Journal of Petrology, 2015, Vol. 56, No. 5, 919-952
JOURNAL OF doi: 10.1093/petrology/egv022

P ETROLOGY Advance Access Publication Date: 26 May 2015

Original Article

Depleted Mantle-sourced CFB Magmatism in
the Jurassic Africa—Antarctica Rift: Petrology
and “°Ar/3°Ar and U/Pb Chronology of the
Vestfjella Dyke Swarm, Dronning Maud Land,
Antarctica

Arto V. Luttinen’*, Jussi S. Heinonen’, Matti Kurhila?, Fred Jourdan?,
Irmeli Manttari2, Saku K. VuoriZ and Hannu Huhma?

'Finnish Museum of Natural History, PO Box 44, FIN-00014 University of Helsinki, Finland, 2Geological Survey of
Finland, PO Box 96 (Betonimiehenkuja 4), 02151 Espoo, Finland and *Western Australian Argon Isotope Facility,
Department of Applied Geology and JdL-CMS, Curtin University of Technology, GPO Box U1987, Perth, WA 6845,
Australia

*Corresponding author. E-mail: arto.luttinen@helsinki.fi

Received September 19, 2014; Accepted April 15, 2015

ABSTRACT

The Jurassic Vestfjella dyke swarm at the volcanic rifted margin of western Dronning Maud Land
represents magmatism related to the incipient Africa—Antarctica rift zone; that is, rift-assemblage
magmatism of the Karoo continental flood basalt (CFB) province. Geochemical and Nd-Sr isotopic
data for basaltic and picritic dyke samples indicate diverse low-Ti and high-Ti tholeiitic compos-
itions with ¢yg(180 Ma) ranging from +8 to —17. Combined with previously reported data on a
subcategory of ferropicritic dykes, our new data facilitate grouping of the Vestfjella dyke swarm
into seven geochemically distinct types. The majority of the dykes exhibit geochemical affinity to
continental lithosphere and can be correlated with two previously identified chemical types (CT) of
the wall-rock CFB lavas and are accordingly referred to as the CT1 and CT3 dykes. The less abun-
dant Low-Nb and High-Nb dykes, a relatively enriched subtype of CT3 (CT3-E) dykes, and dykes
belonging to the depleted and enriched ferropicrite suites represent magma types found only as in-
trusions. The chemically mid-ocean ridge basalt (MORB)-like Low-Nb and the depleted ferropicrite
suite dykes represent, respectively, relatively high- and low-degree partial melting of the same
overall depleted mantle (DM)-affinity source in the sublithospheric mantle. In contrast, we ascribe
the chemically ocean island basalt (OIB)-like High-Nb dykes and the enriched ferropicrite suite
dykes to melting of enriched components in the sublithospheric mantle. Geochemical modelling
suggests that the low-Ti affinity CT1 and CT3, and high-Ti affinity CT3-E magma types of Vestfjella
dyke may predominantly result from mixing of DM-sourced Low-Nb type magmas with <10 wt %
of crust- and lithospheric mantle-derived melts. U/Pb zircon dating confirms synchronous emplace-
ment of CT1 dykes and Karoo main-stage CFBs at 1822 +0-9 and 182-2 + 0-8 Ma, whereas
two “°Ar/*°Ar plagioclase plateau ages of 189-2 + 2.3 Ma (CT1) and 1855 = 1.8 Ma (depleted ferropi-
crite suite), and a mini-plateau age of 186-9 = 2.8 Ma (CT3-E) for the Vestfjella dykes raise the ques-
tion of whether the onset of rift-zone magmatism could predate the province-wide c. 179-183 Ma
main stage of Karoo magmatism. Notably variable Ca/K spectra suggest that younger “°Ar/*°Ar
plagioclase plateau ages of 173, 170, 164, and 154 Ma are related to crystallization of secondary
minerals during the late-stage tectono-magmatic development of the Antarctic rifted margin. The
occurrence of rare MORB- and OIB-like magma types in Vestfjella and along the African and
Antarctic rifted margins suggests melting of geochemically variable depleted and enriched
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sublithospheric mantle beneath the Africa—Antarctica rift zone. Our models for the Vestfjella dyke
swarm indicate that the voluminous lithosphere-affinity low-Ti and high-Ti rift-assemblage tholei-
ites could have been derived from MORB-like parental magmas by contamination, which implies
sublithospheric depleted mantle as the principal source of the CFB magmas of the Africa—

Antarctica rift zone.

Key words: contamination; flood basalt; isotopes; Karoo magmatism; mantle sources

INTRODUCTION

The Karoo continental flood basalt (CFB) province is
one of the Jurassic-Cretaceous large igneous provinces
scattered along the rifted margins of the Atlantic and
SW Indian oceans, and, together with the coeval Ferrar
province, relates to the initial stages of Gondwana
break-up. Erosional remnants of extrusive and intrusive
Karoo CFBs are found over an area of >3 x 10%km?
across southern Africa and along the Princess Martha
Coast of western Dronning Maud Land (DML),
Antarctica (Fig. 1). Geochemical and geochronological
investigations have shown that the main stage of
Karoo CFB magmatism was emplaced over a duration
of ¢. 4 Myr, between c¢. 179 and 183 Ma, and was charac-
terized by province-wide emplacement of relatively
monotonous low-Ti tholeiites contemporaneously with
formation of a diverse assemblage of high-Ti and low-Ti
tholeiites and picrites, nephelinites and rhyolites along
the incipient Africa—Antarctica triple rift (e.g. Burke &

Dewey, 1973; Duncan et al., 1984; Luttinen et al., 1998;
Jones et al., 2001; Riley et al., 2004, 2005, 2009;
Svensen et al., 2007, 2012; Jourdan et al., 2008;
Manninen et al., 2008; Neumann et al., 2011) (Fig. 1).
We refer to these geographically and geochemically
discernible major categories, respectively, as the plat-
eau-assemblage and the rift-assemblage (see Duncan
et al., 1984) (Fig. 1). Numerous geochemically defined
magma types have been recognized among both as-
semblages. Nearly all of the Karoo CFB magma types
exhibit incompatible element and isotopic compos-
itions that indicate melt contributions from continental
crust or lithospheric mantle. This geochemical litho-
sphere affinity has been frequently interpreted to indi-
cate derivation of the Karoo CFBs largely from
subcontinental lithospheric mantle (SCLM) sources
(e.g. Hawkesworth et al., 1984; Sweeney et al., 1994;
Luttinen & Furnes, 2000; Jourdan et al., 2007a), which
indicates a fundamental transition from predominantly
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Fig. 1. Distribution of Karoo CFB in a reconstructed Gondwana configuration at c. 180 Ma (see inset). Occurrences of extrusive and
intrusive CFB related to the Africa—Antarctica rift (rift-assemblage CFB and Karoo dyke swarms) and those found outside the rift sys-
tem (plateau-assemblage, Central Area sill complex) are indicated in black and grey, respectively. Striped areas indicate regions
where plateau-assemblage CFB are intercalated with subordinate rift-assemblage CFB (Botswana, Jourdan et al., 2007 a; Springbok
Flats, Marsh et al., 1997). Gondwana reconstruction is modified after Lavwer et al. (1992). (For definition of the rift- and plateau-

assemblages see the main text.)
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lithospheric to sublithospheric sources as CFB erup-
tions gave way to mid-ocean ridge basalt (MORB) mag-
matism during Gondwana break-up.

This study concerns the age and petrogenesis of the
Karoo rift-assemblage CFB (Fig. 1). High-precision geo-
chemical and geochronological data are crucial to
understanding the origin of the compositionally diverse
rift-assemblage magmas and the evolution from incipi-
ent continental rifting to formation of volcanic passive
margins. The dataset across the c. 1500 km long rift sys-
tem (Fig. 1) remains rather patchy, however. Large por-
tions of the system lack or have very few rare earth
element (REE) and isotopic data (see Duncan et al.,
1990; Ellam & Cox, 1991; Sweeney et al., 1994), which,
together with uncertainties caused by limited bedrock
exposure and faulting (e.g. Klausen, 2009), undermines
characterization of magma compositions and their spa-
tial-temporal variations. Furthermore, reliable age data
for the rift-assemblage (c. 176-182 Ma) are based on sili-
cic extrusive intercalations at relatively high strati-
graphic level, as well as silicic and mafic intrusive rocks
(Riley et al., 2004; Jourdan et al., 2005, 2007 b), which
renders timing of the onset of magmatism ambiguous.
Based on broad enriched (E)-MORB affinities in some
of the margin-parallel, late-stage dykes of the rift-
assemblage (e.g. Duncan et al., 1990) and structural and
geochemical studies of lavas and dykes of the central
Lebombo Monocline, progressive lithospheric exten-
sion along the Africa—Antarctica rift may have led to in-
cipient oceanic spreading magmatism and successful
break-up already at c. 1776 Ma (Jourdan et al., 2007b),
and, perhaps in some rift segments, immediately after
the main stage of CFB magmatism (Klausen, 2009).

The CFBs of the conjugate Antarctic rifted margin
also remain poorly dated (Zhang et al., 2003; Riley et al.,
2005), whereas detailed geochemical mapping of the
Vestfjella and Ahlmannryggen rift sections has pro-
vided insights into the evolution of the Africa-
Antarctica rift system: (1) the Antarctic rifted margin is
typified by intimate intercalation of geochemically ex-
tremely variable CFB lavas and dykes; (2) sublitho-
spheric mantle sources have been identified for some
high-Mg CFB dykes at Ahlmannryggen (Riley et al.,
2005) and Vestfjella (Heinonen & Luttinen, 2008;
Heinonen et al., 2010) (Fig. 1). It has been unclear, how-
ever, whether these rare and poorly age-constrained
sublithospheric mantle-derived intrusive rock types rep-
resent a late-stage transition from a continental to an
oceanic tectonic setting (see Jourdan et al., 2007b), or
main-stage CFB magmas previously inferred only from
extrapolations of geochemical trends (e.g. Ellam & Cox,
1991; Ellam et al., 1992).

Here we report geochemical and “°Ar/°Ar plagio-
clase and U/Pb zircon and baddeleyite age data for bas-
altic and picritic intrusive rocks of the Vestfjella dyke
swarm at the volcanic rifted margin of western DML.
Our new data and petrogenetic modelling suggest der-
ivation of diverse low-Ti and high-Ti tholeiites mainly
from sublithospheric depleted mantle sources and

imply that the rift-assemblage CFBs of Vestfjella may
represent relatively early stages of Karoo magmatism.
All *°Ar/*°Ar ages reported in this study have been
recalculated using the “°K decay constants proposed by
Renne et al. (2011) that have been directly calibrated
against the 2*U decay constant. This causes “°Ar/*°Ar
ages to be 1% older (+1-8 Ma) than previously reported.

GEOLOGICAL BACKGROUND

Bedrock lithologies

Karoo CFB lavas crop out at four localities in western
DML  (Fig. 2a): Kirwanveggen, = Sembberget,
Heimefrontjella (Bjornnutane), and Vestfjella (Faure &
Elliot, 1971; Harris et al., 1990; Luttinen & Furnes, 2000;
Luttinen et al., 2010). Karoo-related intrusive rocks are
more widespread and are also found at Ahlmannryggen,
H. U. Sverdrupfjella, and Mannefallknausane (Harris
et al.,, 1991; Zhang et al., 2003; Riley et al., 2005, 2009;
Leat et al, 2006) (Fig. 2a). The original size of the
Antarctic subprovince is poorly constrained; flood bas-
alts and intrusions may well have extended across a not-
ably larger area than that implied by the exposed
bedrock in the coastal ranges and nunataks.

The Jurassic CFB sequences at Kirwanveggen,
Sembberget and Heimefrontfjella are located at the
East Antarctic Plateau escarpment and overlie Paleozoic
sedimentary strata and the Mesoproterozoic Maud Belt
basement (Aucamp et al., 1972; Juckes, 1972; Jacobs
et al., 1993; Groenewald et al., 1995). The Vestfjella nun-
ataks at the rifted continental margin consist of sea-
ward-dipping flood basalts, minor sedimentary
interbeds, and cross-cutting intrusive rocks (Hjelle &
Winsnes, 1972). The base of the Vestfjella CFB succes-
sion is not exposed: the lava suite may well be under-
lain by Permian sedimentary rocks similar to those
found at Fossilryggen, northeastern Vestfjella (Hjelle &
Winsnes, 1972) and the basement probably represents
the Maud Belt (Fig. 2b). However, the southern bound-
ary of the Archaean Grunehogna craton, an extension
of the Zimbabwe-Kaapvaal craton, is probably nearby
(Wolmarans & Kent, 1982; Barton et al., 1987; Krynauw
et al. 1991; Peters et al., 1991; Corner, 1994; Marschall
etal., 2010) (Fig. 2).

Rift-assemblage and plateau-assemblage
magmas in DIVIL

The CFBs of the DML subprovince of the Karoo are typi-
fied by notably variable incompatible element and iso-
topic ratios; previous studies have identified up to
17 CFB magma types (Harris et al., 1990; Luttinen et al.,
1998, 2010; Vuori & Luttinen, 2003; Riley et al., 2005,
2009; Heinonen & Luttinen, 2008; Heinonen et al., 2010).
As in Africa, CFB sequences spatially associated with the
Africa—Antarctica rift (Vestfijella and Ahlmannryggen;
Fig. 2a) are composed of various tholeiitic low-Ti
and high-Ti magma types accompanied by minor silicic
and alkaline rock types (Luttinen et al, 2002;
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Fig. 2. Distribution of Karoo CFB in (a) western Dronning Maud Land and (b) Vestfjella. Occurrences of CFB related to the Africa—
Antarctica rift (rift-assemblage CFB, Karoo dyke swarms) and those found outside the rift system (plateau-assemblage, Utpostane
layered intrusion) are indicated in black and grey, respectively. Exposures of Precambrian bedrock and the extent of the Archaean
(Grunehogna) craton and Proterozoic (Maud) belt are indicated. The Archaean-Proterozoic boundary is after Corner (1994). H.U.S.,

H. U. Sverdrupfijella.

Vuori & Luttinen, 2003). The rift-assemblage low-Ti and
high-Ti CFBs of DML, previously referred to as the
Grunehogna group by Luttinen et al. (2010), exhibit
strongly fractionated Sm/Yb (>1-9 x C1 chondrite) indica-
tive of magma generation at high pressure within the
garnet stability field (see Fram & Lesher, 1993). In add-
ition to a strong ‘garnet fingerprint’, they are typified by
pronounced isotopic heterogeneity [e.g. eng(180 Ma)
from +9 to —-16].

In contrast, the low-Ti CFBs of Kirwanveggen and
Sembberget, located furthest away from the rifted
margin (Fig. 2a), have only mildly fractionated
Sm/Yb (<19 x C1 chondrite) suggestive of relatively
low-pressure melting. These basalts have monotonous
geochemical characteristics including isotopic compos-
itions [e.g. eng(180 Ma) from +3 to —3], and we refer to
them as the plateau-assemblage magmas of DML
[Maud group of Luttinen et al. (2010)].

Sparse *°Ar/*°Ar plagioclase plateau age data for
the DML subprovince imply emplacement of rift-
assemblage and plateau-assemblage magmas coevally
with the Karoo volcanism in southern Africa. The dated
samples include a rift-assemblage high-Ti dyke
(180-9 = 1-2 Ma), a plateau-assemblage gabbro (181-2 =
0-5Ma), and three plateau-assemblage lavas
(1837 0.6 to 186:0=0-6Ma) (Duncan et al., 1997;
Zhang et al., 2003; all ages recalculated using

RESTP = 1.0086 + 0-00155 from Di Vincenzo & Skala,
2009). Evidence of excess argon, Ar-loss, recoil and,
more importantly, the lack of plateau ages for other
published data render reported younger and older em-
placement ages of the tholeiitic magmas doubtful (190-
165 Ma; Brewer et al., 1996; Riley et al., 2005; See also
Zhang et al., 2003) and these will not be considered fur-
ther in this study.

Vestfjella dyke swarm

Mafic intrusive rock types are common at the rifted mar-
gin of DML; in Vestfjella, exposed dykes locally indicate
up to 14% crustal extension (Hjelle & Winsnes, 1972;
Vuori & Luttinen, 2003) and geophysical data suggest
the presence of several mafic bodies in the adjacent gla-
ciated area (Corner, 1994; Leitchenkov et al., 1996;
Ruotoistenmaki & Lehtimaki, 1997). The Vestfjella dyke
swarm is composed of texturally and compositionally
diverse, aphanitic to coarse-grained basaltic and picritic
rock types. The swarm is dominated by subvertical,
<10m wide dykes that mainly strike NE-SW to north-
south, although dykes that strike east-west and/or have
small dip angles, including concordant sills, are
also found (see Hjelle & Winsnes, 1972; Furnes &
Mitchell, 1978; Furnes et al., 1982; Peters, 1989; Grind
et al.,, 1991). Previously published geochemical data
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combined with the data reported in this study suggest
the predominance of subalkaline, tholeiitic compos-
itions broadly similar to the Vestfjella CFB lavas (e.g.
Furnes et al., 1982; Luttinen et al., 1998). The gabbroic
rocks of East and West Muren are now recognized as
two exceptionally wide dykes (c. 350 m and c¢. 500 m,
respectively) belonging to the dyke swarm (see Vuori &
Luttinen, 2003). The Vestfjella ferropicrite suites repre-
sent two compositionally distinctive (relatively depleted
and enriched) subcategories of dykes with unusually
high FeO: (>13wt %) at a given MgO (12-18wt %)
(Heinonen & Luttinen, 2008). These suites also include
basalt dykes and a few highly magnesian, komatiite-
like, glacially transported dike-derived boulders
(MgO =18-24wt % and TiO,=1-2-1-5wt %; classified
as meimechites according to Le Bas, 2000; see
Heinonen & Luttinen, 2010).

The 181Ma Utpostane layered intrusion (Vuori &
Luttinen, 2003; recalculated from Zhang et al., 2003),
recently correlated with the plateau-assemblage CFBs
of Kirwanveggen and Sembberget (Luttinen et al., 2010)
(Fig. 2), and the geochemically distinctive 162 Ma lamp-
roite dykes of south Vestfjella (recalculated from
Luttinen et al., 2002) are excluded from the dyke swarm.

DATASET AND ANALYTICAL METHODS

Basaltic and picritic intrusive rocks belonging to the
Vestfjella dyke swarm range from aphanitic to coarse-
grained. The samples were collected during several
Finnarp (Finnish Antarctic Research Programme)
expeditions in the period 1989-2008 using rock ham-
mers. Multiple samples were collected from exception-
ally wide or laterally well-exposed dykes. New whole-
rock, major and trace element, and Sr-isotope data are
listed in Tables 1 and 2. The complete dataset for 117
samples from 85 intrusions of the Vestfjella dyke
swarm is provided in Supplementary Data Electronic
Appendix 1 (supplementary data are available for
downloading at http://www.petrology.oxfordjournals.
org).

Major and trace elements

All of the major and trace element data were obtained
at the Geoanalytical Laboratory, Washington State
University. For this study, whole-rock compositions
were analyzed for 69 hand-sized samples representing
61 dykes. The samples were ground in a steel
jawcrusher and the freshest chips were handpicked for
analysis to avoid weathered surfaces and contamin-
ation with the preparation equipment. A tungsten car-
bide mill and a steel mill were used respectively for
preparation of powders for X-ray fluorescence (XRF)
and inductively coupled plasma mass spectrometry
(ICP-MS) analysis to avoid contamination with mill
material. Technical notes and principles of these meth-
ods have been given by Johnson et al. (1999) and
Knaack et al. (1994), respectively. Repeat analyses of

standards indicate high precision in general
(Supplementary Data Electronic Appendix 1).

Nd and Sr isotopes

Isotopic compositions were analyzed at the Research
Laboratory of the Geological Survey of Finland (GSF;
n=15) and at the NERC Isotope Geosciences
Laboratory (NIGL; n=10), Keyworth, UK. For the ana-
lyses, we used rock powders initially prepared for the
whole-rock ICP-MS analyses. More detailed descrip-
tions of the analytical procedures have been given by
Riley et al. (2006) and Heinonen and Luttinen (2008).

At GSF, the isotope ratios of Sm, Nd, and Sr were
measured on a VG sector 54 mass spectrometer (those
of Nd and Sr in dynamic mode), whereas those of Rb
were measured using a non-commercial Nier-type mass
spectrometer built at GSF. The estimated errors in iso-
tope dilution measurements of '¥Sm/"Nd and
8Rb/®Sr are 04% and 0-6%, respectively. The
"3Nd/"*Nd ratio was normalized to '*®Nd/'**Nd=
0-7219 and the ®'Sr/®°Sr ratio to °Sr/®®Sr=0-1194. The
average value for the La Jolla standard is
13Nd/"**Nd = 0-511850 = 0-000010 (mean and external
26, n=18), and for SRM987  ®Sr°Sr=
0-710250 = 0-000025 (20, n=20). At NIGL, the isotope
ratios of Sm, Nd, and Sr were measured on a Finnegan-
MAT 262 mass spectrometer (Sr in multidynamic peak-
jumping mode and Nd in static collection mode). An in-
house J&M Nd isotope standard gave a value of
0-511196 = 0-000022 (25, n=31); reported '**Nd/"**Nd
values were normalized to a value of 0-511130 for this
standard, equivalent to 0-511864 for La Jolla. The Sr
isotope standard NBS987 gave a value of
0-710250 + 0-000016 (20, n=32). Age-corrections for
NIGL data were calculated using Rb and Sr contents
measured by ICP-MS at the Geoanalytical Laboratory.
The Nd-Sr isotopic data are reported in Table 2.

U-Pb dating

For U-Pb dating, we collected large (up to 150 kg) sam-
ples of zircon-bearing, coarse-grained gabbroids from
West Muren (leucogabbro just below the capping felsic
unit), and East Muren (gabbronorite from the middle
part) intrusions (Fig. 2b; see Vuori & Luttinen, 2003).
The samples were crushed in a jaw mill and ground in a
roller mill to <0-3mm grain size. The heavy minerals
were concentrated with a shaking table and the mag-
netic minerals were removed with a Carpco® induced
roll magnetic separator. The zircons and baddeleyites
were separated according to a method described by
Vaasjoki et al. (1991). For multigrain isotope dilution
thermal ionization mass spectrometry (ID-TIMS) U-Pb
dating, the decomposition of minerals and the extrac-
tion of U and Pb followed the procedure described by
Krogh (1973, 1982). The isotopic analyses were per-
formed at GSF using a VG Sector 54 thermal ionization
multicollector mass spectrometer. Isotopic ratios were
measured for both 2°®U-2%Pb spiked and non-spiked
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Table 4: Summary of “°Ar/*®Ar ages

Sample Lab. no. Coordinates Type Mineral Plateau age* Total 3°Ar Attribute MSWD P Interpretation
analyzed (Ma, = 20) released
(%)
121-KHG-91 77A51 73°46'16", 14°55'52” CT1 raw feldspar — No plateau
115-KHG-91 77A15 73°46/17”,14°57'32" CT1 picked 1892 +2-3 72 Plateau 093 0-46 Crystallization
plagioclase age
115-KHG-91 77A27 CT1 raw feldspar 1767 +1-3 58 Mini-plateau  1-1 0-37 Alteration age
113-KHG-91 77A26 73°46'14"”,14°58'02"” CT3 raw feldspar — No plateau
11-KHG-90) 77A39 73°01'55”, 13°25'24” CT3 raw feldspar — No plateau
11-KHG-90  77A22 CT3 picked — No plateau
plagioclase
11-KHG-90  77A31 CT3 raw feldspar 1695+ 1.9 71 Plateau 14 0-14 Alteration age
AL/UP7b-98 77A20 73°55'12”,15°35'36” CT3-E  picked 186-9+28 67 Mini-plateau  1-4 0-19 Maximum
plagioclase crystallization
age
AL/KB14-98 77A44 73°47'06", 14°52'46" CT3 raw feldspar — No plateau
AL/KB14-98 77A45 CT3 raw feldspar 1638+ 1.5 79 Plateau 11 0-35 Alteration age
AL/KB20-98 77A25 73°47'52",14°5119” CT3 raw feldspar 153-9+0-9 72 Plateau 1.2 0-32 Alteration age
AL/KB20-98 77A13 CT3 picked — No plateau
plagioclase
P5-KHG-90  77A12 73°13'10”,13°44’42" Low-Nb picked 172.9+2.9 97 Plateau 1.7 0-1 Alteration age
plagioclase
117-KHG-91 77A16 73°46'23",14°56'38" D-FP picked — No plateau
plagioclase
128-KHG-91 77A30 73°43'43",15°02'09” D-FP raw feldspar — No plateau
128-KHG-91 77A18 D-FP picked — No plateau
plagioclase
AL/KB17-98 77A47 73°47'30”,14°50'30" D-FP raw feldspar 1855+ 1.8 75 Plateau 1-0 0-42 Crystallization
age
AL/KB17-98 77A46 D-FP raw feldspar 183-3+23 58 Mini-plateau  0-95 0-49 Double-deck
spectrum

*Recalculated using BT ™/rcs = 1-0086 = 0-00155 (Di Vincenzo & Skala, 2009).

Monte Carlo optimization method of Renne et al. (2010),
add only an additional +0-1Ma (2c) on top the internal
uncertainty. The calculated age errors are reported at
the 2c level.

PETROGRAPHY

Dolerite dykes and ferropicrite dykes

In this section we divide the dyke swarm into dolerite
dykes, gabbro dykes and the ferropicrite suites. The
aphanitic to fine-grained dolerite dykes and sills are typ-
ically phenocryst-poor. Many of the samples are aphy-
ric (38%), and the porphyritic samples mainly have less
than 5vol. % of phenocrysts (typically <2vol. %). The
phenocryst assemblages in order of abundance are
olivine + plagioclase (21% of samples), olivine (16%),
plagioclase (13%), olivine + plagioclase + clinopyroxene
(56%), plagioclase +clinopyroxene (3%), and oliv-
ine + clinopyroxene (3%). In general, the phenocryst
assemblages correlate with the whole-rock MgO
contents and are consistent with the low-pressure crys-
tallization sequence olivine — olivine + plagioclase —
olivine + plagioclase + clinopyroxene typical of tholei-
ites (see Cox et al., 1979). A highly magnesian sample
X4-KHG-91 is petrographically distinct with aggregates
of large clinopyroxene (<5mm) and olivine (<4 mm)
phenocrysts. Inclusions of Cr-rich spinel are common in
the olivine phenocrysts of the dolerites. The ground-
mass consists mainly of a sub-ophitic to diabasic tex-
tured assemblage of plagioclase laths and interstitial
clinopyroxene and Fe-Ti oxides. Minor quantities of

biotite are found in a few samples. Irregular patches of
secondary sheet silicates and opaque minerals are com-
mon and we interpret them to represent a hyalophitic
texture (i.e. altered glass or devitrified material).
Amygdales are found in many samples of the CT1 and
CT3 magma types (see below).

The petrographic characteristics of the ferropicrite
suites have been reported in detail by Heinonen &
Luttinen (2008). In summary, they include oliv-
ine * clinopyroxene porphyritic (samples  with
MgO > 10wt %) and aphyric or sparsely plagioclase-
phyric types (MgO < 10wt %). The groundmass is
granular and diabasic with plagioclase representing an
interstitial phase in the most magnesian samples.
Magmatic kaersutite is found in olivine-hosted inclu-
sions and in the groundmass of the enriched ferropi-
crites (see Heinonen & Luttinen, 2008).

The dyke rocks generally are less altered than the
Vestfjella lavas, but plagioclase and olivine have been
at least partially replaced by secondary sheet silicates
in many samples, whereas augitic clinopyroxene is typ-
ically fresh even in strongly altered samples. However,
dyke samples from Utpostane, including those belong-
ing to the depleted ferropicrite suite, show replacement
of clinopyroxene by tremolite-actinolite owing to con-
tact metamorphism caused by the nearby Utpostane
layered intrusion (see Vuori & Luttinen, 2003) (Fig. 2b).

Gabbroic dykes
The petrographic characteristics of the two gabbroic in-
trusions belonging to the Vestfjella dyke swarm have
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been reported in detail by Vuori & Luttinen (2003) and
Vuori (2004). The eastward-dipping East Muren dyke is
a relatively homogeneous sub-ophitic gabbronorite
with minor biotite, opaque minerals, and granophyric
intergrowths of quartz and potassic feldspar, as well as
traces of apatite and zircon. Olivine gabbros occur
within the narrow eastern and western contact zones
and pegmatoid patches are found near the western
(upper) contact. In contrast, the westward-dipping West
Muren dyke has a thin capping marginal felsic unit of
amphibole-bearing quartz-diorite and is dominated by
olivine cumulates. The mafic part grades downwards
from leucogabbro with granophyric intergrowths of
interstitial quartz and potassium feldspar and minor
opaque minerals and accessory apatite, biotite, and zir-
con to increasingly olivine-rich poikilitic olivine gabbro
with minor biotite and opaque minerals and traces of
apatite.

GEOCHEMISTRY

Here we describe our new geochemical data on the
Vestfijella dyke swarm (Tables 1 and 2) and subse-
quently use these and previously published data to
summarize the key geochemical characteristics of the
various magma types (Supplementary Data, Electronic
Appendix 1).

Major and trace element compositions

The sampled Vestfjella dykes and sills are subalkaline,
quartz- or olivine-tholeiitic basalts. Five samples are
basaltic andesite and four are picrites based on MgO
content >12wt % (see Le Bas, 2000). The loss on igni-
tion (LOI) values are mainly <2 wt % with the higher val-
ues associated with the amygdaloidal dykes of the CT1
and CT3 magma types (see below). We consider that
the whole-rock compositions of the relatively weakly
altered dykes correspond to magma compositions, al-
though the concentrations of Cs, Rb, and K in single
samples should be viewed with caution (see Luttinen &
Furnes, 2000).

Mg-number [molar Mg/(Mg + 0-85Fe)] varies from
0-75 to 0-36 and the major element concentrations also
vary considerably: the MgO (4-20 wt %) contents correl-
ate negatively with TiO, (1-2-4.8wt %, Fig. 3c), P,Os
(0-1-0-9wt %; Fig. 3d), and FeO,. (10-18 wt %; Fig. 3b),
with a pronounced steepening of the trend at MgO of
7-8wt %. Similar negative correlation can also be
observed in the case of Na,O (1.5-3-7wt %),
K;0 (0-1-2-5wt %), and SiO, (46-55wt %), although
with a relatively larger scatter that probably stems
mainly from secondary alteration (see Luttinen &
Furnes, 2000). The Al,O3 (9-16 wt %; Fig. 3a) and CaO
(6-13wt %) concentrations show concave arrays with
the highest concentrations at MgO of ~7-8 wt %.

The concentrations of compatible trace elements,
such as Ni (20-580 ppm), show a strong positive correl-
ation with MgO (Fig. 3e). Incompatible high field strength

elements (HFSE), such as Zr (70-290ppm), Nb (2-
35ppm), and Y (17-62 ppm), show wide ranges and nega-
tive correlation with MgO (Fig. 3f-h). Chondrite-normal-
ized REE patterns range from strongly light REE (LREE)
enriched to mildly LREE depleted [(La/Sm)y=0-7—
3.0] and lack noticeable Eu anomalies [Eu/Eu* =Eup/
(Smy x Gdn)°® = 0-92-1-36], whereas heavy REE (HREE)
are invariably strongly depleted relative to the middle
REE [MREE; (Sm/Yb)y = 2:0-4-8] (Fig. 4).

Mantle-normalized incompatible element patterns
show highly variable trace element ratios such as Ti/Zr,
La/Nb, and Th/Ta (Fig. 5), which do not correlate with
MgO. The concentrations of Ba, K, and Pb typically are
enriched relative to other large ion lithophile elements
(LILE) and HFSE. Incompatible element characteristics
are discussed in further detail below.

Nd and Sr isotope compositions

Nd-Sr isotopic data for 31 dolerite and gabbro samples
are reported in Table 2 and illustrated in Fig. 6. Initial iso-
topic compositions were calculated at 180 Ma despite the
marginally older ages indicated by our age data. The
dolerite dykes and sills and the gabbros record highly
variable initial eng (+8 to —17) and #Sr/°Sr (0.70318-
0-71038) and form a scattered array from values corres-
ponding to depleted MORB mantle (DMM) (at 180 Ma)
across the entire Nd and Sr isotope compositional range
previously reported for the Karoo rift-assemblage CFBs
(see Hawkesworth et al, 1984; Harris et al., 1990;
Sweeney et al., 1994; Luttinen et al., 1998, 2010; Luttinen
& Furnes, 2000; Riley et al., 2005; Jourdan et al., 2007 a;
Heinonen & Luttinen, 2008) (Fig. 6). The relatively good
correlation between initial ®Sr%Sr and '**Nd/'**Nd
(?=0-90) suggests that the Sr isotopic compositions
have not been strongly affected by alteration. The iso-
topic data are discussed further below.

MAGMA TYPES OF THE VESTFJELLA DYKE
SWARM

Previous studies of the Vestfjella CFB lavas have
grouped the samples into three chemical types (CT1,
CT2, CT3; Luttinen et al., 1998; Luttinen & Furnes, 2000).
Additionally, two intrusive ferropicrite suites have been
identified in Vestfjella (Heinonen & Luttinen, 2008). The
diagnostic chemical characteristics of the Vestfjella
magma types are summarized in Table 5. Apart from
the ferropicrite suites (Fig. 3), identification of magma
types among the dykes is generally not quite as
straightforward as in the case of the Vestfjella lavas
owing to the larger scatter of the data. Nevertheless, de-
tailed examination of the geochemical dataset
(Supplementary Data Electronic Appendix 1) in a Ti/Zr
vs Ti/P diagram, previously used to group the Vestfjella
CFB lavas, indicates clustering of the dolerite and gab-
bro compositions in the fields of the stratigraphically
predominant CT1 and CT3 lavas (Fig. 7). Dykes compos-
itionally similar to stratigraphically subordinate CT2

20z IMdy 0z uo 1senb Aq 22809t L/616/5/9G/31011e/ABojosed/woo dno-olwspeoe//:sdiy wolj pepeojumoq


http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv022/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv022/-/DC1
http://petrology.oxfordjournals.org/lookup/suppl/doi:10.1093/petrology/egv022/-/DC1

Journal of Petrology, 2015, Vol. 56, No. 5 931
2 4 6 8 10 12 14 16 18 20 2 8 10 12 14 16 18 20
20 =r LT 1T ~TI "1 r.r. .t T 1_7 20 y L L L L B R,
- (a) ALO, (wt. %) L (b) FeO,, (wt. %)
15 | Vestfijella A 15
i lavas 1 I
10 |-
5 I : | L | TP R
Loft a o P,O, (Wt. %) ]
[ (d) 2 5(“" o 0) 1
0.8 | &
30 | 'f
: {1 4F
20 | E i
- 1 30 |
10 F i 2fF
: wal 10| E
0 3 " 1 L " M 1 0 E 1 1 | 1 M 1 M | "
2 4 6 14 16 18 20 2 16 18 20

8 10 12
MgO (wt. %)

Fig. 3. Al,O3, FeOy, TiO,, P20s, Ni, Zr, Nb, and Y vs MgO compositions of the Vestfjella dykes (D-FP, depleted ferropicrite suite;
E-FP, enriched ferropicrite suite; see Supplementary Data Electronic Appendix 1 for detailed data sources). Compositional fields for
the Vestfjella lavas (Luttinen et al., 1998; Luttinen & Furnes, 2000) are shown for comparison. The modelled liquid lines of descent
for a hypothetical parental melt with decreasing pressure (5-1kbar; grey arrow) were calculated using the PELE software
(Boudreau, 1999; model results given in Electronic Appendix 3). The parental melt is the average of picritic Vestfjella dyke and lava
samples (MgO =12-19wt %; ferropicrite suites excluded). Effect of olivine accumulation (ACC; Foe equilibrium olivine added to

sample AL/UP2-98) on FeO, is also shown.
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Fig. 4. Chondrite-normalized (McDonough & Sun, 1995) REE patterns for (a) CT1 dykes (cumulate gabbro samples not shown), (b)
CT3 dikes, (c) Low-Nb dykes, and (d) High-Nb dykes. Data for CT1 and CT3 lavas (Luttinen et al., 1998; Luttinen & Furnes, 2000),
depleted (D-FP) and enriched (E-FP) ferropicrite suites (Heinonen & Luttinen, 2008; Heinonen et al., 2010), average N-MORB (Gale
et al., 2013), and average OIB (Sun & McDonough, 1989) are shown for comparison.

lavas (intermediate Ti/Zr, high Ti/P; Fig. 7) were not
observed. Further analysis of data using incompatible
element ratios, primitive mantle-normalized incompat-
ible element patterns and isotopic data (Figs 3-6) facili-
tates grouping of the Vestfjella dyke swarm into five
magma types (Table 5). We point out that dyke samples
that were originally assigned to the CT2 category by
Luttinen et al. (1998) and Luttinen & Furnes (2000) are
regrouped here into CT3, CT3-E, and Low-Nb (see
Heinonen et al., 2010).

CT1 magma type

Twenty dolerite dykes and sills, including the gabbroic
dykes at West and East Muren, are grouped into the
low-Ti affinity CT1 magma type. These rocks have rela-
tively low Ti/Zr (45-80) and Ti/P (7-14) coupled with
high (La/Sm)y (1-8-3-0) and (Sm/Yb)y (2-5-3-3) (Figs 4a
and 7; Table 5) and they are found across Vestfjella. The
spiked primitive mantle-normalized incompatible elem-
ent patterns show an overall enrichment from Lu to Ba
combined with negative Ti, P, Nb, and Ta anomalies
and a positive Pb anomaly typical of many CFBs
(Fig. ba). Similar to the CT1 lavas, the CT1 dykes show

variably high (Th/Ta)y (1-5-3-3; Fig. ba; Table 5) and con-
sistently negative initial eng (from -6-4 to -17-5) and
high initial & Sr/2®Sr (0-7056-0-7104) (Fig. 6).

CT3 magma type

Thirty-nine dykes are grouped into the CT3 magma
type. These rocks are found across the Vestfjella range
and are characterized by high Ti/Zr (70-120), low to
moderate Ti/P (8-16), moderate (La/Sm)y (1-0-1-9) at
high (Sm/Yb)y (2-:0-3-8), and relatively high initial gng
(from +1-8 to +4-3) and low initial ®’Sr/°Sr (0-7035-
0-7052) (Figs 4b, 6 and 7). Twenty-five of the CT3 dykes
are similar to the CT3 lavas (Table 5; Fig. 5b) and can be
associated with Karoo low-Ti CFBs, but 14 samples are
relatively more evolved and enriched in incompatible
elements [e.g. high TiO, (2-8-4-8) and Zr (170-290) con-
tents (Fig. 3c and f)]; we refer to them as subtype CT3-E.
In the conventional low-Ti vs high-Ti grouping of Karoo
CFBs (see Erlank et al., 1988), the CT3-E dykes would be
ascribed to high-Ti affinity (Table 5). Nevertheless, we
group them together with CT3 owing to a likely petro-
genetic linkage indicated by the conformity of mantle-
normalized incompatible element patterns.
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Fig. 5. Primitive mantle-normalized (Sun & McDonough, 1989) incompatible element patterns for (a) CT1 dykes, (b) CT3 dykes, (c)
Low-Nb dykes, and (d) High-Nb dykes. Cumulate or highly altered samples are not shown for clarity. Data for CT1 and CT3 lavas
(Luttinen et al., 1998; Luttinen & Furnes, 2000), depleted (D-FP) and enriched (E-FP) ferropicrite suites (Heinonen & Luttinen, 2008;
Heinonen et al., 2010), average N-MORB (Gale et al., 2013), and average OIB (Sun & McDonough, 1989) are shown for comparison.

Most of the CT3 dykes exhibit primitive mantle-nor-
malized incompatible element patterns typified by an
overall convex shape caused by relatively depleted
highly incompatible elements Th, U, Nb and Ta and the
HREE contrasted by pronounced positive Ba, K, and Pb
anomalies; the least-evolved dykes also show positive
Sr anomalies (Fig. 5b). Some of the most altered sam-
ples show less pronounced or negative anomalies in
these mobile elements. The CT3-E dykes have similar
incompatible element patterns to the normal CT3 dykes,
but at higher concentration levels. Their positive Ba, K,
and Pb anomalies are smaller, however, and the nega-
tive Sr anomalies probably stem from plagioclase frac-
tionation. Both subtypes of CT3 have relatively
unfractionated (Th/Ta)y in general, but they also include
samples characterized by enriched Th and U contents
with (Th/Ta)y > 3 (Fig. 5b).

Low-Nb magma type

Seven dykes from Plogen and Mannefallknausane
(Fig. 2) are grouped as the Low-Nb magma type
(Table 5). They have high Ti/Zr (110-140), Ti/P (15-17),
and initial eng (from +5-9 to +7-7) combined with low

initial 8"Sr/®®Sr (0-7032-0-7035) and distinctively low
concentrations of immobile highly incompatible elem-
ents (e.g. Nb 2-3 ppm) and low Nb/Y (0-1-0-2) (Figs 3g, 6
and 7). They are depleted in LREE and HREE with
(La/Sm)N=0-7-0-9 and (Sm/Yb)y=(2-3-2-6) (Fig. 4c);
their primitive mantle-normalized incompatible element
patterns are somewhat normal (N)-MORB-like owing to
depletion of Th, U, Nb and Ta (Fig. 5c). The otherwise
smooth incompatible element patterns are character-
ized by positive Ba, K, Pb, and Sr anomalies similar to
those of many CT3 dykes. The Low-Nb magma type can
be classified as Karoo low-Ti CFB, but, importantly, it
shows a strong geochemical resemblance to the high-Ti
affinity depleted ferropicrite suite of Vestfjella with simi-
lar incompatible element patterns and DM-like Nd and
Sr isotopic compositions (Figs 5-7). This resemblance is
further supported by Pb and Os isotope data previously
reported by Heinonen et al. (2010).

High-Nb magma type

Six closely spaced dykes from Utpostane make up the
High-Nb magma type (Table 5). These dykes are typified
by moderate Ti/Zr (60-100), low Ti/P (3-9), high
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Fig. 6. Initial eng vs 8 Sr/28Sr (180 Ma) compositions of the Vestfjella dykes (D-FP, depleted ferropicrite suite; E-FP, enriched ferropi-
crite suite; see Supplementary Data Electronic Appendix 1 for data sources) compared with those of (a) Karoo rift-assemblage and
plateau-assemblage CFBs (Hawkesworth et al., 1984; Ellam & Cox, 1989; Harris et al., 1990; Sweeney et al., 1994; Luttinen et al.,
1998, 2010; Luttinen & Furnes, 2000; Riley et al., 2005, 2006; Jourdan et al., 2007a; Neumann et al., 2011) and (b) rift-assemblage
lavas of Vestfjella (Luttinen et al, 1998; Luttinen & Furnes, 2000). Compositions of rift-assemblage Group 3 dykes of
Ahlmannryggen (Riley et al., 2005), depleted MORB mantle (DMM; Workman & Hart, 2005), and SWIR MORB (compiled from
the Petrological Database of the Ocean Floor (http://www.petdb.org)) are also indicated. DMM and SWIR MORB have been back-
calculated to 180 Ma using Rb/Sr and Sm/Nd of the DMM reservoir (Workman & Hart, 2005).

Table 5: Pertinent geochemical characteristics of the Vestfjella magma types

Magma type: CT1 CT1 CT2 CT3 CT3 CT3-E Low-Nb D-FP High-Nb  E-FP
lavas dykes lavas lavas dykes dykes dykes dykes dykes dykes
low-Ti low-Ti trans-Ti  low-Ti low-Ti high-Ti low-Ti trans-Ti high-Ti high-Ti

TiO, (wt %) 0-8-1-8 0-5-2-2 1.6-35 1.0-2-8 1.3-2.4 2.8-4-8 1-3-1-8 1-3-4.0 2.1-31 3.0-35

MgO (wt %) 4-26 5-11 5-12 4-19 5-17 4-6 7-20 5-28 5-7 10-16

Ti/Zr 49-73 45-84 85-113 89-121 70-118 82-118 113-137 90-146 60-102 112-123

Ti/P 7-12 7-14 13-19 8-13 8-16 8-15 15-17 11-18 3-9 10-12

(La/Sm)pn* 2.2-2-8 1.8-3.0 1.2-19 1.0-1-9 1.0-17 1-.2-19 0-7-0-9 1-1-1-8 2.2-25 1.5-1.7

(Sm/Yb)n* 2.1-29 2.5-3-3 2.0-29 1.9-2.8 2.0-3-4 2.1-3-0 2:3-2:6 3-2-5.0 3:4-4.8 4.9-5.4

eng (Max/min)t  -3/~16 -6/-18 0/-8 +2/-2 +4/42 +4/4-2 +8/+6 +8/+5 +2/-1 +4/4-2

*(La/Sm)y and (Sm/Yb)y are chondrite-normalized values (McDonough & Sun, 1995).

teng Values are calculated at 180 Ma.

Data for the CT1-CT3 lavas are from Luttinen et al. (1998) and Luttinen & Furnes (2000), and data for the CT1, CT3, CT3-E, Low-
Nb, High-Nb, and the depleted ferropicrite (D-FP) and enriched ferropicrite (E-FP) suite dykes are from Supplementary Data
Electronic Appendix 1 (see references therein).

(La/Sm)y (2:2-2-5) and (Sm/Yb)y (3-4-4-8), and close to The depleted and enriched ferropicrite suites
chondritic initial eng (from -0-5 to +1-6) and ®’Sr/®®Sr  Geochemical data for the ferropicrite suites from Basen,
(0-7040-0-7045) values (Figs 4d, 6 and 7). They are read- Kjakebeinet and Muren have been reported by
ily distinguished by their relatively smooth, OIB-like Heinonen & Luttinen (2008) and Heinonen et al. (2010)
primitive mantle-normalized incompatible element pat- (see Table 5).

terns and remarkably high Nb/Y (0-7-1-0) and Nb/Zr Samples representing 11 dykes belonging to the
(>0-1) (Fig. 5d). The High-Nb dykes show geochemical depleted ferropicrite suite show notably variable MgO
affinities to the enriched ferropicrite suite of Vestfjella (5-28 wt %) and can be classified as basalt, (ferro)picrite

(Fig. bd) and could be also classified as Karoo high-Ti and meimechite, with TiO, contents ranging from 1-3 to
magmas on the basis of relatively high TiO, (2-3wt %). 4wt % and indicating a transitional character between
Two dykes show enrichment of U; we do not provide an low-Ti and high-Ti magma types. The depleted ferropi-

explanation for this anomalous character, but point out crite suite is typified by high Ti/Zr (90-150) and Ti/P (11-
that the High-Nb dykes are metamorphosed by the 18), relatively low (La/Sm)y (1-1-1-4), and high (Sm/Yb)y
nearby Utpostane layered intrusion. (3-2-4-6) coupled with high initial eng (45 to +8) and low
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Fig. 7. Ti/P vs Ti/Zr for the Vestfjella dykes (D-FP, depleted
ferropicrite suite; E-FP, enriched ferropicrite suite; see
Supplementary Data Electronic Appendix 1 for data sources).
Compositions of Vestfjella CT1, CT2, and CT3 lavas (Luttinen
et al., 1998; Luttinen & Furnes, 2000) are shown for
comparison.

initial 8Sr/%®Sr (0-7030-0-7036) (Figs 4c, 6 and 7). The
relatively smooth primitive mantle-normalized incom-
patible element patterns of the depleted subtype show
relative depletion of highly incompatible elements (Th,
U, Ta, Nb); together with their DM-affinity Sr, Nd, Pb,
and Os isotopic compositions this indicates compos-
itional affinity to the low-Nb dykes (Figs 5¢ and 6a)
(Heinonen et al., 2010). Some of the depleted ferropi-
crite dykes also exhibit positive Ba, K, Sr, and Pb
anomalies (Fig. 5¢).

The enriched ferropicrite suite includes one basaltic
and one picritic dyke that can be readily distinguished
by their general enrichment of highly incompatible
elements (e.g. Nb 17-21 ppm) at a given MgO (10-15wt
%; Fig. 3g). They have (La/Sm)y of 1.5-1-7, (Sm/Yb)y of
4.9-5.5, initial eng from +2 to +4, and initial 3 Sr/2°Sr of
0.7043-0-7050 (Figs 4 and 6). Concentrations of TiO,
(3-:0-3-5wt %) are typical of high-Ti magma types. The
primitive mantle-normalized incompatible element pat-
terns are relatively smooth and resemble those of
average ocean island basalts, although the concentra-
tions are somewhat lower in the enriched ferropicrites
(Fig. 5d).

GEOCHRONOLOGY

The results of *°Ar/*°Ar plagioclase and U-Pb zircon
and baddeleyite dating of the Vestfjella dyke swarm are
summarized in Figs 8 and 9 and Tables 3 and 4. The
complete “°Ar/*°Ar dataset is listed in Supplementary
Data Electronic Appendix 2. Owing to uncertainties
related to the decay constant of 2°U (Schoene et al.,
2006; Mattinson, 2010), we have used 2°°Pb/?38U results
for age calculations. The obtained U/Pb ages are in all
cases the same as the concordia ages (Fig. 8). Previous
dating of Vestfjella CFBs demonstrated a secondary
overprint of the plagioclase Ar spectra in visually

ZO?P b !235U

Fig. 8. Concordia diagram showing zircon and baddeleyite
(bdl) U-Pb analytical results for the gabbroic CT1 dykes of
West and East Muren (Table 4). 2°°Pb/?%8U ages are preferred
over concordia ages.

weakly altered lava and dyke samples (Zhang et al.,
2003). Our hand-picked plagioclase fractions typically
are small owing to secondary alteration and strict selec-
tion criteria. Samples representing the High-Nb magma
type and the enriched ferropicrite suite were considered
unsuitable for dating owing to alteration or lack of
plagioclase phenocrysts. The errors are reported at the
2: level.

Dating of CT1 magma type
Two dolerite dykes representing the CT1 magma type
were selected for *°Ar/%Ar plagioclase dating. The
“OAr29Ar step-heating spectrum of sample 121-KHG-
91 is indicative of excess Ar, and a plateau age cannot
be determined. The bulk (= raw) plagioclase fraction
of sample 115-KHG-91 gave a low-temperature mini-
plateau age of 176-7 = 1-3 Ma (2c including all sources
of uncertainties; MSWD = 1-1; P=0-37) that includes
58% of 3°Ar released (Fig. 9a), whereas the hand-
picked fraction gave a plateau age of ¢. 189-2 + 2.3 Ma
(MSWD =0-93; P=0-46) that includes 72% of 3%Ar
released (Fig. 9b). The low-temperature age probably
reflects secondary processes associated with serici-
tized plagioclase (see Zhang et al., 2003; Verati &
Jourdan, 2014), whereas the picked pristine plagio-
clase separate, which vyielded a nearly constant
Ca/K signal, is interpreted as the emplacement age of
the CT1 dyke at ¢. 189 Ma. It should be noted that this
age is older than any of the preferred ages of Karoo
CFBs and, if confirmed, implies that the southern
Vestfjella lavas and dykes may represent an exposure
of significantly older magmatism than the Karoo
main-stage CFBs [see compilation of Jourdan et al.
(2008)1.

Zircon-bearing samples of two CT1 gabbro dykes
were used for U/Pb dating. Sample A1727 represents a
medium-grained gabbro from the roof zone of the West
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Fig. 9. Apparent “°Ar/*®Ar age spectra and related CI/K and Ca/K spectra indicating the age and composition of plagioclase (picked)
and raw feldspar separates vs cumulative percentage of 39Ar released. Reported 2o errors do not include systematic errors. Plateau
ages (>70% of 3°Ar released) and mini-plateau ages (MP; 50-70% of >°Ar released) are indicated. Magmatic ages are interpreted to
be those that exhibit high-temperature plateaux and limited variation in Ca/K and CI/K (see text).

Muren dyke. The separated zircon fraction is dominated transparent, pale-coloured, and elongated zircons with
by brownish, transclucent to turbid and fragmented predominantly streaky crystal faces. Baddeleyite is
crystals. Many of these contain a nucleus of dark brown found as rare platy crystals, although dark brown inclu-
mineral (baddeleyite?) that is parallel to the c-axis of the sions and intergrowths in type 2 zircon are probably
host. Rare colorless, transparent zircon crystals were baddeleyite as well (Table 3). A carefully hand-picked
also detected. A concordant fraction consisting of the fraction of platy baddeleyite (D) yielded a U/Pb age of
most translucent fragments of brownish zircon (A) 182-2 = 0-9 Ma (Fig. 8). Also, analysis of a fraction (E) of

yielded a 2°®Pb/2*8U age of 182-2 = 0-9 Ma, which we in-  transparent, dark brown, prismatic type 1 zircons
terpret as the crystallization age of the CT1-type West yielded a U/Pb age of 182-:3 + 1-1 Ma (Fig. 8). The com-
Muren dyke (Table 3; Fig. 8). bined age results of the two fractions gives a weighted

The U/Pb dating sample A1651 represents a coarse mean age of 1822 =0.-76 Ma (MSWD =0-043; P=0-86)
gabbro type from the middle zone of the CT1-type East for the CT1-type East Muren dyke. In addition to these, a
Muren dyke and contains two types of zircons: (1) dark few analyses gave discordant age data; these are not
brown, transparent, prismatic zircons; (2) translucent to discussed further.
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Dating of the CT3 magma type
Six samples of the CT3 magma type were used for
40Ar/29Ar plagioclase dating. Two bulk fractions of sam-
ple 38-KHG-90 showed constantly rising step-heating
patterns and did not yield meaningful ages. The bulk
and hand-picked fractions of sample 113-KHG-91 also
failed to provide an acceptable plateau age. The hand-
picked fraction of sample 11-KHG-90 has a saddle-
shape spectrum indicative of excess Ar and one of the
bulk fractions yielded disturbed low-temperature age
data corresponding to c¢. 1770 Ma ages, but no plateau
age could be calculated. The second bulk fraction, how-
ever, provided a low-T plateau age of 169-5+ 1.9 Ma
(MSWD=1-4; P=0-14) that includes 71% of 3°Ar
released (Fig. 9c). The fact that this low-T plateau was
obtained from the unpicked fraction (whereas no plat-
eau was developed from the picked fraction) suggests
that most of the *°Ar* signal arises from sericite in the
plagioclase. This is supported by the strongly struc-
tured Ca/K spectrum that shows a pronounced tilde-
shaped pattern and variation between 32 and 57.
The presence of only c¢. 10% of secondary sericite
(K,O ~10wt %) can overprint the crystallization age of
the plagioclase and yield the age of the sericitization
event within a few per cent uncertainty (Jourdan et al.,
2009; Verati & Jourdan, 2014). Therefore, we do not re-
gard this age to represent a reliable emplacement age,
but rather the age of a secondary hydrothermal event.
Three samples of the CT3 magma type yielded ro-
bust plateau ages. First, a plagioclase phenocryst dir-
ectly removed from the sample AL/UP7b-98 indicates
considerable excess argon and variable Ca/K at low
temperatures, probably owing to alteration (Fig. 9d).
The high-temperature steps, however, show nearly con-
stant Ca/K values and provide a mini-plateau age of
186-9 = 2.8 Ma (MSWD = 1-4; P=0-19) including 67% of
39Ar released. We interpret this as the likely emplace-
ment age of this CT3-E dyke. It is possible, however,
that excess *°Ar* may affect the mini-plateau so that we
cannot preclude a somewhat younger emplacement
age for the dyke intrusion. Second, whereas the hand-
picked fraction of sample AL/KB14-98 was lost owing to
a power cut during the measurement and one bulk frac-
tion indicated an apparent age of ¢. 160 Ma (but gave no
plateau), the other bulk fraction gave a plateau age of
163-8+1.5Ma (MSWD=1-1; P=0-35) Ma including
nearly 80% of the *°Ar liberated (Fig. 9e). Third, the
hand-picked plagioclase fraction of dyke AL/KB20-98
yielded a low-resolution structured spectrum with
highly variable Ca/K values and medium-T apparent
ages as low as c. 148 Ma, whereas the bulk plagioclase
fraction from the same dyke yielded a robust plateau
age of 153:9 + 0-8Ma (MSWD = 1-2; P=0-32) including
72% of *°Ar (Fig. 9f). Given that the young plateau ages
of 164Ma and 154 Ma for samples AL/KB14-98 and
AL/KB20-98, respectively, are associated with very
structured, tilde-shaped Ca/K spectra, the plagioclase
probably contained significant amounts of sericite and
the plateau ages are more likely to correspond to

secondary hydrothermal events than to the age of dyke
emplacement (see Verati & Jourdan, 2014).
Summarizing, the CT3 “°Ar/*°Ar age data are highly
perturbed by a secondary process (see Zhang et al.,
2003). Nevertheless, one dyke yielded a mini-plateau
“OAr/*%Ar age of 186-9 = 2.8 Ma on plagioclase that we
interpret as indicating the age of emplacement or at
least a maximum age for the dyke. This age is coeval
within error with the oldest Karoo ages from Africa
(c. 186 Ma; recalculated from Jourdan et al., 2008). The
other mini-plateau and plateau ages at 170, 164 and
154 Ma rather indicate localized hydrothermal events
that altered part or most of the plagioclase to sericite.
The two ages at 164 and 154 Ma significantly post-date
the preferred ages of Karoo CFB magmatism by 10-20
Myr and coincide with the incipient ocean spreading be-
tween Africa and Antarctica, which might explain the in-
crease of hydrothermal activity during this period.

Dating of the Low-Nb magma type

Sample P5-KHG-90 represents the N-MORB-affinity
Low-Nb magma type. The bulk plagioclase fraction did
not yield a plateau, but the hand-picked plagioclase
fraction yielded a robust plateau age of 172-9 + 2.9 Ma
(MSWD =1.7; P=0-09; 97% of 39Ar liberated; Fig. 9g).
However, although well developed, this plateau is asso-
ciated with a pronounced tilde-shape Ca/K spectrum
(Ca/K ranging from c. 95 to 25). We consider three pos-
sible explanations for obtaining such a well-developed
plateau accompanied by a very variable Ca/K ratio: (1)
the Ca/K variation indicates magmatic zoning in the
grain and the age represents the intrusion age; (2) the
Ca/K variation results from an alteration event syn-
chronous with the magmatic age [see examples given
by Jourdan et al. (2009)]; or (3) the Ca/K variation cor-
responds to an alteration event that totally overprinted
the magmatic age of the plagioclase (alteration plateau
age) and gives an age close or equal to the hydrother-
mal event, but unrelated to the age of magma emplace-
ment. We regard case (1) to be unlikely and consider
that the Ca/K variation stems from alteration (see Zhang
et al., 2003; Marzoli et al., 2011). The alteration event
may equally well have been concomitant with the em-
placement or significantly younger. We therefore con-
clude that the N-MORB-affinity Low-Nb dyke was
emplaced at or prior to 172-9 = 2-9 Ma.

Dating of depleted ferropicrite suite

Samples AL/KB17-98, 117-KHG-91 and 128-KHG-91 rep-
resent basaltic dykes belonging to the depleted ferropi-
crite suite of Vestfjella (Heinonen & Luttinen, 2008).
Generally, the “CAr/°Ar spectra are complex, with
samples 117-KHG-91 and 128-KHG-91 showing evi-
dence of excess argon, notably old total integrated ages
(c. 200-300 Ma), and CI/K correlating positively with age
in the low-T and high-T fractions (Supplementary Data
Electronic Appendix 2). The intermediate-temperature
steps vyield imprecise ages of c¢. 180Ma. The
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hand-picked fraction of AL/KB17-98 did not yield a plat-
eau age, but one of the bulk plagioclase fractions gave a
mini-plateau age of 183-2+t2.3Ma (MSWD =0.95;
P=0-49) including 58% of *°Ar released. The Ca/K spec-
trum shows only small variations, but the mini-plateau
is part of an ambiguous double-deck age spectrum with
the older portion yielding an apparent age of ¢. 191 Ma
(Fig. 9h). The mini-plateau may be related to alteration
processes, but we do not provide an unambiguous age
for this fraction. On the other hand, the second bulk
fraction gave a well-developed high-T plateau age of
1855 + 1.8 Ma (MSWD = 1.0; P=0-42) including 75% of
39Ar released and with a Ca/K spectrum showing only
small variations, mostly between 60 and 75 (Fig. 9i). We
regard the high-T plateau age of 185-5 = 1-8 Ma to be ro-
bust and to indicate statistically indistinguishable em-
placement ages for the depleted ferropicrites and the
oldest Karoo CFBs in Africa [compare the age recalcu-
lated from Jourdan et al. (2008)]. We emphasize that
our emplacement age for the Vestfjella depleted ferropi-
crite suite is compatible with studies that have associ-
ated generation of ferropicrites during the early stages
of CFB magmatism (Gibson, 2002).

PETROGENESIS OF THE VESTFJELLA DYKE
SWARM

Fractional crystallization of the magmas
The wide variation in MgO contents and Mg-numbers
(Fig. 3; Table 1) and the presence of olivine, plagioclase,
and clinopyroxene phenocrysts in the dolerite samples
suggest a significant role for fractional crystallization in
the evolution of the Vestfjella dyke swarm. Apart from the
ferropicrite suites, the major element compositions of dif-
ferent extrusive and intrusive magma types show overlap
suggestive of broadly similar parental melts and frac-
tional crystallization history. Accordingly, we have mod-
elled fractional crystallization using the PELE software
(Boudreau, 1999) and an average of picritic Vestfjella
samples (MgO =12-19wt %) as the parental melt com-
position (Supplementary Data Electronic Appendix 3).
Owing to scattered geochemical trends and poorly con-
strained pressure conditions and water contents, numer-
ous feasible models can be constructed by varying the
model parameters. A decompression model shown in
Fig. 3 provides a fairly good fit to our chemical and petro-
graphic data on the dolerite and gabbro samples. In the
model, olivine (Fogy) starts to crystallize from the parental
magma at 5kbar. Subsequent crystallization is coupled
with decompression from 5 to 1kbar. During the rise of
the magma, the differentiation process is first controlled
by olivine fractionation until plagioclase and clinopyrox-
ene become liquidus phases at c. 2-5 kbar when MgO et
is c. 7wt %. At lower pressures, the model indicates a gab-
broic fractionating assemblage of plagioclase (c. 50%),
clinopyroxene (c. 30 %), and olivine (c. 20%).

Except for the anomalous ferropicrite suites (see
Heinonen & Luttinen, 2008), the geochemical compositions

of the Vestfjella magma types plot close to the mod-
elled liquid line of descent. The CT3-E samples and the
Low-Nb samples plot slightly above and below the
modelled trend, respectively. In the case of CT1, there
is considerable overlap with the modelled trend at rela-
tively high MgO, but a clear plagioclase-in inflection is
lacking, possibly owing to assimilation of felsic crustal
materials as discussed below. Given that the compos-
itional variations of the ferropicrite suites have been
previously ascribed to polybaric (from 25 to 1kbar)
fractionation of olivine, Cr-spinel, clinopyroxene, and
plagioclase (Heinonen & Luttinen, 2008), we conclude
that the major element trends of the different magma
types belonging to the Vestfjella dyke swarm have
been largely controlled by fractional crystallization of
high-Mg parental magmas.

Generation of the different magma types by
contamination

Although the general major and trace element trends
of the dolerite dykes and gabbros belonging to the
Vestfjella dyke swarm can be explained by olivine,
plagioclase, and clinopyroxene fractionation, gener-
ation of the magma types typified by different incom-
patible element and isotopic ratios (Figs 3-7) requires
different magma sources or mixing processes, or both.
With the exception of the DMe-affinity depleted
ferropicrite and Low-Nb magma types, the compos-
itional characteristics are largely compatible with in-
volvement of lithospheric materials during magma
petrogenesis. Previous studies have favoured hetero-
geneous mantle sources to be primarily responsible
for the compositional diversity of the Vestfjella low-Ti
CFBs (Luttinen & Furnes, 2000). Here we explore the
possibility that the different magma types could have
been generated by contamination of a common paren-
tal magma type.

We have evaluated the role of crustal contamination
using the energy-constrained assimilation and frac-
tional crystallization model (EC-AFC), which simulates
concurrent crystallization of the parental magma and
partial melting of the crustal wall-rock (Spera &
Bohrson, 2001). We have used an Archaean tonalite—
trondhjemite—granodiorite (TTG) from the Kaapvaal
craton and average upper crust to represent wall-rocks
belonging to the Archaean Grunehogna craton and the
Proterozoic Maud Belt, respectively (Table 6). In the
case of SCLM contamination, we used AFC modelling
(DePaolo, 1981) because of uncertainties regarding par-
tial melting and dissolution processes in veined SCLM
(e.g. Foley, 1992). A Vestfjella lamproite (Luttinen et al.,
2002) was used as a proxy for an SCLM-derived con-
taminant melt. For the parental melt composition we
used the fractionation-corrected Low-Nb type sample
P27-AVL (Table 6): this has the highest initial eng Of the
Low-Nb samples and may well represent an uncontam-
inated magma type (see Luttinen & Furnes, 2000;
Heinonen et al., 2010). Rocks belonging to the depleted
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Table 6: Input parameters for the EC-AFC (Spera & Bohrson, 2001) and AFC (DePaolo, 1981) models

Variable PM' AC* PC* SCLM*
Model EC-AFC = AFC EC-AFC EC-AFC AFC
Magma liquidus T (initial T) [°C] 1500 - - -
Contaminant liquidus T [°C] - 1000 1000 -
Contaminant initial T [°C] - 600 600 -
Solidus T [°C] - 850 850 -
Equilibration T [°C] - 980 980 -
Isobaric specific heat [J/kg K] 1600 1370 1370 -
Crystallization enthalpy [J/kg] 400000 - - -
Fusion enthalpy [J/kg] - 270000 270000 -
SiO, [wt. %] 47.85 - - -
TiO; [wt. %I 1.33 - - -
Al,03 [wt. %] 10.56 - - -
FeOyor [Wt. %] 11.22 - - -
MnO [wt. %] 0.19 - - -
MgO [wt. %] 17.63 - - -
CaO [wt. %] 9.31 - - -
Na,O [wt. %] 1.62 - - -
K20 [wt. %] 0.17 - - -
P205 [wt. %] 0.11 - - -

Dm
Th [ppm] 0.17 (0.0003) 3.6 10.5 26.1
Nb [ppm] 2.35 (0.001) 5 12 170
Ta [ppm] 0.13 (0.001) 0.4 0.9 14.6
La [ppm] 3.73 (0.0003) 345 31 278
Ce [ppm] 9.17 (0.0003) 64 63 502
P [ppm] 491 (0.0003) 698 655 15099
Nd [ppm] 7.90 (0.0002) 22 27 229
Zr [ppm] 65 (0.001) 132 193 1076
Hf [ppm] 1.85 (0.0029) 3.4 5.3 26.6
Sm [ppm] 2.89 (0.0002) 3.52 4.7 36.4
Eu [ppm] 1.07 (0.0002) 1.01 1.0 10
Ti[ppm] 7970 (0.002) 1739 3837 23860
Gd [ppm] 3.26 (0.0003) 3.8 4.0 23
Tb [ppm] 0.59 (0.0005) 0.4 0.7 2.91
Y [ppm] 16.50 (0.001) 10 21 37
Yb [ppm] 1.30 (0.0052) 0.5 1.96 1.48
Lu [ppm] 0.20 (0.0085) 0.1 0.31 0.23
T3Nd/"*Nd 0.512829 0.510551 0.511800 0.512089
ENd () +8.3 —36.2 -11.8 —-6.7

TParental melt: Composition calculated by adding 33% of equilibrium olivine (Kq4(Fe-Mg)°"""@ = 0.35; Heinonen and Luttinen, 2010)
into low-Nb sample P27-AVL (Luttinen and Furnes, 2000) until in equilibrium with depleted MORB source peridotite (Fogo;
Workman and Hart, 2005). Magma liquidus T estimated to be ~100°C lower than the ones calculated with the methods of Putirka
et al. (2007) and reported by Heinonen and Luttinen (2010) (cf. Coogan et al., 2014). Isobaric specific heat calculated using the partial
molar isobaric heat capacities listed by Spera and Bohrson (2001). Crystallization enthalpy calculated and partition coefficients for
the crystallizing magma (D,,,) estimated using PELE software (Boudreau, 1999; olivine Kp values of Jean Bedard). Nd isotopic com-
position after the model of Heinonen et al. (2010).

*Lithospheric contaminants: Archaean crust (AC) — trace element and Nd isotopic composition after TTG sample 96/203 (Kreissig
et al., 2000; U after sample 96/226-L; Ta and Hf estimated after average Ta/Nb and Hf/Zr presented in Kleinhanns et al., 2003); Upper
Proterozoic crust (PC) — trace element composition after the average upper crust of Rudnick and Gao (2003) and Nd isotopic compo-
sition after the model of Jourdan et al. (2007a); Subcontinental lithospheric mantle - composition after lamproite AL/KB8-98
(Luttinen et al., 2002).

AFC process (r=0.5) has been modeled to take place after 15% of olivine fractionation. In the case of crustal contaminants, the
bulk partition coefficient values (D.) of 0.1 and 0.5 were used for all elements (in two separate runs) and thermal parameters repre-
sent standard upper crustal case with initial temperatures taking account the effect of mafic underplating in an active continental
rift setting (cf. Bohrson and Spera, 2001). Nd isotopic data reported at 180 Ma, except for the lamproite at 160 Ma.

ferropicrite suite probably also represent uncontamin-
ated magmas, but they are too enriched in incompatible
elements (i.e. low-degree melts; Heinonen et al., 2010)
to represent the parental magmas of the dolerite dykes
and gabbros.

We emphasize that the model parameters have not
been optimized to improve the fit of the models. For ex-
ample, we have used the same D value (0-1 and 0-5 in
two separate runs) for all incompatible elements in the
partial melting of the crustal contaminants. This specific

simplification leads to underestimation of inter-element
fractionation during melting, but it also allows us to
avoid speculations on poorly constrained restite min-
eralogy. Our quantitative modelling concentrates on
HFSE, REE, and Nd isotopes, which are likely to be
more resistant to secondary processes than LILE and Sr
isotopes. We also consider that the EC-AFC modelling
of Sr isotopes is significantly complicated by the poorly
constrained behaviour of plagioclase-compatible Sr
during wall-rock melting. The best-fit results of the
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Fig. 10. Primitive mantle-normalized (Sun & McDonough, 1989) immobile incompatible element patterns and Nd isotopic compos-
itions for (a) CT1 dykes, (b) High-Nb dykes, (c) CT3 dykes, and (d) CT3-E dykes. Compositions of fractionation-corrected Low-Nb par-
ental melt and the best-fit results of EC-AFC and AFC contamination modeling of different magma types are indicated by dashed
and continuous lines, respectively. The amount (%) of contaminant in the best-fit models [EC-AFC models with contaminant bulk
partition coefficients (D) of 0-1 and 0-5] are indicated relative to the volume of the parental melt (see text and Table 6). In (d) the
best-fit result represents AFC and subsequent fractional crystallization (until MgO ~ 4 wt %; see Supplementary Data Electronic
Appendix 3). In (c) and (d) contamination with Proterozoic crust can explain the elevated Th/Nb and Ce/Ta observed in some of the
CT3 samples. Nd isotopic data are calculated at 180 Ma, except for the lamproite component used in the AFC models (160 Ma).

models are illustrated in Figs 10 and 11 and the petro-
genetic model is summarized in schematic form in
Fig. 12.

Generation of CT1 magma type

The CT1 dykes exhibit strong indications of a litho-
spheric component by their crust-like incompatible
element and isotopic ratios; that is, high Th/Ta, La/Sm,
Ce/Nb, and Ce/P and low Ti/Zr ratios and highly unradio-
genic initial eng (Figs 5a and 6). Indeed, our model dem-
onstrates that the salient features of CT1 can be
modelled fairly well by combined fractional crystalliza-
tion and contamination of a Low-Nb type parental
magma with minor quantities (4-19% depending on the
choice of D values for the assimilant) of Archaean crust-
derived melt (Figs 10 and 11). In comparison,

contamination only with SCLM-sourced Vestfjella lamp-
roite fails to explain the negative Nb and Ti anomalies
as well as the lowest gng values of CT1 (see Fig. 10a). It
is noteworthy, however, that the least-enriched CT1
samples exhibit lower Ti contents and Sm/Yb values
than the hypothetical parental melt (Fig. 10a). This dif-
ference could indicate a HREE- and Ti-depleted crustal
contaminant or, perhaps more likely, that the HREE and
Ti were relatively more compatible during crustal melt-
ing (e.g. garnet in the restite) than in our simple model.
Also, the parental melts of CT1 could have represented
higher degree of partial melting and/or a more depleted
source than in the case of the Low-Nb parental melt. In
our view, adjustments of the model end-members
would not significantly strengthen the feasibility of the
contamination model.
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Fig. 11. (a) La/Sm vs Sm/YDb, (b) La/Sm vs Th/Ta, and (c) eng
(at 180Ma) vs Nb content of the Vestfjella dykes (D-FP,
depleted ferropicrite suite; E-FP, enriched ferropicrite suite; see
Supplementary Data Electronic Appendix 1 for data sources).
The results of contamination modelling using Archaean crust
(AC), Proterozoic crust (PC), and SCLM as contaminants are
also shown (see text and Table 6). Tick-marks indicate the
amount (%) of contaminant in the best-fit models relative to
the volume of the parental melt (see Fig. 10) and F indicates
the overall effect of increasing degree of melting. In (c) grey
arrows labeled FC1 and FC2 indicate the effect of further frac-
tional crystallization of SCLM-contaminated melts (FC1=3%;
FC2=6%).

The contamination model for CT1 is also compatible
with previously reported Nd and Sr isotope data for
basalt-hosted silicic crustal xenoliths in Vestfjella
(Luttinen & Furnes, 2000). These samples were not
used in the EC-AFC models owing to incomplete chem-
ical data, but their eng(180Ma) (c. -50) and 8Sr/?8Sr
(180 Ma) (c. 0-710) values indicate availability of isotop-
ically plausible Archaean crustal contaminants for CT1
in the Vestfjella region. Overall, we consider that our
model lends support to a predominant crustal contam-
inant for CT1, but does not preclude involvement of
additional minor SCLM-derived components (Fig. 12).

Generation of CT3 magma type

Geochemical similarities suggest a close genetic rela-
tionship between the Low-Nb and CT3 magma types
(Fig. 5; Table 5). Overall, the CT3 magmas have rela-
tively more enriched highly incompatible element con-
tents, higher Th/Ta and Ce/P, and lower eng, Which is
compatible with mild contamination of CT3 with litho-
spheric material.

The incompatible element patterns of most CT3
dykes suggest that crustal material was not the princi-
pal contaminant and, in fact, they can be modelled fairly
well by low-degree (2%) contamination of a Low-Nb
parental magma with SCLM-derived melt (AFC model
in Fig. 10c). Such a model, however, cannot account for
the notably high incompatible element concentration
levels of the CT3-E subtype (Fig. 10d). The high incom-
patible element and low MgO contents of CT3-E could
be at least partially explained by a slightly higher de-
gree of contamination (3%) and/or advanced fractional
crystallization (AFC + FC model in Figs 10d and 11c¢), but
a more enriched SCLM-derived melt (e.g. compared
with Smoky Butte lamproites; Fraser et al., 1985) or a
less depleted parental magma than that used in our
model may be required to explain the most extreme in-
compatible element enrichments of CT3-E (see Figs 3
and 11c). It is also important to note that the CT3 and
CT3-E samples with anomalously high Th/Ta and Ce/Ta
are likely to require an additional crustal contaminant or
an SCLM-contaminant with more crust-like incompat-
ible element ratios. For example, minor incorporation
(<5%) of Proterozoic upper crust (see Figs 10c, d
and 11b) could viably explain such trace element char-
acteristics without resulting in negative eng values (see
Fig. 10a). Overall, contamination of a Low-Nb parental
magma with SCLM and/or Proterozoic crust provides a
feasible explanation for the incompatible element and
isotopic characteristics of the CT3 and CT3-E magma
types (Fig. 12).

Generation of High-Nb magma type

The High-Nb magma type shows strongly enriched
OIB-like mantle-normalized incompatible element pat-
terns rather similar to those of the enriched ferropicrite
suite (Fig. 5d). Many of their characteristic features,
such as near-chondritic Sr—Nd isotopic ratios, high
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Rift-parallel cross-section of the Vestfjella region
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Fig. 12. Petrogenetic model for the Vestfjella CFB suite in a schematic cross-section along the Africa—Antarctica rift zone at 189-
182 Ma (see text and Table 6). Initial partial melting of hot, sublithospheric DM peridotite at c¢. 4 GPa and 1600°C (Hirschmann, 2000)
is broadly compatible with previous P-T estimates based on the depleted ferropicrite (D-FP) suite magmas (Heinonen & Luttinen,
2010). The Low-Nb and depleted ferropicrite magmas represent relatively higher and lower degrees of melting, respectively.
Modification of DM-sourced magmas by contamination with crust (CC) and SCLM (MC) yielded diverse, enriched rift-assemblage
magma types. At a relatively early stage contamination of Low-Nb magmas principally with Archaean crust produced CT1 lavas
(CC), although contamination with SCLM material may also have occurred (MC). In contrast, contamination of Low-Nb magma with
lamproite-like melts derived from metasomatic veins in the SCLM produced CT3 lavas (MC). At a relatively late stage, emplacement
of contaminated CT1 and CT3 dykes and uncontaminated DM-sourced Low-Nb and depleted ferropicrite suite dykes, as well as
OIB-type enriched ferropicrite suite (E-FP) and High-Nb dykes from pyroxenite-bearing enriched mantle domains, occurred
coevally. The CT3-E dykes represent compositions modified by SCLM-contamination (MC) and subsequent fractional crystalliza-
tion. CT3 and CT3-E that show high Th/Nb have been additionally contaminated with Proterozoic crust (CC). The origin of the CT2
lavas possibly resembled that of Th-enriched CT3 (see Luttinen & Furnes, 2000). The magma pathways through the lithosphere and
the fusible metasomatic vein SCLM material may have originated as a result of the ¢. 1 Gyr multistage magmatic—tectonic history

of the rift system (Jourdan et al., 2004).

La/Sm and Sm/Yb, and the overall incompatible elem-
ent patterns and Nd isotopic composition could be
modelled fairly well by relatively high-degree (6%) con-
tamination of a Low-Nb parental melt with SCLM mater-
ial (Figs 10b and 11). On the other hand, the low Th/Ta
of the High-Nb magma type is not readily explained by
contamination with lithospheric materials. Given that
Th/Ta is highly sensitive to incorporation of typical litho-
spheric material (see Table 6; Figs 10b and 11b), we
consider that the High-Nb magma type is not derived
from Low-Nb type magma, but represents melting of an
enriched mantle source component similar to that
inferred for the enriched ferropicrite suite by Heinonen
et al. (2010) (Fig. 12).

Summary of contamination models

Our contamination models demonstrate that incorpor-
ation of highly enriched partial melts of SCLM and con-
tinental crust can effectively overprint DM-sourced
parental magmas and lead to generation of diverse en-
riched CFB magma types. In the case of the Vestfjella

dyke swarm, the compositional features of the CT1 and
CT3 magma types can be explained remarkably well by
using a common Low-Nb type N-MORB-affinity parental
melt, simple modelling parameters, and compositions
of local or representative lithospheric rock types.

We emphasize two important implications of the
contamination model. First, the application of EC-AFC
modelling yields a relatively good fit for CT1 without
the high degrees (>20%) of crustal contamination
inferred from previous AFC models (see Luttinen &
Furnes, 2000). Second, the modelling of CT3-E dykes
demonstrates the possibility of generating high-Ti affin-
ity magma types from low-Ti parental magmas by
contamination.

Mantle sources
Depleted mantle
Available data show the 186 Ma depleted ferropicrite
suite and the still loosely age-constrained (>173 Ma)
Low-Nb magma type to be isotopically (Sr, Nd, Pb, Os)
indistinguishable from each other and from depleted
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MORB-source mantle (DMM) (see Heinonen et al,
2010). Furthermore, the primitive mantle-normalized in-
compatible element patterns of these magma types ex-
hibit similar diagnostic features, despite notably
different concentration levels (Fig. 5¢). Combined, the
available data suggest that the depleted ferropicrite
suite and Low-Nb magma types represent, respectively,
relatively low- and high-degree partial melts of the
same garnet-bearing peridotitic (Heinonen & Luttinen,
2010) DM-like source in the sublithospheric mantle
(Heinonen et al., 2010) (Fig. 12).

Based on our contamination models, we consider
that the same DM source was also involved in the gen-
eration of the numerous CT1 and CT3 dykes, as well as
the voluminous CT1 and CT3 lavas (Figs 10-12). This in-
terpretation has the fundamental implication that the
great majority of the CFB magmas in the Vestfjella sec-
tion of the Africa—Antarctica rift were primarily derived
from relatively homogeneous DM sources (up to
80-100%; see Fig. 10).

It is important to note that some of the least-contami-
nated and least-altered samples of the Low-Nb magma
type and the depleted ferropicrite suite have notably
high LILE relative to HFSE (Fig. 5). In fact, this selective
LILE enrichment characterizes all but few of the
Vestfjella dykes (Fig. 5) and has been previously recog-
nized as a key character of the Vestfjella lavas (Luttinen
& Furnes, 2000). Crucially, the LILE enrichment does not
correlate with visual or chemical indications of second-
ary alteration (e.g. Luttinen & Furnes, 2000) and is also
decoupled from LREE enrichment, Nd and Sr isotopic
compositions, and other typical geochemical indicators
of crustal and SCLM contamination (e.g. Heinonen &
Luttinen, 2008; Luttinen et al., 2010). Regardless of the
exact carrier of LILE (e.g. subduction-related fluid or
recycled gabbro; see Luttinen & Furnes, 2000; Heinonen
& Luttinen, 2008; Luttinen et al., 2010), we regard the se-
lective LILE enrichment to be an intrinsic feature of the
DM source and point out that comparable LILE enrich-
ments have been reported for hotspot-affinity basalts
and picrites (e.g. Hofmann & Jochum, 1996; Sobolev
et al., 2000; Kent et al, 2002) as well as from the
Southwest Indian Ocean Ridge, the present manifest-
ation of the Africa—Antarctica rift (le Roex et al., 1989).

In summary, the geochemical characteristics of the
depleted ferropicrite suite and the Low-Nb dykes, com-
bined with the results of contamination models, sug-
gest variably LILE-enriched, peridotite-dominated
sublithospheric DM as the principal magma source of
the Vestfjella CFBs (Fig. 12).

Enriched mantle

Enriched subcontinental lithospheric mantle has been
widely regarded as the principal mantle source of many
CFB magmas and has been the favoured mantle source
also in the Karoo province (e.g. Hawkesworth et al.,
1984; Sweeney et al., 1994; Luttinen & Furnes, 2000;
Ellam, 2006; Jourdan et al., 2007a). In the case of

low-Mg tholeiites, however, it is very difficult to distin-
guish an SCLM-sourced magma composition from one
generated by mixing of DM-sourced magma with SCLM
and/or crustal material. Bearing in mind the uncertain-
ties related to the generation of voluminous, dry tholei-
ites from hydrous SCLM (e.g. Arndt et al., 1993) and the
results of our contamination models, we argue for the
possibility that SCLM was not the preponderant mantle
source of the Karoo magma types represented by the
Vestfjella dyke swarm, but, instead, it was an important
modifier of enriched CFBs (CT3).

The OIB-affinity enriched ferropicrite and High-Nb
magma types probably represent magmas that have
been insignificantly modified by contamination.
Reliable age data for these dykes are unavailable, but
greenschist-facies contact metamorphism of the High-
Nb dykes implies emplacement prior to the adjacent
181-2 = 0-5Ma (recalculated from Zhang et al., 2003)
Utpostane layered intrusion. It also seems likely that the
enriched ferropicrite dykes were emplaced during a
relatively early stage or the main stage of Karoo mag-
matism; they are found close to the base of the >1km
thick lava succession and their amygdaloidal texture is
suggestive of near-surface vesiculation (see Gerlach,
1986).

Heinonen & Luttinen (2008, 2010) and Heinonen
et al. (2010) have previously suggested derivation of the
enriched ferropicrites from pyroxenite-rich mantle sour-
ces. Our data on the High-Nb dykes are inadequate for
detailed source characterization, but we consider that
broadly similar, but not identical, pyroxenite-rich sour-
ces could have produced both the enriched ferropicrite
and High-Nb magma types (Fig. 12). Given that the en-
riched ferropicrite and High-Nb magma types are un-
suitable as parental magmas of other magma types and
that they are found only as two small sets of closely
spaced cross-cutting dykes at Basen and Utpostane, re-
spectively, pyroxenite-dominated sources probably
made volumetrically minor and temporally brief contri-
butions to magmatism in the Vestfjella region.

Development of the Vestfjella rift section

The broadly seaward-dipping Vestfjella CFB lava
succession and the crosscutting Vestfjella dyke swarm
represent a section of the Africa—Antarctica rift that de-
veloped into a volcanic rifted margin during the
Gondwana breakup process. Here we combine the
available geochemical, petrological, and chronological
data into a schematic evolutionary model of rift mag-
matism in Vestfjella (Fig. 12).

The early and main magmatic stages
(181-189 Ma)

Our results and the previously published age data of
Zhang et al. (2003) indicate an age range from 181 to
189 Ma for Karoo magmatism in Vestfjella. The >1km
thick volcanic succession exposed in Vestfjella has not
been reliably dated; previous attempts have failed
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owing to hydrothermal alteration of the lavas (Zhang
et al., 2003). The Vestfjella dyke swarm shows an intru-
sive relationship with the lava succession, however,
and the dyke ages thus constrain the minimum age of
the wall-rock flood basalts (see Fig. 12): our intrusive
ages for the dolerite dykes and gabbros overlap with
and exceed the preferred ages of Karoo CFB magma-
tism (Jourdan et al, 2008). Most notably, dyke
115-KHG-91, dated at 189-2 +=2.3Ma, cross-cuts a
c. 300 m thick sequence of lavas at the summit of nun-
atak Kjakebeinet (Fig. 2), which suggests that the
Vestfjella dykes and lavas record up to ¢. 8 Myr of mag-
matic activity and include some of the earliest eruptions
of the Karoo CFB province. This possibility is compat-
ible with the presence of several sandstone intercal-
ations between compound flow fields of CT1 and CT3
lavas (Hjelle & Winsnes, 1972; Luttinen et al., 1998),
which indicates contemporaneous effusive volcanism
and sedimentation; that is, a relatively early stage of
local eruptive activity (Jerram & Widdowson, 2005).
Although this interpretation is also compatible with the
characteristic association of ferropicrites with early
stage CFB magmatism (Gibson, 2002), it is based on
few age data and should be confirmed by additional
well-defined isotopic ages before it is firmly accepted.

Geochemical data for the Vestfjella lavas and dykes
suggest that an early stage of low-Ti (CT1 and CT3) and
transitional-Ti (CT2) lava eruptions was followed by
contemporaneous, although possibly periodic emplace-
ment of low-Ti (CT1, CT3) and high-Ti affinity (CT3-E,
High-Nb, the ferropicrite suites) magmas (Fig. 12). We
consider that the wide compositional range of the
Vestfjella magma types resulted essentially from diver-
sification of DM-sourced magmas by melting and con-
tamination processes and that the rare High-Nb and
enriched ferropicrite suite dykes represent subordinate
enriched components in the sublithospheric mantle
(Fig. 12).

All of the Vestfjella lavas and dykes exhibit high
Sm/Yb diagnostic of a high-pressure origin (see Fram &
Lesher, 1993). Interestingly, the CT1 and CT3 dyke rocks
are characterized by higher (Sm/Yb)y values (typically
2-4-3.0) than the wall-rock lavas (typically 2-0-2-4; see
Luttinen & Furnes, 2000). This compositional change is
contrary to the expected result of progressive rifting
and could indicate lower average degrees of partial
melting and cooling of the inferred DM source of the
dykes (Fig. 12); however, compositional differences in
the DM source or in lithospheric contaminants cannot
be ruled out at present. The 181 Ma Utpostane layered
gabbro intrusion (Fig. 2) represents the youngest dated
CFB event and the only low Sm/Yb magma emplace-
ment in Vestfjella (recalculated from Zhang et al., 2003;
Vuori & Luttinen, 2003). Rather than indicating rapid
lithospheric thinning in the Vestfjella region, however,
the low (Sm/Yb)y values (1-4 = 0-1) and other geochem-
ical evidence suggest that it is genetically linked to the
plateau-assemblage low-Sm/Yb CFB lavas of
Kirwanveggen and Sembberget (Luttinen et al., 2010).

Overall, the geochemical and age data for the Vestfjella
dyke swarm and the associated lavas do not indicate
progressive thinning of the lithosphere within the
Africa—Antarctica rift during the main stage of Karoo
magmatism (see Tegner et al., 1998).

The late tectono-magmatic stage (140-173 Ma)
The c. 173 Ma alteration plateau age of the Vestfjella
Low-Nb dykes is marginally younger than the ¢. 176 Ma
intrusive age of the late-stage Rooi Rand dykes in Africa
(recalculated from Jourdan et al., 2007b). As pointed
out above, it is also possible that the c¢. 1773 Ma alter-
ation age only marginally postdates the intrusion age of
the Low-Nb dykes, so that these geochemically N-
MORB-type rocks (e.g. eng+8) could represent late-
stage magmatism in Vestfjella, although our geochem-
ical models suggest production of Low-Nb type parental
magmas of CT1 and CT3 already during the main stage.

The previously reported crystallization ages of amyg-
dale K-feldspar at 140 and 152 Ma (recalculated from
Zhang et al., 2003) and our new 154, 164 and 170 Ma
alteration plateau ages suggest prolonged hydrother-
mal activity in Vestfjella. Hydrothermal processes might
have been associated with the development of the
Antarctic rifted margin and contemporaneous with the
assumed onset of seafloor spreading between Africa
and Antarctica (Jokat et al., 2003). Alternatively, the al-
teration events may have been caused by regional or
local tectonic conditions (e.g. Jourdan et al., 2009), or,
alternatively, proximal magmatic activity, such as indi-
cated by the 162 Ma lamproite intrusions of southern
Vestfjella (recalculated from Luttinen et al., 2002). We
also cannot preclude the possibility that the 170-154 Ma
alteration ages of the CT3 dykes only marginally post-
date dyke emplacement, although we consider it
improbable.

AFRICA-ANTARCTICA RIFT MAGMATISM

Evidence for diverse sublithospheric magma
sources in the rift

Geochemical studies of the Africa—Antarctica rift zone
have also demonstrated emplacement of MORB- and
OIB-affinity magma types in the Ahlmannryggen region
and the Lebombo Monocline (Duncan et al., 1990;
Sweeney et al., 1994; Riley et al., 2005). Here we review
the available geochemical and chronological evidence
for sublithospheric depleted and enriched mantle
sources of the Karoo rift assemblage magmatism
(Figs 13-15).

In western Dronning Maud Land, the uncontamin-
ated Group 3 (ferropicrite) dykes of Ahlmannryggen
have high gyq(180 Ma) values (+7 to +9) and incompat-
ible element ratios indicative of a broadly MORB-affinity
depleted sublithospheric mantle source (Riley et al.,
2005) (Figs 13-15). Geochemical comparison indicates
that the depleted sources of the Vestfjella and
Ahimannryggen magma types were different, however,
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Fig. 13. Comparison of initial ’Sr/®®Sr and ey values of
MORB- and OIB-like rift-assemblage Low-Nb, High-Nb,
depleted and enriched ferropicrite suites (this study; Luttinen &
Furnes, 2000; Heinonen & Luttinen, 2008; Heinonen et al.,
2010), Rooi Rand (Hawkesworth et al., 1984; Sweeney et al.,
1994), Group 2 and Group 3 (Riley et al., 2005), and High-Fe
(Sweeney et al., 1994) magma types. DMM and SWIR MORB as
in Fig. 6. Compositions of enriched mantle components EM1
and EM2 (Hart, 1988) have been back-calculated using Rb/Sr
and Sm/Nd values reported by Willbold & Stracke (2006).

and that the latter contained a significant pyroxenite
component (see Heinonen et al.,, 2013, 2014). A sub-
group of E-MORB-affinity dykes belonging to the Group
2 of Ahlmannryggen lack negative Nb anomalies (Fig.
14) and may represent uncontaminated magmas from
mildly enriched sublithospheric mantle sources in the
Ahlmannryggen rift section on the basis of their posi-
tive eng (+1 to +2) values and mildly LREE-enriched
mantle-normalized incompatible element patterns
(Riley et al., 2005) (Figs 13 and 14). The Group 2 and
Group 3 dykes of Ahlmannryggen have not yet been
precisely dated, but existing age constraints are com-
patible with their generation during the early or main
stage of Karoo magmatism (see Riley et al., 2005).

At the conjugate African margin, the Rooi Rand
dolerites form a geographically distinctive and geo-
chemically exceptional dyke swarm in southern
Lebombo (Armstrong et al., 1984; Duncan et al., 1990;
Meth, 1996; Watkeys et al., 2001) (Figs 1 and 15). The
Rooi Rand dyke swarm and rare compositionally similar
lavas and dykes in southern and central Lebombo
(Fig. 15) have been recognized for their MORB affinities
(Sweeney et al., 1994; Jourdan et al., 2007 b). The avail-
able geochemical data show compositions ranging
from LREE-depleted to LREE-enriched and existing iso-
topic data indicate gng(180Ma) from +1 to +4
(Hawkesworth et al., 1984; Duncan et al, 1990;
Sweeney et al., 1994; Meth 1996) (Figs 13 and 14).
Some of the mildly LREE-enriched Rooi Rand dykes
show apparently uncontaminated mantle-normalized
incompatible element patterns similar to those of
Group 2 of Ahlmannryggen (Fig. 14b) and could

100 1) 1) 1) 1) 1) 1) L) L] L] L] 1
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Fig. 14. Primitive mantle-normalized (Sun & McDonough,
1989) immobile incompatible element patterns for depleted (a),
moderately enriched (b), and highly enriched (c) MORB- and
OIB-like rift-assemblage Karoo magma types. Low-Nb, D-FP,
E-FP, Group 2, and Group 3 are fairly homogeneous magma
types and only representative samples are shown for clarity.
Rooi Rand dyke swarm includes both LREE-depleted and mod-
erately LREE-enriched samples. In the case of High-Fe lavas,
REE data exist only for two samples. Data sources as in Fig. 13,
apart from Rooi Rand magma type (Duncan et al., 1990; Meth,
1996).

represent melting of an enriched sublithospheric man-
tle component along the southern and central Lebombo
rift sections (Fig. 15). Recent “°Ar/*®Ar plagioclase ages,
however, indicate emplacement of the E-MORB-like
Rooi Rand magma type at c¢. 176 Ma; that is, signifi-
cantly after the main stage of Karoo rift-assemblage
magmatism in the Lebombo Monocline (Jourdan et al.
2007b). The strongly LREE-depleted Rooi Rand dyke
compositions (Meth, 1996; Watkeys et al., 2001)
(Fig. 14a) suggest melting of sublithospheric DM
sources in the southern Lebombo rift section (Fig. 15),
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Fig. 15. Distribution of the predominant Karoo rift-assemblage
magma types (schematic reconstruction is not to scale; modi-
fied after Cox & Bristow, 1984). Measured (bold) and inferred
(italics) emplacement ages of the DM-affinity and EM-affinity
magma types are indicated (see Riley et al., 2004; recalculated
from Zhang et al., 2003; recalculated from Jourdan et al,
2007 b; this study). D-FP, depleted ferropicrite suite; LNb, Low-
Nb dykes; E-FP, enriched ferropicrite suite; HNb, High-Nb
dykes; G1-4, Group 1-4 dykes; RRd, LREE-depleted Rooi Rand
dykes; RRe, LREE-enriched Rooi Rand dykes; HFe, High-Fe
lavas and dykes; LTZ, low-Ti-Zr lavas and dykes; HTZ, high-Ti-
Zr lavas and dykes; MP, Mwenezi picrites.

but isotopic and age data for this N-MORB-like variety
of the Rooi Rand magma type are still lacking.

The OIB-affinity high-Fe magma type of central
Lebombo represents a possible example of magmas
derived from an enriched sublithospheric mantle
(plume) source (Sweeney et al, 1994) (Fig. 15).
Representative samples show gyg(180 Ma) from 0 to +2
and some chemical resemblance to the enriched ferro-
picrite suite, High-Nb dykes, and Group 2 (Figs 13 and
14), which implies derivation of these magma types
from broadly similar enriched mantle sources.
However, small negative Nb anomalies are suggestive
of some lithospheric contamination of the high-Fe CFB,
such that their incompatible element and isotopic com-
position (e.g. relatively high initial Sr/%Sr) may have
been overprinted (compare our model for the CT3-E
dykes). The high-Fe lavas and dykes have not been

dated, but they are intercalated with silicic volcanic
units dated at ¢. 180-182 Ma using the U/Pb zircon sen-
sitive high-resolution ion microprobe (SHRIMP) method
(Riley et al., 2004) (Fig. 15).

Overall, evidence from the MORB- and OIB-affinity
CFBs from the Antarctic and African rifted margins
points to emplacement of compositionally diverse sub-
lithospheric mantle-derived magmas in the Vestfjella
and Ahlmannryggen regions, and along the Lebombo
Monocline at different evolutionary stages of the Karoo
CFB province during the period 176-186 Ma (Fig. 15).

Importance of sublithospheric and lithospheric
mantle sources

Magma types with lithospheric affinities are by far more
abundant in the Africa—Antarctica rift-assemblage than
MORB- or OlB-affinity magma types (Fig. 15).
Conventionally, the numerous compositionally different
low-Ti and high-Ti tholeiite magma types that exhibit
lithosphere affinity in Vestfjella (low-Ti CT1and CT3,
transitional-Ti  CT2 lavas, and high-Ti CT3-E),
Ahlmannryggen (low-Ti Group 1, high-Ti Group 4), the
Lebombo Monocline (low-Ti-Zr and high-Ti-Zr basalts,
high-Ti Mwenezi picrites), and the Okavango dyke
swarm (high-Ti-Zr basalts) have been ascribed to prin-
cipal magma sources within heterogeneous SCLM (e.g.
Hawkesworth et al., 1984; Ellam & Cox, 1989; Sweeney
et al, 1994; Luttinen & Furnes, 2000; Ellam, 2006;
Jourdan et al., 2007a). Such a hypothesis is compatible
with the well-demonstrated similarity between the in-
compatible element and Nd and Sr isotopic compos-
itions of the CFBs and South African mantle-derived
xenoliths (e.g. Hawkesworth et al., 1984) and spatially
associated highly alkaline magma types (e.g. Mashikiri
nephelinites, Harmer et al., 1998; Vestfjella lamproites,
Luttinen et al., 2002) (see Fig. 15). The SCLM source
model further avoids unrealistically high degrees of
contamination implied by previous mixing and AFC
models of lithosphere-affinity CFBs (e.g. Luttinen et al.,
1998). However, opinions differ as to whether relatively
cool SCLM is a viable source for voluminous tholeiites,
and whether dehydration melting of metasomatized
SCLM is compatible with the dry phenocryst assem-
blages of CFBs (e.g. Arndt & Christensen, 1992).

Ellam & Cox (1991) were the first to propose that the
geochemical characteristics and Nd isotopic compos-
itions of the high-Ti Mwenezi picrites (previously
referred to as the Nuanetsi picrites) resulted from con-
tamination of N-MORB-like parental magmas with
highly enriched SCLM-sourced lamproite-like melts.
They further suggested that a similar mixing process
could account for the lithosphere affinity of other Karoo
CFB magma types. Subsequently, several studies have
applied the ‘SCLM-contamination” model using differ-
ent kinds of parental magma types to address the petro-
genesis of Karoo CFBs (Sweeney et al., 1994; Luttinen &
Furnes, 2000; Riley et al., 2005; Ellam, 2006; Jourdan
et al., 2007 a; Luttinen et al., 2010). Overall, an important
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role for SCLM-derived contaminants has been fa-
voured, but the sublithospheric versus lithospheric
source of the parental magmas has remained contro-
versial. The presence of >173Ma and 186 Ma DM-
affinity (Low-Nb and depleted ferropicrite suite) magma
types in Vestfjella confirms the involvement of sublitho-
spheric DM sources in the Karoo rift-assemblage mag-
matism and, together with our EC-AFC and AFC
models, lends new support to the feasibility of the
Ellam & Cox (1991) hypothesis of a sublithospheric
principal magma source in the case of Karoo rift-
assemblage CFB. Importantly, the petrogenetic models
demonstrate that it is theoretically possible to transform
an N-MORB-affinity parental magma into diverse litho-
sphere-affinity low-Ti and high-Ti CFB magmas with
only a minor quantity of highly incompatible element-
enriched partial melt of lithospheric material (Figs 10
and 11). Although our study does not invalidate pre-
dominantly SCLM mantle sources for Karoo CFB, it sug-
gests that, despite the limited occurrence of MORB- and
OIB-like CFB, sublithospheric mantle may have been an
important, or even the predominant source of the rift-
assemblage magmas.

Rift-assemblage versus plateau-assemblage
magmatism

In summary, we suggest that the voluminous litho-
sphere-affinity low-Ti and high-Ti CFBs of the rift-as-
semblage were produced by effective mixing of SCLM-
derived melts and crustal material into sublithospheric
mantle-sourced parental magmas as they ascended
through the lithosphere. The magma pathways through
thick lithosphere and the high abundance of fusible
metasomatic vein SCLM material within the Africa-
Antarctic rift may have originated as a result of the c. 1
Gyr multistage tectono-magmatic history proposed for
the triple rift pattern (Jourdan et al., 2004). Bearing in
mind that reliable age data are not available for the rift-
assemblage basalt and picrite lavas of the Lebombo
Monocline, Mwenezi area, Sabi Monocline, Lupata area
(Jourdan et al., 2008) and Ahlmannryggen (Riley et al.,
2005), our 182-189Ma emplacement ages of the
Vestfjella dykes raise the question of whether at least
some of these rift-assemblage CFBs might predate the
province-wide 179-183Ma main-stage CFBs (see
Svensen et al., 2007, 2012; Jourdan et al., 2008) and rep-
resent the earliest phase of Karoo magmatism.
Although this interesting interpretation calls for add-
itional age constraints, our 173-154 Ma hydrothermal
ages and the previously dated 162 Ma lamproites (recal-
culated from Luttinen et al., 2002), as well as 151 and
140 Ma hydrothermal potassium feldspars (recalculated
from Zhang et al., 2003), provide evidence for continued
magmatic and tectonic activity along the Antarctic rifted
margin until the continental rift had transformed into a
juvenile mid-ocean ridge system at 160-150 Ma (Jokat
et al., 2003); that is, long after the main magmatic stage
and the assumed onset of oceanization along the

African margin at 176 Ma (Jourdan et al, 2007b;
Klausen, 2009).

It is important to bear in mind that our study is
focused on the Karoo rift-assemblage magmas only.
Several previous studies have demonstrated that the
relatively monotonous and more widespread plateau-as-
semblage CFBs are geochemically different from the rift-
assemblage CFBs and were emplaced rapidly at 179-
183 Ma (Duncan et al., 1984; Furnes et al., 1987; Harris
et al.,, 1990; Marsh et al., 1997; Svensen et al., 2007, 2012;
Jourdan et al., 2008). On the basis of diverging Nd and
Sr isotopic trends (Fig. 6; see Elliot & Fleming, 2000) and
different melting depths indicated by REE characteristics,
it is even possible that the rift-assemblage and the plat-
eau-assemblage CFBs represent different petrogenetic
lineages derived from distinctive mantle sources
(Jourdan et al., 2007 a; Luttinen et al., 2010), although the
principal sources of the voluminous plateau-assemblage
CFB remain enigmatic owing to poorly constrained par-
ental magma compositions (Jourdan et al, 2007a;
Neumann et al., 2011). Overall, our results are compat-
ible with the view that the petrogenesis and duration of
Karoo CFB magmatism within the Africa—Antarctica triple
rift and the surrounding lava plateaux may have been
fundamentally different (see Cox, 1972; Elliot & Fleming,
2000; Jourdan et al., 2007 a; Luttinen et al., 2010).

CONCLUSIONS

This study is focused on the CFB of the Africa—
Antarctica rift (i.e. the Karoo rift-assemblage magmas).
Combined, our age results and geochemical data and
previously published data on the Vestfjella dykes lead
to the following conclusions.

1. The Vestfjella dyke swarm cross-cuts Karoo CFB
lavas at the rifted margin of western DML. The
swarm is composed of geochemically diverse bas-
altic and picritic CFBs that can be grouped into seven
Low-Ti and High-Ti tholeiitic magma types on the
basis of their trace element and isotopic compos-
itions: magma types CT1 (Low-Ti) and CT3 (Low-Ti)
can be correlated with similarly designated CFB
lavas of Vestfjella (CT2 is not found as dykes; see
Luttinen & Furnes, 2000), whereas Low-Nb (Low-Ti),
CT3-E (High-Ti), High-Nb (High-Ti) and the depleted
(Trans-Ti) and enriched ferropicrite suites (High-Ti)
are found only as dykes. The initial Nd and Sr iso-
tope compositions calculated at 180 Ma exhibit wide
ranges (eng from +8 to -17 and ®Sr/Sr from
0-70318 to 0-71038, respectively) that span the whole
compositional spectrum of Karoo CFB.

2. Our *°Ar/*°Ar age data indicate a subsolidus over-
print even in visually unaltered, hand-picked plagio-
clase fractions. Four dyke samples yielded plateau
ages of 172.9+29, 169-5+1.9, 163-8+ 1.5, and
153-9 = 0-8 Ma that we interpret as alteration ages
based on notably variable Ca/K signals. The plateau
ages of 189-2+2.3Ma (CT1) and 1855+ 1-8Ma
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(depleted ferropicrite suite) and the mini-plateau age
of 186-9 + 2-8 Ma (CT3-E) exhibit consistent Ca/K and
are interpreted as magma emplacement ages that
predate the 179-183 Ma main stage of Karoo mag-
matism. Two indistinguishable 2°°Pb/?*®U zircon
ages (CT1) of 182:2+0-7 and 182-:2 = 0-9Ma prove
synchronous main-stage CFB magmatism in the
African and Antarctic rift sections. The wide
4O0Ar/3%Ar age range calls for further chronological
constraints on the still poorly dated Karoo rift-as-
semblage magmatism.

3. The isotopically indistinguishable Low-Nb dykes and
the depleted ferropicrite suite have MORB affinities
and were derived from the same overall DM-type
sublithospheric mantle source, whereas the rare
High-Nb and the enriched ferropicrite suite dykes
show broad OIB affinities and probably represent
partial melts of enriched, possibly pyroxenite-bear-
ing, components of the sublithospheric mantle. The
currently available geochemical and isotopic data in-
dicate the presence of heterogeneous depleted and
enriched sublithospheric mantle components be-
neath the Vestfjella, Ahimannryggen, and Lebombo
sections of the Africa—Antarctica rift.

4. Our geochemical EC-AFC and AFC models indicate
that the CT1, CT3, and CT3-E magma types were
generated by crustal and SCLM contamination of
Low-Nb type parental magmas, which suggests that
sublithospheric depleted mantle may have been the
predominant magma source in the Vestfjella rift sec-
tion. The model for CT3-E dykes implies that high-Ti
magmas with lithospheric geochemical characteris-
tics can be generated by low-degree contamination
of N-MORB-like (low-Ti) parental magmas and sup-
ports the view that depleted mantle may be the pre-
dominant source of the Karoo rift-assemblage CFB.
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