Journal of Petrology, 2019, Vol. 60, No. 4, 871
doi: 10.1093/petrology/egz013

Advance Access Publication Date: 11 March 2019

Corrigendum

Corrigendum to: 'Modelling the Hafnium-Neodymium Evolution of Early Earth: A Study from West Greenland'

Journal of Petrology 2019, Volume 60, pages 177–197, doi: 10.1093/petrology/egy110

Nicholas J. Gardiner^{1,2,*§}, Tim E. Johnson^{1,3}, Christopher L. Kirkland^{1,2§} and Kristoffer Szilas⁴

¹School of Earth and Planetary Sciences, Curtin University, [§](Centre for Exploration Targeting—Curtin Node), Perth, Australia; ²Australian Research Council Centre of Excellence for Core to Crust Fluid Systems, Australia; ³State Key Lab of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, China; ⁴Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark

*Corresponding author. Present address: School of Earth, Atmosphere and Environment, Monash University, Victoria 3800, Australia. Telephone: +61 (0) 3 9905 4879. Fax: +61 (0) 3 9905 4903. E-mail:-nick.gardiner@monash.edu. Fax: +39 0116705128.

In the published version of the paper, Table 1 shows the major element compositions of the starting compositions used in phase equilibrium modelling in terms of weight percent oxides, which does not permit the phase diagrams (Figs 1 & 2) to be reproduced. The revised Table 1 provides these compositions in terms of mol.% oxides in the chemical systems of interest (NCFMASCrO and NCKFMASHTO, respectively; see main text). The revised Table and caption are provided below.

Table 1: Input bulk major element compositions (mol.%) used for phase equilibria modelling. The average Isua basalt composition was calculated using the mean composition of nine meta-basalt analyses (Hoffmann *et al.*, 2011b), excluding one analysis with high $\rm K_2O$ and one with anomalously high Sm/Nd. The composition of DMM is based on Workman and Hart (2005), and for PUM on McDonough and Sun (1995)

mol%	DMM	PUM	Isua basalt
Na ₂ O	0.110	0.301	1.844
CaO	2.914	3.276	9.552
K ₂ O			0.177
FeO	5.928	5.850	9.679
MgO	50.000	48.963	18.437
Al_2O_3	2.036	2.274	4.746
SiO ₂	38.719	39.106	48.093
TiO ₂			0.618
Cr_2O_3	0.190	0.130	
0	0.100	0.100	0.481
H ₂ O			6.374