Hence equilibrium melting is likely to be restricted to small melt fractions. Even the generation
of nephelinites by between 3 and 7 per cent melting (Sun & Hanson, 1975) will involve relative
movement between the melt and matrix. Such a result is scarcely surprising if nephelinite
magmas are primary, since they must then be capable of separating from the matrix.

The velocity with which a melt can move also governs its ability to escape from the
convecting region. In hot rising regions the velocities are probably between 10 and 30 mm
yr~', and the melt must be able to move with a comparable velocity if it is to escape. Fig. 14a
shows that the limiting melt fraction obtained in this way is about 3 per cent. This value was
therefore used in Fig. 7 as an upper bound on the fraction of melt Qkely to be retained by the
matrix. For melt fractions as large as 10 per cent the fluidization velocity reaches 1 m yr~'.
Separation of melt and matrix will be rapid, and it is unlikely that such large melt fractions are
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FIG. 14. (a) The minimum fluidization velocity w0 as a function of porosity j , obtained from (3.7) and the values
of the constants in Table 1, for (4.3), shown as a dashed, and (4.4), shown as a solid, line, (ft) The compaction
length <5C as a function of the porosity f), obtained from (3.3) and the values of the constants in Table 1, for (4.3),
shown as a dashed, and (4.4), shown as a solid, line, (c) The time scale for compaction x0 as a function of the
porosity fj, obtained from (Bl 1) and the values of the constants in Table 1, for (4.3) shown as a dashed, and (4.4),

shown as a solid, line.
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ever present within the earth. The same result is expected from Fig. 14c which shows that the
compaction occurs rapidly even when the amount of partial melt is as small as 1 per cent.
These arguments suggest that, of the various melting models commonly discussed by igneous
petrologists (see Cox et a/., 1979), Rayleigh melting should most closely resemble the
behaviour of melts in the mantle. Such a model will not, however, provide a useful method of
estimating the magma composition because of the motion relative to the matrix.

The results provide an explanation of the seismic and gravity interpretations of ridge axes.
Fowler (1976) shot several seismic lines parallel to and across the Mid-Atlantic Ridge axis,
and found that shear waves propagated everywhere. Lewis & Garmany (1982) failed to find
an extensive low velocity region beneath the East Pacific Rise. There therefore is little
evidence for extensive regions containing a large amount of partially molten material.
Another important result is that Lewis (1982) required a narrow region about 5 km across of
density 3 • 1 Mg m~3 beneath the axis of the East Pacific Rise. This region must extend to
within about 4 km of the sea floor, and be 0-5 Mg m~3 denser than the oceanic crust. These
properties are consistent with the presence of partially molten mantle with no more than a few
per cent of the melt beneath the ridge axis, from which the normal thickness of oceanic crust
is generated by compaction.

The other result of interest is the magnitude of the compaction length, which is unlikely to
exceed 100 m. Therefore thin sheets of partially molten material should be able to compact.
This result, combined with the short compaction time scale in Fig. 14c, suggests that useful
estimates of the matrix viscosities can be made from the porosity distribution in differentiating
sills if the crystalline material formed from the melt can be distinguished from the matrix.

The time scales and velocities in Fig. 14 show that movement between melt and matrix will
be a general feature of partially molten regions within the earth. Ahern & Turcotte (1978)
also recognized that relative movement between melt and matrix would occur and attempted
to include this effect in their calculations. They did not, however, realize that the compaction
rate is controlled by the rate of deformation of the matrix, and their calculations should
therefore be repeated using the equations derived in Appendix A.

The estimates of the compaction length and compaction time scale in Fig. 14 depend on the
square root of the viscosities of the matrix. Though they should be recalculated when more
reliable values are available for £ and n, the arguments above are not likely to be affected.

Thermal and geochemical variations

Frank (1968) and Felgett (written communication, 1982) have considered the possibility of
thermal convection in the melt phase alone. Such flow will only be important if the Rayleigh
number appropriate to convection in a porous medium, defined by (3.9), exceeds 4s2. The
quantities in Table 1 can be used to estimate h, the required depth of the layer, if <f> and the
difference between the temperature gradient and the adiabatic temperature gradient are
known. Taking <f> = 0-1 and the difference in the gradients as 1 °C/km yields a value of h of
100 km if the upper of the two curves relating the permeability and porosity is used. Since the
fluidization velocity of $ = 0-1 is more than 1 m yr~\ the melt will not remain dispersed. It is
therefore not likely that thermal convection within the melt alone occurs.

A more important effect is the variation of the effective transport velocity between different
elements. The ratio of the effective velocity wc to the melt velocity w is derived in Appendix E

(5.3)

where Kc is the distribution coefficient (by weight) between the solid and the melt. This
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equation is only valid ,if the melt is in equilibrium with the matrix, and the necessary
conditions which must be satisfied are examined in Appendix E. Equation (5.3), which
applies to trace elements, and in a modified form to major elements also, is at first sight
wrong, since it predicts that the major elements of which the melt consists will not travel with
the melt velocity. This intuitive objection is, however, incorrect because of the exchange
which takes place between the matrix and melt. Because only that fraction of the element
which is in the melt is in. motion, the effective transport velocity is less than the melt velocity,
because the melt must transport the element present in both solid and liquid phases. This
velocity can only be determined by measuring the movement of a change in concentration or
by using an isotopic tracer. Hence variations in the transport rate will only be important
where variations in the concentration of some element in the melt occur. Such variation can
be produced either by initial variations in the source rock or by differences in the amounts of
partial melting in an initially uniform rock.

It is straightforward to apply (5.3) to trace element transport, since the variation of the
activity coefficient with .concentration can be ignored. For this reason only such elements are
discussed here. In the case of major elements the distribution coefficient in (5.3) must be
replaced by the concentration ratio cjc^, which is not in general independent of the concen-
trations. The equation governing the transport is then no longer linear. Jacobsen & Wasserburg
(1979) and Pearce & Norry (1979) list values of Kc for a number of trace elements between
clinopyroxene and melt, and between olivine and melt. These values have been used to
calculate the effective velocities as functions of the melt fraction of clinopyroxene and olivine
(Fig. 15a and b). If the matrix consists of olivine alone, the ratio (5.3) is little different from 1
for K, Rb, Sr and U for probable values of <j>. The two rare earths, however, travel
significantly more slowly than the mean melt velocity. A clinopyroxene matrix has a much
greater influence, and Nd and Sm travel with only about 1/lOth the velocity of the melt when
§ = 0-03. This behaviour is illustrated in another way in Fig. 16, where the melt porosity is

(a)

1 0

(b)

Clinopyroxene Olivine

FIG. 15. The-ratio of the transport velocity, tve to the mean velocity iv for six elements, calculated using (5.3) and
the distribution coefficients given by Jacobsen & Wasserburg (1979), when the matrix consists of clinopyroxene,

^ (a), and olivine, (b).
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Fio. 16. The initial concentration of all four trace elements has a, gaussian distribution about the origin, with
Cf(O) = 1 and falling to 1/e at ±30 m. The elements are transported to the right by the movement of melt in the
direction of the arrow. The porosity is 3 per cent. The concentration profiles marked Ti, Y, Zr and Sr show the
movement of these elements produced by the movement of the melt from the origin to the position of the line at the
right, obtained using (E24) and the distribution coefficients given by Pearce & Norry (1979). The length of the line
marked 'melt' is unity, and the decrease in height of the curve marked Sr in (a) results from dispersion, (a) Shows
the effect of an olivine matrix, (£) that of clinopyroxene. The arrow below the axis in (6) shows the position at

which the concentrations in Fig. 17 are calculated.

assumed to be 3 per cent everywhere. A gaussian variation in concentration of Ti, Y, Zr and
Sr with a width of 60 m is introduced, centred on the origin. As the melt moves uniformly
towards the right with velocity w it carries the trace elements with it. The centres of the
concentration anomalies move with velocities we, and, especially when the matrix contains
clinopyroxene, wt <i w. The effect is important even when the matrix consists of olivine.
Clearly such behaviour depends on variations in concentrations within the melt. These are
likely to be widespread, due to variations in the degree of partial melting. Fig. 16 also shows
that the concentration anomalies are spread out by the melt movement. The initial
concentration is unity, and is reduced by the transport as the width of the gaussian curve
increases. This effect is easily visible for Sr in an olivine matrix, and is called dispersion.

The transport of trace elements through a matrix at different velocities can also be
illustrated with a triangular diagram of the type used by Pearce & Cann (1973) to classify
basic volcanic rocks by their tectonic setting. Fig. 17 shows a diagram for a point 60 m to the
right of the origin in Fig. 16ft as the trace elements are carried past. Zr travels most rapidly,
and therefore its concentration at first increases relative to that of Ti and Y. As the Zr peak
passes Ti arrives and finally Y. The magnitude of the variations are quite sufficient to account
for those observed by Pearce & Cann (1973).

The behaviour illustrated in Figs. 15 to 17 suggests that trace element concentrations may
provide a means of studying the relative movement between melt and matrix as they
separate. Though the isotopic ratios will not themselves be affected, the strontium and
neodymium ratios measured in a glass will not necessarily be related to each other in the same
way as they were in the source rock, because the two elements travel with different velocities.
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Ti

Zr Y
Fio. 17. A ternary diagram, of the type used by Pearce & Cann (1973) to classify basic igneous rocks, but
showing the variation in concentration of the three elements at a point 60 m to the right of the origin in 16(6) as a

function of the distance travelled by the melt, marked on the curve in metres.

Nor need the concentration of the parent elements Rb and Sm in the glass be related to that of
their decay products. How important these effects may be can most easily be determined by
numerical calculations.

The other problem of geochemical interest is the effect of partial melting in the
asthenosphere on the scale of mantle heterogeneities. In the solid part of the mantle the bulk
diffusivity limits the inhomogeneities to scales greater than a few tenths of a metre. If the
material spends 20 Myr in a partially molten region, diffusion in the melt will increase the
minimum scale of variations to at least 20 m, even if no relative motion occurs between the
melt and matrix.

The final question concerns the variation of dispersion with the melt velocity. If the
percolation velocity is sufficiently rapid, the dispersion is purely geometric. It is independent
of the percolating velocity and depends only on the distance travelled. The condition which
must be satisfied before this type of behaviour occurs is given by (E25), which requires

This condition is not likely to be satisfied in most compacting regions.

6. CONCLUSIONS

The most important part of this paper is contained in Appendix A, where the equations
governing the motion of the melt and matrix are obtained. Simple solutions demonstrate that
the compaction of a partially molten material is always controlled by the properties of the
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matrix, and generally by those of the melt as well. Two parameters, the shear and the bulk
viscosity, govern the rate of deformation of the matrix, and neither can yet be estimated with
any accuracy. A number of simple laboratory experiments are proposed which could yield
estimates of these quantities and their variation with porosity. It is also likely that useful
estimates can be obtained from the petrography of cooling sills in which differentiation has
occurred. In all cases it is important to establish that the pore geometry is in equilibrium. The
viscosities and permeability of the matrix will depend on the porosity and grain size, which
should both be measured. In addition they will depend on the pore geometry, which is largely
controlled by the dihedral angle. It is particularly important that this angle should also be
measured.

A simple model can be used to investigate the variation of melt fraction with depth during
upwelling at constant entropy if the melt and solid are not in relative motion. Though the melt
must move relative to the matrix if magma is to be erupted, the effect of this motion can be
estimated and is comparable to the uncertainty in the latent heat of melting. The model
illustrates how the geotherm is controlled by the amount of partial melting, rather than vice
versa as is often assumed in the geological literature.

The isentropic upwelling model permits the melt fraction to be calculated directly as a
function of depth. Material upwelling with an initial temperature of 1350 °C meets the solidus
at a depth of about 60 km, and the melt fraction reaches 20 per cent at the surface. The total
amount of melt generated is sufficient to produce the oceanic crustal thickness if it is all
extracted. These conclusions principally depend on the latent heat of melting, laboratory
measurements of the solidus as a function of pressure, and on the density contrast between
matrix and melt. They only depend weakly on the form assumed for the variation of melt
fraction with pressure and temperature. When ridge axes are above hot rising jets in the
mantle, the initial temperature is likely to be about 1550 °C. Such material can produce a
crustal thickness of more than 20 km, with more than 35 per cent of the material melting near
the surface. If such a jet lies beneath a plate interior, sufficient melting can occur to generate
the Hawaiian Ridge if about 15 per cent of the upwelling material is melted. All these
estimates are in satisfactory agreement with, and are independent of, petrological and
geochemical estimates. The same model can be used to investigate the origin of komatiites,
and shows that it is unlikely that these magmas originate near the surface. They may,
however, be produced at depths of about 150 km or more by relatively small (~20 per cent)
amounts of partial melting, in agreement with the suggestions of O'Hara et al. (1975).

The isentropic upwelling model is only useful if the quantity of magma left in the matrix
can be estimated. Estimates of the relative velocity between melt and matrix and of the
compaction time scale suggest that melt and matrix will separate rapidly in upwelling regions.
The melt fraction is therefore unlikely to exceed a few per cent anywhere at a particular time
within the mantle, and less than 3 per cent is likely to remain within the matrix. Since the
fraction which melts probably exceeds 30 per cent, equilibrium melting (where there is no
relative velocity between the melt and matrix) is likely to be uncommon. Rayleigh melting
should be a better model, but, because of the relative movement between melt and matrix,
cannot be used to calculate the melt composition.

Movement between melt and matrix can also have important geochemical effects on the
trace element distributions. If an appreciable fraction of an element remains within the matrix,
its transport velocity is less than the melt velocity. The matrix then behaves in the same way
as a separation column. The magnitude of the effect depends on the distribution coefficient.
Those for K, Rb, Sr, U, Nd and Sm show that an olivine matrix has little effect on the
transport velocities of the first four of these elements. In the case of the rare earths, however,
the velocity is only about 70 per cent of the melt velocity when the porosity is 3 per cent. If,
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however, the matrix consists of clinopyroxene the effect is considerably larger, and Sm travels
with only 10 per cent of the melt velocity. This effect may be geochemically important,
especially if clinopyroxene is present. It may be possible to use trace element distributions to
investigate the separation of melt from matrix.
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APPENDIX A

The equations governing two phase /low

There is an extensive literature concerned with the fluid dynamics of mixtures of fluids. The
approach taken here is a simplification of that of Drew (1971, 1983) and Drew & Segel (1971), and is
similar to that used by Didwania & Homsy (1982) in their treatment of instabilities of a fluidized bed.
The equations derived below only apply to regions which are much larger than the individual grains of
the matrix, and treat both the melt and matrix as continuous but interacting phases.

The equations required are those governing the conservation of mass, momentum and energy. If if/ is
some quantity associated with either the melt or the matrix which is conserved, then the rate of change
of y within a fixed volume V must be equal to the rate at which if/ is transported across the surface S
bounding V. Hence

f f [ V . (Al)— f «/dK = - f vv.dS+ [

where v is the velocity of the material which transports if/ and St is the rate at which if/\s produced/unit
volume. K if/is the mass/unit volume of the melt, then

where pt is the melt density and if) the porosity. Substitution into (A 1) and use of Gauss's theorem gives

r 5 T d K <A2)
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where DVM/Dt is the rate at which mass is transferred from the matrix to the melt, measured in a
frame fixed to the matrix, and v is the velocity of the melt. Equation (A2) must be true for any volume
V. Hence

Dv Mv-<**">—£- (A3)

Exactly the same argument applied to the matrix leads to

8

( ( 0 ) V ( (( p , ( l 0 ) + V . ( p , ( l 0 V ) ^
ot Dt

(A4)

where V is the matrix velocity.
The two other equations required govern the conservation of momentum. In these the interaction

between the melt and the matrix must be included, by using a body force/unit volume I. If I is the force
on the matrix produced by the movement of the melt, the force on the melt by the matrix must be —I by
Newton's third law. If gravity is included and z is taken to be positive upward, conservation of
momentum for the matrix requires

— f pvdV=-( p g a , d K + [\dV + (a1. dS - ( pw.dS (A5)

V V V S

where g is the acceleration due to gravity, ^ is a unit vector in the + z direction and o1 is the stress
tensor acting on the matrix. The velocities of both the matrix and the melt in all the problems discussed
below are sufficiently small for the rate of advection of momentum by the flow to be neglected in
comparison with its rate of diffusion by viscosity. This statement is equivalent to saying that the
Reynolds Number

|v|L
Re = -!-!— (A6)

v

where L is a characteristic length, |v| a characteristic velocity and v the kinematic viscosity, is small
compared with unity. In the compaction problem the characteristic length for the melt is the grain size,
and typical velocities are less than 1 m yr~'. Substitution into (A6) of the values in Table 1 gives
Re :> 10~8 for the melt and an even smaller value for the matrix. Therefore the momentum is negligible.

The other approximation which can be made is the neglect of the term on the left of (A5), because
the rate of change of the momentum is always small. Therefore forces maintaining the movement must
be balanced by the resistive forces at all times. Since the stress within the matrix only acts on that part
of the surface S which is inside the matrix, dS should be replaced by (1 — $ dS (Drew 1971, equation
(2.35)). As before p= (1 — ji)pt, and (A5) requires

-(l-f)psgdn + Il + — l(l-$o*IJ\ = 0 (A7)
dXj

where i andj have the values 1 to 3, <5,j = 0, / =£./; = 1, i =j, and the Einstein summation convention
over repeated subscripts is implied. Equation (A 7) is therefore three equations. The first shows the
force balance in the xt, or JC, direction. Since <513 = 0 the first term is zero, and the last one must be
summed overy'from 1 to 3 because,/ is a repeated subscript. Hence the last term in (A 7) is

— 1 (1 -<* )< ; • , ]+ • / -1 (1 -#a ' 2 ]+ — [ ( l - # < ^ l
dxt 8x2 dx3

where x2 is y and x3 is z. The stress tensor o1 is symmetric, so o]j = cr},. The corresponding equation
for the melt is obtained in exactly the same way

OXj

where Oy is the stress within the fluid, and the sign of / , is the reverse of that in (A7) because of
Newton's third law. If (A 7) and (A8) are to be useful they must be expressed in terms of the melt and
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matrix velocities. The interphase volume force must obviously not depend on what frame is used to
measure the velocities. Homsy et al. (1980) and Drew & Segel (1971) list a variety of functions of v and
V which satisfy this condition. The simplest of these is simply the relative velocity of the melt with
respect to the matrix, v - V. In addition E>rew & Segel (1971) show that I must include a term due to
the pressure in the fluid, to take account of the force which arises due to the gradient of $. Hence the
interphase force can be written as

I = C , ( v - V ) - P V ^ (A9)

where C, is a constant and P is the pressure in the melt. A variety of other terms could be included in
(A9) but the resulting form of (A8) would no longer satisfy D'Arcy's law (see below).

The standard form for the stress tensor within an incompressible fluid is (Landau & Lifshitz, 1959)

( A l 0 )

where fi is the dynamic viscosity. If the second term in (A10) is neglected, substitution of (A10) and
(A9) into (A8) gives

v - V = - — V{P + p(gz) (All)

If V = 0 (A 11) corresponds to D'Arcy's law:

<jn, = -V(P + pfgz) (A12)
M

where kt is the permeability, and fx is the viscosity of the melt Hence (Al l ) and (A 12) are the same if

C, = uf/k. (A 13)

The stress within the matrix requires a more complicated expression than (A 10). It is clear that, in
the absence of gravity, a constant fluid pressure everywhere will not produce flow within the matrix,
and hence

a'^-PSu+a^iV) (A 14)

The porous matrix will compact if subject to an isostatic compression, and will expel fluid. It should
therefore be regarded as a compressible fluid. If the rate of such compaction depends linearly on the
applied stress it can be described by a bulk viscosity. The behaviour in shear is also likely to be linear if
the stress is sufficiently small, and hence the stress a'u can be written as (Landau & Lifshitz, 1959)

8V. l8V, 8V, 2 8V.\
CT'=C<5,,—-+tf[—- + — J - - - 5 U — - (A15)u "dxx \8xj 8x, 3 u dxj

where C is the bulk viscosity and yf the shear viscosity of the matrix and both may depend on .̂
Equation (A 15) is the simplest relation between o'y and V which can describe the flow, and which will
be valid at low stresses. The stresses involved in magma extraction are probably sufficiently small for
(A 15) to be justified. It is important to notice that a'u in (A 15) does not have zero trace. The definition
of the pressure is therefore different from that usually adopted. If the pressure is defined as —\a), in this
problem, it will contain a term which depends on the deformation rate. As Landau & Lifshitz (1959, p.
187) and Batchelor (1967, p. 154) point out, the thermodynamic pressure is defined only in equilibrium,
and hence should not include terms dependent on the velocity gradient. It should also again be
remarked that the equations governing the movement of the melt and matrix apply only to the mean
motion on a scale large compared with that of the grains, and cannot for instance describe the
deformation of an individual grain (Drew, 1983). On a scale comparable to that of a grain the matrix
must be regarded as incompressible, and the appropriate solutions can be used to obtain an expression
for the bulk viscosity (see Appendix C).
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Substitution of (A9), (A 13), (A 14) and (A 15) into (A 7) leads to

fi62 8P d
- (1 - f)P£dn + -j- (»,- K,)- (1 - f)— + — - (1 - 0 a\j= 0 (A16)

K « OX i OXj

where

dVx idV, dV, 2 dV
^ + „ - i + - ^ - - < 5 , , — M (An)

8xl \dxj dxt 3 dx,J

C = ( 1 - 0 C \ J / = ( l - 0 j f (A18)
The term in (A16) involving kt can be eliminated using (Al 1), and, if pr and ps are constant and

DK M/Dt = 0, the governing equations then become
d6
— = -V.(*v = V . ( l - ^ ) V (A19)
8t

v - V = - — V{P + p&z) (A20)

dP 8
-{(\-$pt + ip(\g5a—— + — [(\-f)o'IJ\ = Q (A21)

dx, dxj

Alternatively P can be eliminated from (A21) using (A20), and from (A20) by taking the curl of the
equation, to give equations in terms of v and V only

V x — = V x — (A22)
k, k0

-?-[(\-fio'u\ = -!£(vl-Vl) + (\-fHpt- pf)g 6ti (A23)
dxj kt

In a number of the examples discussed below « is taken to be constant, when (A22) and (A23) can be
written

V x v = V x V (A24)

7 | V ( V . V ) + 7 V V ^ ( v V ) + ( l # ( p , / > f ) g a , (A25)
3 / k

The governing equations and the stresses on the matrix are easily written out in cartesian
coordinates. It is, however, helpful to use cylindrical and spherical coordinates for some problems. The
expressions for V, V. and V2 in cylindrical coordinates will be found in appendix 2 of Batchelor (1967).
If the cylindrical axis is taken to be the z axis, with the radial coordinate being r, his x corresponds to z
and his a to r. The expressions for a'^, a'^ and a're are given on p. 51, equation (15.15) of Landau &
Lifshitz (1959) and

dV
<!•„ = {?-\ti*)A + lTf—!-

dr

°'ee = (C - ii'Ui + -L I -^ + V,) (A26)

dz

where A= V.V.
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The corresponding expressions for a'rg, a',4 and a'B4 in spherical coordinates are given on p. 52 of
Landau & Lifshitz (1959) and

8V,

dr

\.dV,

} + +} + +
y 8f r r

where A = V.V.
An important engineering application of these equations is to sintering and hot isostatic pressing,

when the interaction and gravitational terms are absent. Equation (A23) then reduces to

dXj
- # <>;,] = 0 (A28)

and if fS is constant (A24) and (A25) become

V x v = V x V
(A29)

*\{+ - V(V.V) + nV2V = 0
3 /

Various simplifications can be made to (A25) by carrying out standard manipulations, and the
resulting equations are then in convenient form for solution. The curl of (A25) is

i,V'(VxV) = - - ( V x » - V x V ) (A30)
* •

(A24) shows that the right-hand side of this equation is zero, hence

VVV x V) = V2(V x v) = 0 (A31)

If the divergence of (A25) is taken, then

4n\ ft6
{ + — V2(V.V) = -(V.v-V.V) (A32)

, 3 / . * •

Since 6 is constant (A 19) gives
1-6

V.v = - V . V

and (A32) becomes

V2(V.V) (V.V) = 0 (A33)

If
x = dcx', y = dcy', z = dcz'

where dc is a constant with the dimensions of length

ir j. in\
(A34)

M

which will be referred to as the compaction length, (A33) becomes

V' 2 (V ' .V)- (V' .V) = 0 (A35)
where V = t5 V.
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The equations governing transport of heat and of a solute can also be obtained from the laws
governing conservation of energy and mass respectively. There is, however, an interesting difference
between these equations and those (A 19) governing the behaviour of the melt and the matrix. Heat can
diffuse between the melt and the matrix, and hence the heat content of each is not individually
conserved. If the temperature variations are sufficiently slow, the melt and the matrix remain in thermal
equilibrium. The conservation of energy then requires that the rate of change of energy within a volume
should equal the rate at which heat is conducted across the surface S bounding V, the rate of heat
generation within V, the rate at which the surface stresses do work on the matrix and the fluid, the rate
of energy transport by the fluid motions and the work done by the body forces:

—f lptE,(l-d) + p( Erd]dV=-( -kTVT.dS + [ H dV + { &. V(l-0.dS + fof.

(A36)

where Er and Es are the internal energies/unit mass of the melt and matrix respectively, kj the thermal
conductivity, H the rate of internal heat generation and g (= — gs^) the vector gravitational
acceleration. The kinetic energy is negligible and has been omitted. Use of (A3), (A4), (A7), (A9),
(A 13) and standard thermodynamic relationships leads to

DvAf D V 5.

n dv, dv, 2 dvt\
2

+ C(V.V)2 + / / + - —- + — J - - - d u — - s * (A37)
2\dxj dx, 3 J dx,j

AS is the change in entropy on converting from matrix to melt, Dv/D< and DjDt are the Lagrangian
derivatives with respect to the matrix and the melt respectively, and St and Sf are the entropies/unit
mass of the matrix and melt. The thermal conductivity of the mixture kT should be obtained from the
expression given by Budiansky (1970):

+ ^ - = i (A38)
kr

T \
2+— 2 + —

kT k,

where k\ and Idy are the thermal conductivities of the matrix and melt respectively. (A37) can also be
written in terms of the temperature

DVM dT 8P \ Ta.VP]
^-+l(\-f)ptCl + tpfC

!
v} — -TlV-+)a, + dar]—- + (l-t)plClV.\vT i—\

Dt 8t dt y ptC\ J

V7- ^ H = * (A39)
P f C » J

where C* and Cr
p are the specific heats at constant pressure of the matrix and melt, a, and Of are the

thermal expansion coefficients, and * is defined by (A37). The terms Ta,VP/p,C'p and Ta,VPlptCv

are the adiabatic gradients of the matrix and melt respectively. It is useful to define the thermal
diffusivity Kj of the mixture as

KT = kT/l(l-d)PiCp + dpfCp) (A40)

One further equation is required before this system of equations can be solved, which relates the
amount of melt present, d, to T and P. This relationship must be determined empirically, and a simple
example of such a law is given in Appendix D.

The last conservation law which is needed is concerned with the concentration of a trace element or
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PARTIALLY MOLTEN ROCK 757

isotope. This equation takes a simple form if the concentrations by weight in the melt c, and the matrix
c, are in equilibrium and

cJcf = Kc (A41)

where Kt is the partition coefficient Then

[(1 - f)p.Kc + jpt]-£- + (l-t)PtKtV-Vc, + fov. Vcf = ft V.fly Vef + (Kc - l ) c f — (A42)
dt Dt

where Dr is the diffusivity tensor of the solute in the melt. Dr can be strongly affected by the flow of the
melt with respect to the matrix, and hence the diffusivity may be anisotropic. In partially melted rocks
the diffusivity of the matrix is much smaller than that of the melt, and it has therefore been neglected in
(A42). Generation of solute, by radioactive decay for instance, has also been neglected but can be
included by adding an appropriate source term to the right hand side of (A42).

The equations derived in this appendix are all dimensional. The natural inclination of anyone with a
geophysical fluid dynamics background is to rewrite all the equations, using <5C as a length scale and r0

as a time scale, in dimensionless form, and in this way obtain the dimensionless constants which govern
the form of the solutions. The temptation to proceed in this way has been resisted, principally because
few people other than those with this background find the practice helpful. It will, however, be
necessary to do so if the equations are to be solved numerically.

A P P E N D I X B

Initial compaction of a constant porosity layer onto an impermeable horizontal surface

A solution to the equations (A 19) to (A21) is easily obtained when <£ is initially constant and
compaction of a half space occurs only in the vertical direction on to an impermeable surface on which
both v and V are zero. Under these conditions

v=(0,0,w(z))

V = (0, 0, W(z)) (Bl)

and (A33) becomes

8iW 1 8W

The solution to this equation which has W = 0 on z = 0

W = - w 0 < K l - e - " f c ) (B3)

where H>0 is a constant. The other solution involving e"*c must be excluded if W is to be finite for all z.
(A 19) requires

8w (\-6\dW
' M (B4)dz \ <j> ) dz

hence the expression for w which satisfies the boundary conditions is

w = wo( l - j i O O - e - " * ' ) (B5)

(A25) can be written as

and substitution of (B3) and (B5) into (B6) leads to an expression for w0

K 0-0
»o = — —r-(P,-Pt)g (B7)

M 9

and the relative velocity of the melt with respect to the matrix is

w - W = H-0(1 - e-"*) (B8)
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The last result which is needed is the initial rate of compaction of the matrix, given by (A 19)

1 86 dw wB

<j> dt dz Sc
 T

(B9)

The expression (B9) has the dimensions of reciprocal time, and defines a time scale r for changes in
porosity

r = 4eI/<c/>v0( 1 - <j>) (BIO)

The solutions obtained above are valid only if § is constant everywhere. Since (B9) shows that the
rate of change of $ is not zero, the equations are strictly only valid at f = 0. In practice they will
probably apply over time scales short compared with r0, where r0 is the minimum value of r, at z = 0

To = 8c/wo{l-f) (Bll)

It is straightforward to extend these results to the problem of a compacting layer with w = W = 0 on
two boundaries z = 0 and z = h. The other solution of (B3) must now be retained to give

W= —
sinh (h/Sc)

h\ z
+ sinh | — I — sinh —5J \3

W

dt <5C sinh (h/5z)
cosh — -

(B12)

(B13)

(B14)

Unlike (B9), (B14) is positive between A/2 and h (see Fig. 3). Hence the matrix expands throughout the
upper half of the layer, and does so most rapidly at z = h. When f reaches a critical value, which is
estimated in section 3 to be about 0-2, the matrix will disaggregate. This will first happen on z = h.
Thereafter a layer of melt will accumulate and the upper surface of the matrix will be free. If the stress
in the vertical direction is to vanish (A 15) shows that

8W

~dz~

Solution of (B2), (B4) and (B6) then gives

= 0

cosh

(B15)

h-z

cosh

W

I df w0

sinh
h-z

, h
cosh I —

, o.

(B16)

(B17)

(B18)

where the layer extends from z = 0 to h, and w0 is given by (B7). Since sinh (A - z)/dc is positive
throughout this range, dfidt < 0 everywhere.
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Equations (B16) to (B18) are useful because they describe the behaviour in two limits, h/5c > 1 and
h/dc < 1. In the first case

cosh L

(B19)

cosh I—u
s i n h l s. i

- CB2O)
cosh (—

and (B16) to (B18) reduce to (B3), (B5) and (B9). This result is not surprising, since the upper
boundary of the layer is in a region where the half space solution shows that compaction is not
occurring. Hence 8Wldz = 0 throughout this region, and the introduction of a free boundary does not
affect the half space solution.

A more interesting limit is h/5z < 1, when

-z) (B21)

( B 2 2 )

The factor wjd] occurs in all these expressions, multiplied by some function of 6, h and z. Substitution
of (A34) and (B7) gives

Thus wJ5\ is independent of the viscosity n of the melt, and of the permeability kt of the matrix.
The velocities can be made dimensionless by using >v0 as a velocity scale and Sc as a length scale

z' = z/<5c, W=W/w0, w' = wlw0 (B25)

f = twJ5c (B26)

The velocities and compaction rates scaled in this way for h' = 4 are plotted in Fig. 1 ((B16) to (B18))
and Fig. 3 ((B12) to (B14)). These figures also show the dissipation in the matrix and the melt, obtained
from (A37). That in the matrix is

C(V.V)2 + - — + ^ - - c 5 , , — - =J~±[ (B27)
2\dxj dx, 3 " 8x,j kt \8z' J

and in the melt is

— 6\v- V)2= — Wn (B28)
*• k*

Only {dW/dz')1 and Wn are plotted. The solution for the thin layer approximation with h' = 0-5 is
shown in Fig. 2 ((B21) to (B23)).
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A P P E N D I X C

Some special solutions
Pharr & Ashby (1983) compressed a cylinder of porous material by loading its ends, and measured

the rate of shortening. The permeability of the cylinders of KCl which they used was sufficiently large
for the flow to be controlled by the deformation of the matrix alone, and hence by (A29). If the z
component of the velocity is W'then

W=-Az (Cl)

where A is the strain rate in z direction and is assumed to be positive. Writing (A29) in cylindrical polar
coordinates, and assuming Kr to be a function of r only, gives

d l [ d 1

[H (C2)

The solution to (C2) which is finite at r = 0 is

K r = O (C3)

where C is a constant. In some of Pharr and Ashby's experiments an = 0, a condition which requires

7 (C4)C
2 C+ r,/3

Then the normal stress on the end of the cylinder aa is given by

(C5)

Pharr & Ashby (1983) measured azz and A. To determine both rj and £it is necessary also to measure
the radial strain rate C.

It is more satisfactory to determine £ and t) independently. The radial compaction of a spherical
body must satisfy (A29) in spherical polar coordinates. If both other components of V are zero Vr

must satisfy

d [ 1 d

[
Hence

Cr
V, = — (C7)

where C is a constant. The other solution is singular at the origin. The radial stress an is given by

(C8)

Therefore the bulk viscosity can be determined from the radial strain rate Vjr when the sphere is
subjected to a known normal stress.

Alternatively the densification rate can be measured when the body is subjected to a constant
pressure P on its external surface. Such an experiment could be carried out by enclosing the body in a
thin rubber membrane. Then from (A 19) the densification rate

(C 8) then gives

^ ( 0 . V ( 0 C (C9)
at

C = — - (CIO)
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and

8tl
Artz et al. (1982) write - dijildt as D and P as p\. Their expression (20) is identical to (C11) if

c = (1 _ 3 " ( , » - 0 + ( i + < n k«. i/fl m
^ 1 F 3 54flZ>5

where A: is Boltzmann's constant, Q is the atomic volume and DbS is the grain boundary thickness
multiplied by the grain boundary diffusion coefficient, and lattice diffusion has been neglected.

A P P E N D I X D

Melting produced by the reduction of pressure at constant entropy
The mathematical description of melting when the melt and matrix move independently requires the

equations governing the conservation of mass, momentum and energy of a two phase flow (A3), (A4),
(A20), (A21), and (A39) to be solved, taking account of the transformation of matrix into melt, and is
not attempted here. The complications are less if the melt and matrix move with the same velocity, and
the equations become analytically tractable if the melting process takes place at constant entropy.

The simplest case to consider is the melting of a monominerallic rock, but it has the disadvantage
that the temperature is a function only of depth if melt is present. It is useful to be able to discuss the
influence of melting on the geotherm, and to do so the model must include more than one component in
the rock. If the entropy S is to be constant (Verhoogen, 1965)

(8S\ I8S\ (dS\
dS = \ dX+\ dr+ di> = 0 (Dl)

\8x) \dTJ \ep)
where X is the melt fraction by weight. X is related to the volume fraction of melt $ through

Xp,
t = (D2)

pf + X(j>t-pr)
Maxwell's relationships and other standard thermodynamic identities can be used to convert (Dl) to

dT \CL I CL CL\ 1
ASdX + [(l-X)Cl + XC'p] — + — - — \X dP = 0 (D3)

where AS is the change in entropy on changing from solid to melt, Cp is the specific heat at constant
pressure and a the thermal expansion coefficient (D3) can also be obtained from (A37) if the right
hand side is zero and v = V, since

&M=[{\-f)pt + tp(]<\X (D4)

and

X = *!!L (D5)

(l-j>)ps + fp,

(D3) can only be integrated if the variation of T with X and P is known:

T= T(X,P) (D6)

Then if C ' = CJ, (D3) becomes

dX T\dp)T p , \ P t p,j

dP CJdT^ K '

T\8X.V
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762 D. P. McKENZIE

(D7) was integrated numerically, using a fourth order Runge-Kutta scheme and starting on the solidus
(X = 0) at a given temperature. At each X, P the temperature was obtained from (D6). The
relationship between T, X and P must be obtained from laboratory measurements.

A simple form for (D6) is

( r - 2 7 3 ) =1100+ 100P + 600* (D8)

where P is in GPa. Fig. la and b show X{T) and P(T) obtained by integrating (D7) and (D8). It is also
of interest to obtain the total thickness of melt tt(z) (Fig. 7c) below a level z by integration

l£z)=JHz)dz (D9)

where z0 is the position of the solidus. Since (D9) is only accurate if the melt and matrix do not move
with respect to each other, t^z) does not accurately determine the quantity of melt which can be
extracted from below z. An accurate determination will require the solution of the equations in
Appendix A, similar to that carried out by Ahem and Turcotte, but taking proper account of the
deformation of the matrix. Such a calculation still depends on the form of (D6) and the value assumed
for AS. Neither are accurately known, and it therefore seemed worthwhile to investigate whether the
error which results from using (D9) to estimate the volume of magma which can be extracted is larger
than the probable uncertainty in (D6) and AS. The two principal effects of the movement of magma are
heat transport by the melt and release of gravitational potential energy. If all the heat produced by both
effects is absorbed by increasing the melt fraction, an upper bound on tfe) can be obtained. Magma
rising from a position z to the surface z, isentropically, will have a temperature 6 at z, of approximately

) ( z l - z ) (DIO)

Since 0 > 7*(z,) the melt can increase its volume at z, by melting the matrix. A unit mass of melt can
increase to no more than 1 + Am where

C p (0-r (z , ) )
Am = —- — (Dll)

T(zt)AS

The force exerted on a unit volume of magma during its ascent is

(P,-Pr)g (D12)

and therefore the work done is no greater than

' P,
) (D13)

If all this work is converted into melt, the volume A V generated is

*V= 1"\ .J . (D14)

The effect of including both these terms is to increase ff(z,) by up to 60 per cent in the most extreme
case (Fig. 8). The effect of retraining 3 per cent of the melt in the matrix is therefore negligible.

The calculations were carried out for two other expressions for T(X, P)

(8T\
T=T1 + [ X

650
(7,-273) = 1100 + tan- '[ l-8(P- 1-75)1 (D15)

u

dT\ 534
=362 tan"1 [3-66(P-1-75)]

8X L n
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where P is in GPa. (D15) is empirical, and the form was chosen to fit the observations of My sen &
Kushiro (1977) and Jaques & Green (1980) (Fig. 10) as well as possible. Another, somewhat simpler,
expression was also used:

( r - 273)= 1115 + 120P+ ( 6 0 0 - \26P)X, P< 3-5 GPa ( D ] 6 )

= 1115 + 120P+ MAX, P> 3-5 GPa

A P P E N D I X E

Diffusion and dispersion
In the derivation of (A39) the temperatures of the melt and matrix were assumed to be the same. A

similar assumption of equilibrium between melt and matrix was made in deriving (A42). It is important
to investigate the conditions which must be satisfied if these assumptions are to be valid. A
straightforward method of doing so is to determine the time scales for the various changes involved.
The time required for a single grain to reach thermal equilibrium, r^, is

rgr ~ OVKT- (El)

Changes in temperature can be produced by either conduction or advection of heat. (A39) shows that
the conductive time scale rcond is

rCOTd - 'VKT (E2)

where / is the length scale over which the temperature varies. Similarly the advection time scale T,dv is

r.«v ~ '/f*|v| (E3)

where |v| is the magnitude of the velocity of the melt. For the purposes of all these estimates the
differences in thermal properties between the matrix and the melt can be ignored. If (A39) is to describe
the temperature both rcond and ridv must be much greater than rgr. The first condition requires

/ > 1 mm (E4)

which is easily satisfied. The condition that

r.dv > r |r (E5)

requires

IKT

Substitution of the values in Table 1 gives

10/J>|v| (E7)

where |v| is in metres/second. Since the velocities in partial melts will not exceed a metre/year, (E7) is
always satisfied. Hence the assumptions leading t6 (A39) are justified.

Similar arguments can be used to examine the validity of (A42). However, unlike the diffusibility of
heat, the volume diffusivity of the matrix Ds is very different from that of the melt Dr. Hence

V ~ aVfl, (E8)

and

rCOTd - P/Dt (E9)

hence

if

z>fV
/J

— I a ~ 3 m (E10)
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The other condition is somewhat more restrictive. (A42) shows that

'l \ 1 /

Many elements of interest are concentrated in the melt, and hence the term in square brackets in (Ell)
is ~ 1 . Therefore, if

r.dv>r,r (El 2)

ID,
- ^ - H v | . (E13)

Substitution then gives

3 x 10- 4 /> |v| (E14)

where |v| is measured in metres/year. If the upper bound of |v| is 1 m yr~' (A42) will only be valid for
concentration variations whose size exceeds 300 m. Of all the four conditions, (El4) is the one most
likely to be violated.

A useful solution to (A42) can now be obtained in a reference frame fixed to the matrix if £ and v are
constant everywhere, and if v can be written

V = ( 0 , 0 , H > ) (E15)

If the concentration cris a function only of z then (A42) becomes

- (0 p, ] 8cf dcr d2cf
Kc+l\ + w D } 3 ( E 1 6 )

p( \ dt dz " dz2

where Dn is the appropriate element of the diffusivity tensor Df, which is assumed to have a principal
axis in the z direction (see Dullien, 1979, Ch. 7). Equation (E16) can be written as

dcr dcr 82c,
— - + wt—- = De (E17)
dt ' dz ' dz2

where

we = Fw (E18)

Dc = FDn (El 9)

and

A solution to (El7) is

where c0 is a constant.
at
he

space and time using

where c0 is a constant.
Equation (E21) represents a gaussian variation of concentration, whose peak is at z — wj. In this

form the solution is not very useful, because cf(0,0 -» oo as t -»0. If, however, the origin is moved in
space and time using

z = z' + z.
(E22)

t = t' + t,

where

z, = we h
2/4Dc
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and A is a constant, (E21) becomes

t'ltl
exp

4Dr(l'
(E24)

and represents a gaussian function whose amplitude is unity when z' = t' — 0, and 1/e when z' = h, V
= 0. (E24) was used to obtain Figs. 16 and 17, with Dn = Dr. (E21) and (E24) show that the
concentration peak does not move with the velocity of the melt, but with a reduced velocity we. The
factor F by which the velocity is reduced depends on the distribution between the melt and the matrix.
The partially melted region therefore behaves in a similar way to a standard separation column, and
different elements will move through the matrix with different velocities. The diffusion coefficient is also
reduced by the presence of the matrix.

The solution for cf(z,t) given by (E21) can also be used to investigate dispersion when it is produced
by the geometry of the flow itself, rather than by diffusion. The condition which must be satisfied if this
regime is to apply is that the time taken for the solute to diffuse a distance a in the liquid must be long
compared with the time taken for the liquid to be advected the same distance. Equations (E8) and
(El 1) then show that this condition requires

alvl
(E25)

When (E25) is satisfied, the longitudinal diffusion coefficient Dn can be written as (see Dullien 1979,
Fig. 7.12).

Dn = C,3 w (E26)

where C33 is a constant. The transverse diffusion coefficients are equal if the material is isotropic, and
can be written in the same way. The value of C,, is, however, smaller than C33. Substitution of (E26)
into (E21) then gives

Cf ( ' . * • ) =
{z-zoy

4Ccz0

where

(E27)

(E28)

The form of (E27) is somewhat surprising, since it shows that cf depends only on zw the distance
travelled at the effective velocity wt, and not on wt itself. Hence if (E25) is satisfied the dispersion will
depend only on the thickness of the compacting layer, and not on the rate at which compaction occurs.

Many materials of geological interest contain several solid phases. The expressions (E21)-(E29) also
apply to such materials if F is defined by

+ 1 (E30)

where/, is the volume fraction occupied by the solid phase i, whose distribution coefficient is KQl and
density p,. The summation must be taken over all n solid phases.
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