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The first phase of felsic magmatism on Ascension Island, in the
Jorm of trachyte and rhyolite domes, coulées, lava flows, and
pyroclastic deposits, created the central and eastern parts of the
wsland between about 1-0 and 0-56 my ago. The geochemical
characteristics of the felsic rocks are largely consistent with an origin
by fractional crystallization of high Jr/Nb mafic magmas as
evidenced by identical " Nd/""*Nd and similar Pb isolopic ratios.
The high Jr/Nb basalt flows constitute one of the four distinct
basalt and hawaute suites identified from Ascension based on trace
element characteristics. Syenite, monzonite, and granite xenoliths
associated with the felsic magmatism are interpreted as cumulate
rocks _from, and intrusive equivalents of, fractionating felsic magmas.
Many of the felsic rocks are characterized by high *Sr/*°Sr
(>0-704) compared with mafic rocks (“’Sr/*Sr <0-703), even
when corrected for in situ decay of “'Rb since eruption. Such
hagh ¥ Sr/*Sr coupled with high "“Nd/'**Nd signatures do not
correspond to known suboceanic mantle reservoirs and in the most
part appear to reflect sub-solidus addition of a high ¥ Sr/*Sr
component. This component s probably a seawater-derived flurd
that might be added at the surface from wind-blown spray, o1, more
likely, at depth through hydrothermal circulation (fluids with high
Sr contents have been recovered from fractures in a 3126-m-deep
geothermal well). In either case, the extremely low Sr contents of
the felsic rocks make them particularly susceptible to Sr-isotope
modification. Internal (mineral) isochrons for two granite xenoliths
give ages of ~0-9 and ~1-2 Ma, with initial " Sr/*Sr >0-705.
Even though the high ¥ Sr/™Sr signature of most of the volcanic
rocks 15 demonstrably introduced afler solidification, the high initial
V7Sr/*Sr values of the granite xenoliths suggest that hydrothermally
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altered pre-existing volcanic basement may have been melted or
assimilated during differentiation of some of the felsic magmas.
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INTRODUCTION

Most studies of ocean island magmatism have focused
on basaltic rocks and used incompatible element and
isotope characteristics to define the composition(s) and
melting behavior of the mantle source(s). Felsic volcanism
on ocean islands is typically interpreted as the product
of fractional crystallization of mafic magmas derived from
hotspot-related plume sources (e.g. le Roex, 1985; Storey
et al., 1989), although recent detailed studies have called
attention to open-system processes that may modify in-
compatible element and radiogenic isotopic ratios (e.g.
Bohrson & Reid, 1995, 1998; Thirlwall et al., 1997).
Volumetrically, the occurrence of differentiated com-
positions in ocean island settings perhaps is under-ap-
preciated, so understanding differentiation processes is
particularly important as it will (1) determine the extent
to which care must be taken in using isotope and in-
compatible trace element ratios indiscriminately to char-
acterize mantle sources, and (2) define the time scales
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over which mass and heat are delivered from the mantle
at ocean islands.

The felsic rocks of Ascension have long been known
to be characterized by unusually high ¥Sr/*Sr. This
feature has been variously ascribed as the result of in-
corporation of pelagic sediment (Harris et al., 1982) or
altered oceanic crust (Weis et al., 1987), or subsolidus
alteration by seawater (Sheppard & Harris, 1985). Here
we show that the felsic rocks of Ascension are largely
derived by closed-system fractional crystallization, and
that the Sr isotope characteristics, in most cases, reflect
weathering and hydrothermal alteration of extremely low
Sr rocks.

Ascension Island (7°56’S, 14°22'W) in the South At-
lantic Ocean (Fig. 1), is a hotspot-related intra-plate
volcanic island (Brozena, 1986). The edifice is constructed
on 5-6-my-old oceanic lithosphere to the west of the
Mid Adantic Ridge, with ~1% of its volume exposed
above sea level (Harris, 1983). Trachyte and rhyolite
compose ~14% of the surface exposure (Nielson & Sib-
bett, 1996) of lava flows and pyroclastic deposits. Py-
roclastic (scoria and pumice) deposits make up ~43% of
the 1sland’s total areal extent (Atkins et al., 1964; Harris,
1983). Also present are plutonic (granite, syenite, and
monzonite) xenoliths which represent fractionation prod-
ucts of felsic magmas. Most of the felsic volcanic rocks
and plutonic xenoliths have high initial ¥Sr/**Sr com-
pared with the mafic rocks on the island. The present
study is directed to understand the petrogenesis of the
felsic (>60% SiO,) rocks and the cause of high ¥Sr/*Sr
in these felsic volcanic and plutonic rocks from Ascension.
A more detailed consideration of the interactions involved
during differentiation will be presented elsewhere.

GENERAL GEOLOGY OF ASCENSION
ISLAND

Ascension is a composite volcano with >50 scoria cones
scattered over the island. The exposed volcanic rocks
comprise transitional to mildly alkaline basalt-
hawaiite-mugearite-benmoreite—trachyte-rhyolite series
[by the Le Bas et al. (1986) classification] lava flows,
trachytic domes, scoria cones, and pyroclastic deposits
(Fig. 1). Before this study, the pyroclastic deposits of
mafic and felsic composition have been largely un-
characterized. In this study we geochemically and pe-
trogenetically characterize the voluminous pumice
deposits, trachyte domes, felsic lava flows, and plutonic
and volcanic xenoliths.

There are two distinctive felsic eruptive centers on the
island, the central felsic complex and the eastern felsic
complex. The central felsic complex comprises the
Middleton Ridge felsic center and Green Mountain
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(Fig. 1). Middleton Ridge is composed primarily of tra-
chyte flows and pumice, and some rhyolite and rhyolitic
obsidian. The highest peak on the island, Green Moun-
tain (859 m), is made up of massive, thick pyroclastic
(mostly pumice) fall deposits with the southwestern flanks
mostly constituted of trachyte. The eastern felsic complex
1s made up of numerous trachyte flows and lava domes
(Fig. 1). A voluminous trachyte lava flow originated from
Devil’s Cauldron and flowed northward and castward.
Devil’s Cauldron is interpreted to be an explosion crater
with the trachyte dome of Weather Post adjacent. South-
east of Devil’s Cauldron and Weather Post is the trachytic
flow dome of White Horse, to the east of which is the
comenditic coulée of Little White Hill (Fig. 1). At the
extreme eastern end of the island, South East Head
is constituted of trachyte. In the southeastern part of
Ascension small trachyte bodies occur at Round Hill,
Cocoanut Bay, Ragged Hill, and Pillar Bay (Fig. 1).
Trachyte from Ragged Hill and Cocoanut Bay contains
unusually high modal abundance of alkali feldspar
phenocrysts. In the western part of the island trachyte is
found locally at Devil’s Riding School, Daly’s Crags, and
Cross Hill (Fig. 1). Rhyolitic compositions are relatively
rare, being restricted to the rhyolite flow on Middleton
Ridge in the central felsic complex, Little White Hill,
and a flow in the cliff section to the north of White Horse
in the eastern felsic complex.

Plutonic and volcanic xenoliths

Felsic plutonic xenoliths (monzonite, syenite, and granite)
and volcanic xenoliths (trachyte and rhyolite) occur
mainly in pyroclastic deposits on the western flanks of
Green Mountain. The granite, syenite, and monzonite
xenoliths have been described in great detail by Roedder
& Coombs (1967), Harris & Bell (1982), Harris et al.
(1982), Harris (1983), Sheppard & Harris (1985), and
Harris & Sheppard (1987). The granite xenoliths from
Five Mile Post vary in size from a few centimeters to
25-30 cm in length; most are fine grained. Monzonite
xenoliths occur on Middleton Ridge in pumice deposits
and syenite xenoliths occur in the mugearite and ben-
moreite lava flows from Broken Tooth (Harris, 1983).
Trachytic and rhyolitic xenoliths from close to Five Mile
Post vary in size from a few centimeters to ~30 cm and
have a laminated fabric.

Ages of evolved rocks on Ascension Island

A limited number of age dates (K-Ar) for Ascension
trachyte and rhyolite exist in the literature (Harris ¢t al.,
1982; Nielson & Sibbett, 1996); we have added four new
Ar-Ar age dates on feldspar phenocrysts. There is a
distinct clustering of ages among the exposed rocks on
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Fig. 1. Simplified geological map of Ascension Island highlighting the distribution of felsic rock types. Mafic lava flow types: M,, high Zr/Nb
basalt; My, Dark Slope Crater hawaiite and mugearite; M;, low Zr/Nb hawaiite; M,, intermediate Zr/Nb basalt to benmoreite. The inset (top
right) shows the location of Ascension Island. Unshaded and unlabeled areas represent mafic ash and superficial deposits.

the island (Fig. 2), with the higher SiO, rocks being
significantly older (range from 1-2 to 0-56 Ma) than
the mafic volcanic rocks (range from 0-47 to 0-12 Ma,
with a basaltic dike from Middleton Ridge dated at
0-80 Ma).

The first phase of felsic volcanism occurred in the
central part of the island. A rhyolite ecast of Middleton
Ridge is dated at 0-99 + 0-02 Ma; this is overlain by a
trachyte flow with an age of 0:82 + 0-02 Ma and this
flow is overlain by a trachyte dome closely associated
with a trachyte lava flow dated at 0-65 + 0-02 Ma
(Nielson & Sibbett, 1996). From field and age re-
lationships we suggest that the build-up of the Middleton
Ridge felsic center started ~1 my ago and continued
until 0-65 my ago.

Felsic magmatism next occurred:

(1) west of Middleton Ridge, where the Devil’s Riding
School trachyte is dated at 0-66 + 0-02 Ma and is
overlain by pumice with an age of 0-61 + 0-02 Ma;

(2) east of Middleton Ridge, where build-up of Green
Mountain occurred between 0-7 and 0-5 Ma;

(3) in the eastern felsic complex, where there is only
one age date for this region, the trachyte dome of Weather
Post being dated at 0-67 + 0:02 Ma. The lack of age
dates from the castern felsic complex makes it difficult
to constrain its relationship with the Middleton Ridge
felsic center. The eastern felsic complex may be con-
temporaneous with, if not slightly younger than, the
Middleton Ridge center.

These age dates suggest that the areal exposure of the
central and the eastern parts of the island was built up
over a period of half a million years, from ~1 Ma to
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Fig. 2. Variation in SiO, (wt %) vs age (Ma) for mafic and felsic rocks
from Ascension. Whole-rock K-Ar ages ([J) are from Harris e/ al.
(1982) and Nielson & Sibbett (1996) (note that for the Bears Back and
Daly’s Crags trachyte bodies the ages from Nielson & Sibbett are
preferred to those from Harris ef al.); Ar-Ar feldspar age dates (O) are
from this study (Middleton Ridge trachyte 0-89 + 0-04 Ma; Weather
Post trachyte 0:67 4+ 0-02 Ma; pumice in Devil’s Riding School 0-61
+ 0-02 Ma; trachyte NNE of Mountain Red Hill 0-:56 + 0-06 Ma);
Rb-Sr isochron dates for granite xenoliths (A) are from this study.

0-56 Ma. Nielson & Sibbett (1996) suggested that, as the
oldest dated rocks in both the felsic complexes are rhyolite,
with time the silica content of erupted felsic magma
decreased as a compositionally zoned magma chamber
was tapped, and that this chamber was active for >0-4
my. We note that the absence of large-volume eruptions
such as caldera-related ignimbrites that are typically
associated with large, long-lived magma chambers may
mitigate against this possibility.

SAMPLING AND ANALYTICAL
TECHNIQUES

Care was taken to obtain samples which were as fresh
as possible; where practicable, the interiors of large
blocks were sampled. Major and trace element data were
obtained by X-ray fluorescence (XRF) and instrumental
neutron activation analysis (INAA) at the University of
Oklahoma, as distinguished in Table 1, with additional
details given by Weaver et al. (1996). Sr concentrations
<10 ppm compare well with more precise isotope dilution
determinations. Radiogenic isotope data are given in
Table 2. Sr and Pb were analyzed using a peak-hopping
routine on a VG Sector mass spectrometer, whereas Nd
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isotope ratios were determined using a VG Sector 54-
30 mass spectrometer operating in static mode. Further
details have been given by Davidson et al. (1993). Selected
data are presented in Tables 1 and 2, with the full data
set available from the first author. Oxygen isotope data
were obtained at SMU for whole rocks (Table 2) and
two feldspar separates using the CIF; extraction technique
described by Borthwick & Harmon (1983).

PETROGRAPHY

Trachytic rocks vary from being aphyric to very sparsely
porphyritic to strongly porphyritic and mostly are mas-
sive. The most abundant phenocryst phase 1s alkali feld-
spar, with plagioclase, olivine, clinopyroxene, and
titanomagnetite forming the other phenocryst or mi-
crophenocryst phases. Weaver et al. (1996) reported trach-
yte from Ragged Hill and Cocoanut Bay that has
unusually high contents of alkali feldspar phenocrysts
(25-35%). Feldspar phenocrysts are up to 2 mm, olivine
up to -5 mm, and titanomagnetite and clinopyroxene
are up to 0-5 mm and occur as rare clusters. Plagioclase
phenocrysts are rare and tabular in shape, and range up
to 2:5 mm. Some trachytic rocks contain small (0-5 mm)
rounded crystals of arfvedsonite amphibole. The trachyte
groundmass comprises a fine-grained felted mass of feld-
spar laths ranging between 0-1 and 0-2 mm, and rarely
up to 1 mm and exhibiting a patchy, weak flow alignment.
Rhyolitic rocks mostly are aphyric to sparsely phyric and
in general massive; microphenocrysts are alkali feldspar.

DISCUSSION
Whole-rock geochemistry
Alteration of felsic rocks

Present-day Ascension has an arid climate and the felsic
volcanic and plutonic rocks have no to little petrographic
evidence of alteration; most chemical characteristics are
therefore likely to be primary igneous ones. However,
despite the apparently pristine nature of the lavas, Dav-
idson et al. (1997) showed that Sr contents and isotopic
compositions may have been modified, as discussed
below. In contrast, pumice samples clearly are hydrated
as indicated by elevated HyO™ and loss on ignition (LOI)
(Table 1) and by whole-rock 8O that ranges between
+6 and +17%0 (Kar, 1997). Compared with fresh
trachyte samples, most pumice samples have undergone
significant loss of Na,O (Fig. 3). The K,O content of the
pyroclastic samples is unchanged but, because of Na,O
loss, Na,O + K,O and Na,O/K,O are low in pumice
compared with massive trachyte flows and domes
(Table 1). In addition to Na,O loss, CaO and MgO are
higher in pumice relative to trachyte (Table 1), and the
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Fig. 3. Variation in SiO, vs AL,Os, Fe,O;, K,O, and Na,O

(all in wt %) for felsic rocks from Ascension. Symbols plotted denote the following:

/\, syenite xenoliths from Broken Tooth; ¥, monzonite xenoliths from Middleton Ridge; O, granite xenoliths from Five Mile Post; [, trachyte
and rhyolite xenoliths from Green Mountain; W, trachyte and rhyolite flows; @, trachyte and rhyolite pumice.

loss of Na,O results in a significant apparent increase in
Si0, in pumice (Table 1).

Chemucal homogeneity of the felsic rocks

In a number of instances, multiple samples were collected
from the same trachyte or rhyolite flow or dome (e.g.
Ragged Hill, Bears Back, Middleton Ridge, Weather
Post). In all cases, there are only very small variations
(generally within analytical error) in the major and trace
element compositions of the samples from a single flow
or dome. This chemical homogeneity suggests that the
lava flows and domes generally are fresh (in accord with
petrographic observations) and not internally differ-
entiated. Thus, for those flows and domes from which
only a single sample was taken, the chemical composition
should be representative of the unit.

Mayor element geochemustry

Ascension volcanic rocks are a continuous fractionation
series of metaluminous alkali  basalt-hawaiite—
mugearite-benmoreite, to the fractionated products of
peralkaline trachyte and rhyolite (Harris et al., 1982;

Weaver et al., 1996; Kar, 1997). For felsic rock com-
positions (>60 wt % SiO,; Table 1) with increase in SiO,,
AlO; constantly decreases because of crystallization of
feldspar, Fe,O; decreases as a consequence of olivine,
clinopyroxene, and titanomagnetite crystallization, K,O
increases but becomes buffered between 65 and 70 wt
% S10, probably with crystallization of alkali feldspar,
and Na,O shows a slight decrease at high (>65 wt %)
Si0, content with crystallization of alkali feldspar (Fig. 3).
Most of the pumice samples have moderate to extreme
depletion in Na,O and, in general, a lower abundance
of KyO compared with the similarly differentiated lava
flows and domes (Fig. 3), which is interpreted as an
alteration effect (Weaver et al., 1996). The Broken Tooth
syenite xenoliths and the Middleton Ridge monzonite
xenoliths have a limited range of chemical variation
(60-5-64-5 wt % SiO,) and generally plot on the least
evolved end of fractionation trends defined by the volcanic
rocks (Fig. 3). The trachyte and rhyolite xenoliths from
Green Mountain have chemical compositions com-
parable with the exposed felsic volcanic rocks (Fig. 3).
The granite xenoliths from Five Mile Post have SiO, in
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the range 73:0-75-4 wt % and generally (Fe being a
notable exception) plot on the most evolved end of major
element fractionation trends defined by the felsic volcanic
rocks (Fig. 3).

Harris (1983) presented a major element least-squares
crystal fractionation model which showed that Ascension
rhyolite compositions can be produced by simple crystal
fractionation from a parental basalt magma. Harris (1983)
modeled the liquid line of descent in two steps, from
basalt to benmoreite (50% crystallization) and from ben-
moreite to rhyolite (55% crystallization). However, the
basalt composition chosen by Harris (1983) is of the high
Zr/Nb type [as defined by Weaver et al. (1996)] and is
not a suitable parent to the intermediate Zr/Nb ben-
moreite (the flow on Letterbox) used by Harris; this is
evident from the relatively poor sum of squares of re-
siduals (0-41) and the apatite addition required by the
model. Kar (1997) has shown that the different mafic
magma types (high Zr/Nb, intermediate Zr/Nb, low Zr/
Nb, and Dark Slope Crater) cannot be related to each
other by crystal fractionation, but that the compositional
variation within any one type (i.e. basalt to benmoreite
in the intermediate Zr/Nb group) is consistent with a
simple liquid line of descent model.

In modeling fractionation from benmoreite to rhyolite,
Harris (1983) used some mineral compositions in-
appropriate to an intermediate to felsic system (olivine
of composition Fog;) and had plagioclase as the only
feldspar phenocryst phase, although alkali feldspar is the
predominant phenocryst in the trachytic rocks. The least-
squares model of Harris (1983) has a relatively high (0-42)
sum of squares of residuals. A major element least-
squares (Wright & Doherty, 1970) model (Table 3) for
fractionation from a trachyte with 65:7 wt % Si1O, to a
rhyolite with 69:6 wt % SiO, has a very low sum of
squares of residuals (0-03) for a crystal extract which is
dominated by alkali feldspar. However, the trace element
systematics are more complicated; although the rhyolite
sample (AI-95) has higher abundance of most in-
compatible elements than the trachyte sample (AI-126),
Rb is lower in the rhyolite than in the trachyte. It must
be borne in mind that these samples probably are not
strictly comagmatic; felsic magmatism on Ascension
spanned a period of at least 400 ky and samples AI-93
(from Middleton Ridge) and AI-126 (from near Round
Hill on the southeast coast of the island) could be of
very different ages and have originated from unrelated
magmas which, although they fractionated similar major
phenocryst assemblages and followed similar major ele-
ment variation trends, had rather dissimilar trace element
characteristics as a result perhaps of the crystallization
of different accessory phases.

A major element least-squares model for fractionation
of rhyolite AI-95 to more evolved rhyolite AI-93 (Table 3)
also yields an excellent sum of squares of residuals (0-02)

GEOCHEMISTRY OF ASCENSION ISLAND FELSIC ROCKS

with a mineralogy reasonable for Ascension rhyolite (the
An,, composition is present as a solid solution component
in alkali feldspar). Both of these samples are from the
felsic flow sequence on Middleton Ridge and could be
comagmatic. The increase in Rb from AI-95 to AI-93 is
consistent with the degree of fractionation indicated by
the least-squares model if Rb is highly incompatible.
Modeling of other trace elements is again complicated
by the hard to quantify role of accessory phases.

The cumulate rocks that would be formed by the
crystal extracts in the two least-squares models (Table 3)
have major element compositions very similar to those
of the syenite (Table 1) and monzonite xenoliths of
Ascension.

Trace element geochemustry

Ascension felsic rocks have extremely wide variation in
trace element abundance. With increasing Si0,, Ba and
Sr decrease in abundance as a result of feldspar crys-
tallization, whereas Rb increases continuously in abund-
ance. Both Zr and Nb generally increase in abundance
with increasing Si0, (Fig. 4), and the plutonic xenoliths,
as with major element variations, largely conform to the
trends defined by the volcanic rocks. Weaver et al. (1996)
observed that trachyte from Ragged Hill and Cocoanut
Bay has high Ba and K,O with respect to Zr and Nb
compared with the rest of the Ascension suite, and
interpreted this as the result of accumulation of alkali
feldspar (Fig. 4); the syenite xenoliths from Broken Tooth
have K/Nb higher than the volcanic rocks (Fig. 4),
consistent with them being cumulate rocks from frac-
tionation of felsic magmas. Large variations in trace
element ratios, for example Zr/Nb (Fig. 4) and Zr/Y, in
the felsic rocks as compared with the mafic volcanic rocks
are probably due to the crystallization of accessory phases,
and, in particular, the crystallization of alkali amphibole
and zirconium- and rare-earth-rich accessory phases
(found in the intermediate and granitic plutonic xenoliths;
van Tassel, 1952; Cann, 1965), which may cause Zr bulk
distribution coeflicients to vary considerably during felsic
magma fractionation.

The felsic rocks have extremely variable Zr/Nb, ran-
ging from 46 to 9-4 (Fig. 4), although the majority of
the trachyte and rhyolite samples have Zr/Nb within the
range of the high Zr/Nb mafic flows (6:0-7-7). Trachyte
and rhyolite of the eastern felsic complex (Weather Post,
White Horse, Devil’s Cauldron, Little White Hill) uni-
formly have Zr/Nb <6-5. The highest Zr/Nb felsic rocks
are mostly in the central part of the island; the Middleton
Ridge felsic rocks and the trachyte and rhyolite xenoliths
from Green Mountain have Zr/Nb of 7-:0-8:6 and the
Devil’s Riding School trachyte has the highest Zr/Nb,
9-1-9-4.

Two different fractionation trends are apparent in
Fig. 4. Most trachyte samples define a trend of moderately
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Fig. 4. Variation in Zr (ppm), Nb (ppm), K/Nb, and Zr/Nb vs SiO, (wt %) for felsic rocks from Ascension. Symbols as defined for Fig. 3. Two
granite xenoliths which have Zr >3000 ppm and Nb >350 ppm are not plotted on the SiO, vs Zr and SiO, vs Nb diagrams. Arrows on the
Zr/Nb vs SiO, diagram indicate the two separate fractionation trends described in the text.

increasing Zr/Nb with SiO, (from Zr/Nb of 5:5-6:0 at
65-66 wt % SiO, to Zr/Nb of ~7-0 at 69 wt % SiO,),
and then Zr/Nb decreases in the rhyolite samples from
Devil’s Cauldron and Weather Post (Zr/Nb 5-5-6-0 at
~70 wt % Si0,) to the rhyolite of Little White Hill (Zr/
Nb 4:6 at 73:8 wt % Si10,). However, some trachyte
samples define a separate trend of rapidly increasing Zr/
Nb with SiO, (from Zr/Nb ~6-5 at 65 wt % SiO, to
Zr/Nb >9:0 at 67-68 wt % Si0,), probably the result
of crystallization of an accessory phase (an Fe—T1 oxide?)
with a high distribution coeflicient for Nb; above ~69
wt % Si10,, Zr/Nb falls with increasing SiO, because of
the crystallization of zirconium silicate accessory phases.

In the plutonic rocks Zr/Nb is even more variable
than in the volcanic rocks (Fig. 4), ranging from 4-0 to
13-4 in syenite, from 40 to 8:6 in monzonite, and from
51 to 9-0 1n granite. Major element modeling (Table 3)
indicates that the syenite and monzonite xenoliths have
compositions appropriate to cumulate rocks produced by
crystal fractionation of felsic magmas. Removal of a
cumulate assemblage with low Zr/Nb (<5) would drive
fractionating felsic liquids to higher Zr/Nb (as observed
in the range from 65 to 69 wt % SiO,; Fig. 4) whereas

removal of a cumulate assemblage with high Zr/Nb
(>8-10) would drive fractionating felsic liquids to lower
Zr/Nb (as observed in the range above 69 wt % SiO,).
The syenite and monzonite xenoliths therefore have trace
element characteristics consistent with their origin as
cumulate rocks from fractionation of trachyte and rhyolite
magmas. The granite xenoliths generally have major
element (Iig. 3) and trace element (Fig. 4) compositions
similar to the rhyolitic rocks (although some have con-
siderably greater incompatible trace element enrichment);
they are probably intrusive equivalents of the rhyolite
flows and domes.

Kar et al. (1996) and Weaver ¢t al. (1996) showed that
Ascension mafic rocks have a wide variation in Zr/Nb,
from 4-0 to 6-0. There are four distinct mafic (basalt to
benmoreite) suites: (1) in the southwestern part of the
island hawaiite flows and scoria have Zr/Nb of 4-1, (2)
in the southern and the southeastern part of the island
basalt flows and scoria have Zr/Nb of 5-6-6-1, (3) for
the rest of the island basalt and hawaiite flows and scoria
have Zr/Nb of 4:7-5-4, and (4) hawaiite and mugearite
flows from Dark Slope Crater have intermediate Zr/Nb
(4:9-5-4) but are distinguished by high Ni and Sr relative
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to other trace elements. Data for shallow borehole
samples suggest that older Ascension mafic flows have
higher Zr/Nb of up to 7-7 (Kar et al, 1995). The
age relationship of the felsic and mafic rocks, their
geographical distribution on the island, and their geo-
chemistry, allow determination of which mafic magma
type—high Zr/Nb, low Zr/Nb, intermediate Zr/Nb, or
Dark Slope Crater—was parental to the felsic magmas
on Ascension.

A deep (3126 m) geothermal exploration well (As-
cension #1) records much of the history of the formation
of the island (Nielson & Stiger, 1996). Below 1966 m,
the sequence is largely mafic; felsic rocks mostly occur only
above 887 m depth. Nielson & Stiger (1996) suggested that
felsic volcanism is relatively recent in the growth of
the volcanic edifice, although felsic rocks are the oldest
exposed rocks on the island. Field observations and
radiometric age dates suggest that eruption of high Zr/
Nb basaltic lavas in the southeastern part of the island
overlapped with the end of felsic volcanism (Weaver et
al., 1996), and data from the shallow boreholes (Kar e
al., 1995; Kar, 1997) indicate that high Zr/Nb mafic
volcanism was contemporaneous with, and probably also
preceded, felsic volcanism. The low Zr/Nb and Dark
Slope Crater mafic flows are younger than the felsic
rocks and are extremely limited in spatial distribution
and volume (Weaver et al., 1996); it is therefore difficult
to appeal to these magma types as having produced,
through fractionation, the voluminous felsic magmas
erupted on Ascension. Although of substantial volume,
the intermediate Zr/Nb basalt to benmoreite flows are
the most recent eruptive products (Weaver et al., 1996)
and are highly unlikely to represent magmas parental to
the earlier felsic volcanism.

The similarity in the ranges of Zr/Nb between most
trachyte and rhyolite samples and the high Zr/Nb mafic
rocks (5-6-7-7) suggests a genetic association. Major
and trace element modeling of crystal fractionation of
Ascension mafic compositions shows that there is no
significant fractionation of Zr/Nb over the range from
basalt to benmoreite (Kar, 1997). Therefore, from the
geographical distribution, age, and behavior of in-
compatible element ratios of the felsic and high Zr/Nb
mafic volcanic rocks, it is highly likely that the felsic
magmas were derived from parental high Zr/Nb mafic
magmas. Higher Zr/Nb (>8) in the felsic rocks is the result
of crystal fractionation and the removal of a cumulate
assemblage with low Zr/Nb, as represented by some of
the syenite and monzonite xenoliths (Fig. 4). However,
no intermediate (mugearite, benmoreite) products of high
Zr/Nb affinity have been found, suggesting that frac-
tionating mafic magmas either encountered a low-pres-
sure cotectic such that copious mineral precipitation
drove compositions rapidly from basalt to felsic over a
small temperature range, or intermediate composition
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magmas encountered a density maximum in the liquid
line of descent, inhibiting eruption. Major element mod-
eling of fractionation from high Zr/Nb mafic magma to
trachyte magma is too poorly constrained (the frac-
tionation step is too large) to be of use in unequivocally
establishing this petrogenetic lineage.

The rare earth element (REE) patterns of Ascension
mafic and felsic volcanic rocks have slightly variable
degrees of light REE (LREE) enrichment with respect to
heavy REE (HREE), although the LREE are strongly
enriched compared with the HREE (Kar, 1997). Con-
tinuous crystal fractionation of mafic magmas involving
olivine, plagioclase, clinopyroxene, and magnetite (Har-
ris, 1983) increases the total REE content of evolved
magmas but does not produce significant inter-element
fractionation (Kar, 1997). The characteristic REE pattern
of the basaltic rocks is largely maintained in the more
evolved rocks, although the absolute abundance has
increased and substantial feldspar fractionation has pro-
duced a negative Eu anomaly (Fig. 5a). Rhyolitic com-
positions have a higher total abundance of REE and a
larger negative Eu anomaly compared with trachyte
(Fig. 5b).

When the average trachyte is normalized to average
high and intermediate Zr/Nb mafic compositions (Fig. 5c
and d) the MRELE are strongly depleted relative to the
LREE and HREE. If intermediate Zr/Nb mafic magmas
were parental to trachyte magmas, it is required that
Dirir > Dugrer (Fig. 5d) during fractional crystallization,
which is unlikely given the fractionating phenocryst as-
semblage (Harris, 1983). On the other hand, production
of the average trachyte from a high Zr/Nb parent magma
(Fig. 5¢) would require Digpp < Dygge during crystal
fractionation, which 1s more probable and further sup-
ports the derivation of felsic magmas from parental high
Zr/Nb mafic magmas.

Isotopic data

For the most part, trachyte and rhyolite flows and pumice
are 1sotopically similar to the mafic rocks (Table 2, Fig. 6),
particularly the high Zr/Nb mafic rocks which have Zr/
Nb and ""Nd/"*Nd most comparable with the felsic
rocks (Fig. 6). However, the most evolved trachyte and
rhyolite samples have low Sr contents, high Rb/Sr, and
very high Sr isotope ratios (Table 2). Undoubtedly, the
high ¥Sr/®Sr is in part due to i situ decay (Weis et al.,
1987), and those samples for which we have age data
can be corrected for this effect (Fig. 6). Given initial *’Sr/
%Sr similar to the mafic rocks (0:7028-0-7030), ages in
excess of 7 Ma are required for some samples to account
for the high ¥Sr/*Sr felsic rocks. This is more than the
maximum possible age of the rocks, as the volcanic edifice
1s constructed on 5—6-my-old oceanic lithosphere.
Although many of the differentiated rocks typically are
characterized by high ¥Sr/*Sr (>0-706), even when
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corrected for 1 my of aging, the narrow range of '“Nd/
"Nd (and Pb isotope compositions) is similar to the
range in mafic lavas that constitute most of the areal
exposure of the island (Fig. 6). Such high *’Sr/®Sr and
high "*Nd/"**Nd signatures do not correspond to known
suboceanic mantle reservoirs. Therefore, we infer that
radiogenic Sr was added through crustal or hydrothermal
processes. Cousens et al. (1993) showed that Rb and Sr
can be mobilized in felsic rocks during post-eruptive
processes although Pb—Nd isotopic systematics are not
disturbed, and they stressed that extreme caution should
be exercised when using Sr signatures as indicators of
mantle-derived products. The susceptibility of the As-
cension felsic rocks to secondary alteration of ¥Sr/*Sr
1s enhanced by their low Sr contents.

This possibility of subsolidus alteration affecting Sr
1sotope systematics was examined by Davidson et al.
(1997) using leaching experiments and isotopic analyses
of feldspar phenocrysts. In principle, if the high ¥Sr/*Sr
reflects secondary alteration, this component might be
leachable, and would preferentially affect groundmass
rather than cleaned phenocryst separates. For most of
the felsic rocks examined, a high ¥Sr/*Sr, relatively high
Sr component was removed by acid leaching, producing
residues that have Sr isotope compositions similar to
the basaltic rocks when reasonable age corrections are
applied. Feldspar separates, where analyzed, also have
lower ¥Sr/®Sr, comparable with the range of basaltic
rocks.

West & Leeman (1987) reported that the Holua tra-
chyte (Hawaii) whole rock has an unusually radiogenic
initial *’Sr/*Sr (0-70426) which contrasts strongly with
the ratio measured on fresh feldspar phenocrysts
(0-70367), and proposed prolonged interaction of the
trachyte with migrating ground waters that had mixed
with seawater. Similar effects have also been reported by
Bohrson & Reid (1997) for peralkaline felsic rocks of
Socorro Island, Mexico, where the degree of Sr isotopic
disequilibrium between feldspar and whole rock increases
with the age of the rocks.

We propose that the high ¥Sr/*Sr in the felsic rocks
of Ascension is generated by interaction of the felsic rocks
with geothermal fluids derived from seawater, similar to
fluids encountered in fractures of the deep (3126 m)
geothermal well (Ascension #1 well) (Adams, 1996). The
geothermal system below Ascension is hosted by faults
and fractures (Nielson & Stiger, 1996), and two significant
zones of fluid entry were encountered in Ascension #1,
at 2475-2604 m depth and at 2889-2957 m depth.
Fluids from both of these entries were derived from
seawater and had Sr contents varying between 0:1 and
112 ppm (water sample collected during drilling) and
between 9-7 and 202 ppm (water sample collected after
drilling was completed). We therefore concur with pre-
vious workers in recognizing the modification of isotope
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characteristics in evolved ocean-island magmas, and sug-
gest that they cannot be carelessly used to elucidate the
mantle sources of ocean islands.

Nevertheless, secondary alteration cannot be the only
process responsible for the high ¥Sr/*Sr ratios of some
of the felsic rocks, as some of the feldspar phenocrysts
and residues from leaching still have *Sr/®Sr greater
than the range of the basalts. Particular insights are
gained from analysis of the plutonic rocks.

Two granite xenoliths from Five Mile Post (Table 2)
yield internal mineral Rb—Sr isochrons with ages of
approximately (pending precise isotope dilution de-
termination of Rb) 0-9 Ma and 1-2 Ma, respectively, and
with initial ¥Sr/*Sr close to 0-706; "*Nd/'*Nd in one
of the xenoliths is similar to the felsic extrusive rocks
(Table 2). Sheppard & Harris (1985) suggested that some
granite xenoliths with high *’Sr/®Sr compared with the
0-7029 1initial ratio of basalt (Harris et al., 1982) are either
significantly older (up to 4-5 Ma) than the volcanic rocks
or the granite magma was contaminated with radiogenic
Sr from seawater, oceanic crust, or sediment. The iso-
chron ages appear to preclude the former interpretation
(unless significantly older granite xenoliths were simply
not sampled in the current study) and implicate high
magmatic ¥Sr/*Sr for at least some of the felsic rocks.

The origin of the high *Sr/*Sr magmatic signature
will be discussed in more detail elsewhere. In the current
presentation, we simply conclude that, like the secondary
component added to most of the low Sr felsic rocks, it
is ultimately seawater derived. Given that a combination
of secondary alteration and aging can clearly elevate the
¥Sr/*Sr of high Rb/Sr, low Sr volcanic rocks, melting
of these lithologies may produce magmas with high
¥Sr/*Sr, from which minerals with high *Sr/®Sr will
crystallize, as appears to be the case at least for the two
granite samples examined. This conclusion is consistent
with hydrogen isotope systematics of Ascension granite
xenoliths discussed by Sheppard & Harris (1985), which
indicate that water in the original magma was seawater or
meteoric derived (rather than mantle-derived magmatic).

Whole-rock oxygen isotope analyses of most of the
felsic rocks have been determined and are presented in
Table 2. Conceding the inadequacies of whole-rock data,
we have elected not to use them in quantitative modeling.
Nevertheless, it 1s interesting to note that the whole-rock
8"0O values of the trachyte lavas fall within a restricted
range from + 547 to +8:11%o, with two feldspar sep-
arates falling within 0-2%o of the host whole rock, whereas
pumice samples range from +6:41%o to +16-8%o. As
might be expected, the pumice appears clearly to be
modified by low-temperature exchange with meteoric
water or seawater, both of which are characterized by
8"®0O of ~0%o. This same process may also cause the
distinct depletion in Nay,O observed in the pumice
samples (Fig. 3). There does not appear to be a strong
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correspondence, however, between the degree of O iso-
tope and Sr isotope disequilibrium (the trachytes show
at least as much diversity in ¥Sr/*Sr as the pumice
samples). This may indicate that Sr isotope disequilibrium
mvolves small amounts of fluid (which do not greatly
alter O-isotope compositions), perhaps during em-
placement and cooling, rather than simply surface weath-
ering. The general lack of correlation between ¥’Sr/*Sr
and degree of vesicularity suggests that wind-blown sea
spray is a less likely means of contaminant addition, as
it would be expected to have a greater effect on vesicular
(high surface area) samples. One whole-rock analysis
(+5-8%o) of a granite block and four laser fluorination
analyses of amphibole—pyroxene mineral separates from
granite blocks (+4-62, +4-51, +4-21, and + 3:81%o)
are similar to the low 8'®O ratios reported by Sheppard
& Harris (1985) and are consistent with the involvement
of a component derived ultimately from interaction with
seawater at relatively high temperature.

CONCLUSIONS

(1) The felsic (>60 wt% SiO,) rocks from the central and
eastern parts of Ascension are the oldest exposed; a
rhyolite dated at 0-99 4+ 0-02 Ma (Nielson & Sibbett,
1996) from the central part of the island represents
evidence of the first phase of felsic volcanism. Internal
Rb-Sr isochrons for two granite xenoliths yield ages of
~0-9 and ~1-2 Ma. Felsic volcanism continued until at
least 0-56 + 0-06 Ma with build-up of the central and
eastern parts of the island and was preceded and closely
followed by the eruption of high Zr/Nb basalt lavas.

(2) The geochemical characteristics of the felsic rocks,
together with their distribution in space and time, are
largely consistent with an origin by fractionation of high
Zr/Nb magmas as evidenced by similar trace element
ratios and Nd and Pb isotopic ratios.

(3) Trace element and isotopic compositions indicate
that syenite, monzonite, and granite xenoliths found on
Ascension are cumulates from, and intrusive equivalents
of fractionating felsic magmas that also produced the
felsic volcanic rocks.

(4) Fluids recovered from a deep geothermal well
drilled on Ascension show the presence of Sr-rich sea-
water-derived geothermal fluids; interaction of these fluids
with felsic rocks may generate high ®Sr/®Sr under
subsolidus conditions.

(5) In addition, the involvement of a high ¥Sr/*Sr
component during magmatic differentiation of some felsic
magmas is evidenced by high initial ¥Sr/*Sr from the
mnternal isochrons of the two granite xenoliths which
have high initial ¥Sr/*Sr (>0-705) suggesting that hy-
drothermally altered pre-existing volcanic basement may

GEOCHEMISTRY OF ASCENSION ISLAND FELSIC ROCKS

have been melted or cannibalized during differentiation
of these magmas.
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