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Abstract. There is a fundamental duality in the way we view planktonic communities. On one hand,
we see these communities as composed of a diverse mixture of taxonomically and biogeochemically
distinct species; pelagic ecosystem models capable of predicting the ocean’s role in the global carbon
cycle will need to resolve these multiple plankton taxa. However, we have also come to appreciate
that superimposed on this diversity are regular patterns of size structure, where plots of abundance
within size classes typically show a power-law dependence on size. A truly complete model descrip-
tion of planktonic community structure must reflect both aspects of this duality. Here I examine two
classes of ecosystem models that are capable of representing this duality. The first structure is based
on multiple (n) couplets of phytoplankton (P) and zooplankton (Z) [an ‘n(PZ)’ model]. Within
certain regions of parameter space, this model structure can produce anomalous oscillatory behaviors,
the mathematical origin of which is explored in detail. I then examine an alternative food web
structure in which total herbivore abundance is represented by a single state variable, G, and where
grazing pressure is distributed among taxa in proportion to their abundances. This ‘(nP)G’ system is
stabilized by the redistribution of grazing intensity among taxa in response to changes in their
densities. This ‘distributed grazing’ model also naturally produces size spectra of plankton abundance;
this last observation argues that the model with distributed grazing can help in uncovering and repre-
senting the mechanistic basis for the genesis and maintenance of planktonic size spectra of phyto-
plankton and bacteria.

Introduction

In pelagic ecosystem models used for ocean biogeochemistry, it will often be
necessary to include a variety of biological taxa whose presences have different
geochemical implications (Totterdell et al., 1994). For example, in studies of the
ocean’s role in the global carbon cycle, the relative proportions of diatoms and
coccolithophorids in the phytoplankton are of obvious importance, since
conditions favoring coccolithophorids over diatoms lead to enhanced precipi-
tation of calcium carbonate, which in turn lowers alkalinity and increases the
partial pressure of carbon dioxide (Broecker and Peng, 1982). Similarly, nitrogen
fixers will need to be included, since their activity can increase new production,
increasing the potential for oceanic uptake of carbon dioxide from the atmos-
phere (Capone et al., 1997; Falkowski, 1997), and because they may also deter-
mine whether a given region of the ocean is limited by nitrogen or by phosphate
(Karl et al., 1997). Finally, different algal size classes and taxa may be grazed by
predators whose fecal pellets sink at different speeds, which may in turn influence
the depth at which remineralization occurs (Totterdell et al., 1994).

A fundamental question then arises: given the necessity of including diverse
taxonomic groups, how is this goal most naturally attained? One way to proceed
is first to recognize that there is a fundamental duality in the way we view plank-
tonic communities. On one hand, we see these communities as composed of a
diverse mixture of taxonomically and biogeochemically distinct species. But we
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have also come to appreciate that superimposed on this diversity are regular
patterns of size structure, where plots of abundance within size classes typically
show a power-law dependence on size (Sheldon et al., 1972; Sprules, 1988;
Chisholm, 1992; Gin, 1996; Vidondo et al., 1997). Any putatively complete model
description of plankton community structure must reflect both aspects of this
duality.

As a first attempt at producing a model that could reflect both parts of this
duality, Armstrong (1994) proposed a model with n parallel food chains, each
consisting of a phytoplankton species Pi and its dedicated zooplankton predator
Zi (Figure 1a). Each phytoplankton–zooplankton couplet was taken to represent
a different size class. Parameter values for successive size classes were taken to
vary allometrically (i.e. as a power law) with size (Moloney and Field, 1989, 1991),
with smaller size classes growing more rapidly and being consumed more rapidly
by their zooplankton predators. In this model, as total nutrient in the system is
increased, phytoplankton–zooplankton pairs are added sequentially, starting with
the smallest size classes, which are competitively favored because of their large
surface-to-volume ratios. As total nutrient is increased from very low levels, the
smallest autotrophic size class P1 invades the system, followed by its specialized
grazer Z1. As more nutrient is added, species and size classes are added in the
sequence Pi, Zi, Pi + 1, and so forth, where size increases with i. The pattern
produced by this sequence is one of ‘equal biomass in equal logarithmic size
categories’ (Chisholm, 1992), where total phytoplankton biomass increases by the
addition of larger size classes rather than through increases in existing size classes
[Raimbault et al., 1988; Chisholm, 1992; see also Figure 2 of Armstrong (1994)].

This simple model of parallel food chains was later found to have several
undesirable properties when used to model time series data (G.C.Hurtt and
R.A.Armstrong, personal observation). First, as total nutrient loading is
increased, prey species Pi will invade the system without its specialized grazer Zi.
While this does not hinder the model’s effectiveness at describing steady-state
conditions (Armstrong, 1994), it does cause problems with fitting non-steady-
state data, because the ungrazed largest size class can take up large amounts of
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Fig. 1. Three models with multiple phytoplankton species: (a) multiple parallel food chains; (b) par-
ameterized size dependence with constant biomass density in size classes for sizes below some
maximum size; (c) distributed grazing.



limiting nutrient during blooms, which (being ungrazed) it only slowly returns to
the system during the rest of the year.

The model can be generalized to overcome this problem by allowing zooplank-
ton size class i also to prey on smaller zooplankton size classes and on additional
phytoplankton size classes (Moloney and Field, 1991; Moloney et al., 1991;
Armstrong, 1994; Armstrong et al., 1994): with added food web complexity,
grazer Zi is supported by additional food sources, and so will tend already to be
present when phytoplankter Pi invades [see, for example, Figure 3 of Armstrong
(1994)]. However, as this figure also shows, this fix for one problem gives rise to
a different problem: the set of species that will be present at a given nutrient
loading now becomes extremely sensitive to choices of parameter values and food
web structure (see also Armstrong et al., 1994).

Finally, models with these structures are often dynamically unstable in ways
that are biologically unrealistic. For example, the multiple-size-class simulations
of Moloney et al. (1991) show striking oscillations in phytoplankton and
zooplankton densities. In their simulation of the Benguela upwelling (their
Figures 8 and 9), densities of ‘picophytoplankton’ (0.2–1 µm) show regular spikes
in abundance, going from virtually zero to ~400 mg C m–3 in each spike, with a
period of ~2 days, while the ‘phytoflagellates’ (1–5 µm) show similar spikes at an
interval of ~7 days; corresponding classes of zooplankton show similar oscilla-
tions. Their simulation of the Agulhas Bank (their Figures 4 and 5) is even more
unstable, with picophytoplankton densities spiking irregularly (perhaps chaotic-
ally) at intervals of less than a day. Their ‘oceanic’ simulation is considerably
more stable, but the smallest zooplankton size class still shows sawtooth changes
in densities of a factor of two at intervals of less than a day. Such instabilities are
obviously unrealistic; they also make calibrating these models with time series
data such as those from the Bermuda Atlantic Time Series study (BATS), which
has a time resolution of 2–4 weeks, virtually impossible (G.C.Hurtt and
R.A.Armstrong, personal observation).

In response to these problems, Hurtt and Armstrong (1996, 1999) assumed a
pattern of equal biomass in equal logarithmic size classes (Figure 1b). Their
model predicts how total biomass and size structure should vary in time and
space, but does not address biogeochemical diversity. One way to introduce
biogeochemical diversity into such a model would be to partition values of total
planktonic biomass and productivity among taxa using observed patterns (e.g.
diatom versus carbonate productivity; Maier-Reimer, 1993). This approach
should work well where such relationships are relatively constant in time and
space. In general, however, the partition fractions will themselves be dynamical
variables in space, time, depth and trophic status (Letelier et al., 1993), suggest-
ing that a description of multiple taxa based on competition for nutrients and
differential susceptibility to herbivory will provide a more general and more
fundamental approach to this problem (Armstrong, 1979, 1994; Evans, 1988;
Taylor and Joint, 1990; Thingstad and Sakshaug, 1990; Lehman, 1991; Moloney
and Field, 1991; Moloney et al., 1991; Ducklow and Fasham, 1992; Bissett et al.,
1994).
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A third approach, which overcomes the problems noted above, is to adopt a
model of distributed grazing (Figure 1c). This model has the simplicity and the
predictable behavior of the simple model of parallel food chains, particularly in
its ability to produce particle size spectra (see the section ‘Using the model of
distributed grazing to produce plankton size spectra’), while still ensuring that all
species present are subject to grazing [see equation (24)]. The model is also
dynamically stable under a wide range of conditions (see the section ‘A model of
distributed grazing’). This model is similar to, but not identical with, the switch-
ing grazer model of Fasham et al. (1990). In particular, size-specific and taxon-
specific grazing is modeled as a community-level phenomenon arising from a set
of population-level interactions that is inherently too complicated to model,
rather than as the switching among prey types of a single zooplankton species
(Fasham et al., 1990).

Here I contrast the stability properties of food web models based on parallel
phytoplankton–zooplankton couplets to the stability of food webs based on
distributed grazing. These analyses are based on ‘symmetric’ food web models
(Armstrong, 1982, 1983), where the ‘symmetry’ arises from constraining their
component parts at each trophic level to have the same mathematical form and
parameter values. Because of the symmetry property, I have been able to char-
acterize the stability (tendency to return to steady state) of these food webs when
only the signs (and not the magnitudes) of certain partial derivatives are known.

I start with a simple model with n parallel food chains (the ‘Janzen’ model of
Armstrong, 1983), where each chain contains one phytoplankton and one
zooplankton taxon or size class (Figure 1a). Local stability analysis shows that the
dynamical instabilities in this system arise from the transfer of stabilizing tenden-
cies from some oscillatory modes to others; this transfer process is a generic part
of the model structure (see the Appendix).

I then explore a generalization of the multiple-prey single-grazer model used
by Fasham et al. (1990), in which a single state variable represents total grazer
density, and where potential grazing is distributed among phytoplankton taxa in
proportion to their abundances (Figure 1c). The redistribution of grazing pres-
sure is assumed to operate with a characteristic time lag, allowing taxa that are
currently in lower abundance (and whose grazers are presumably also less abun-
dant) to bloom while taxa that are currently numerically dominant are not bloom-
ing. Analysis of the symmetric case shows that the redistribution of grazing
pressure among phytoplankton taxa counteracts the tendency of the system to
oscillate by increasing the loss rates of taxa that are temporarily more abundant;
this stabilizing tendency is not lost even when there is a delay in the redistribution
process, so long as this delay is not too long. Under simple assumptions relating
phytoplankton growth rates to size, the model produces reasonable phyto-
plankton size spectra, while allowing the explicit representation of biogeochem-
ical diversity. This formulation is also remarkably flexible, and should provide a
framework for modeling a wide range of marine ecosystems.
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A model with parallel food chains

Consider first a model with n parallel food chains, where food chain i is composed
of both a phytoplankton taxon or size class Pi and a zooplankton taxon or size
class Zi that feeds exclusively on Pi, and where all Pi compete for some limiting
nutrient N. This model (Figure 1a) may be written:

dPi––– = fPi(Pi, Zi)dt (1a)
= Pi [µi(N) – Zi hi(Pi)]

dZi––– = fZi(Pi, Zi)dt (1b)
n

= Zi[gi Pi hi(Pi) – «i(S Zj)]
j = 1

for i = 1, …, n, and
n n

N = T – S Pi – S Zi (1c)
i = 1 i = 1

Here µi(N) is the growth rate of Pi as a function of nutrient concentration N. The
function hi(Pi) is the per-phytoplankton-per-zooplankton harvest rate of Pi by
Zi, so that the product Pihi(Pi) is the per-zooplankton harvest rate (the ‘func-
tional response’ sensu Holling, 1965). The parameter gi is the growth efficiency
of Zi.

The term «i( 
n

S
j = 1

Zj) is a closure term (Steele and Henderson, 1981, 1992) that
represents predation on the zooplankton by higher trophic levels; since this
predation is likely to be generalized rather than specialized, I have assumed that
the per-zooplankton predation rate on the ith zooplankton taxon is proportional
to total zooplankton biomass 

n

S
j = 1

Zj rather than to the biomass of Zi alone.
Population sizes are measured as their nutrient equivalents, and remineralization
of nutrient to its available state is assumed to be instantaneous upon death of indi-
viduals, so that the available nutrient N in the system is related to the total
concentration T by equation (1c).

One phytoplankton and one zooplankton

Consider first the case with one phytoplankton taxon or size class and one
zooplankton taxon or size class (n = 1). We can evaluate the stability (the
tendency of the system to return to steady state following a perturbation) of this
system near its non-trivial equilibrium point (P*, Z*) by linearizing equations (1)
near that point, yielding the linear approximation:
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dp ∂fP ∂fp–– –– ––
dt ∂P ∂Z p3 4 = 3 4

*

3 4dz ∂fz ∂fZ z
–– –– ––
dt ∂P ∂Z

(2)
∂µ ∂N ∂h ∂µ ∂N

P*1 –– –– – Z* –– 2 P* 1 –– –– – h2= 3 ∂N ∂P ∂P ∂N ∂Z 4
*

p

∂(gPh) ∂«
3z4

Z* –––––– Z* ––
∂P ∂Z

where p = P – P* and z = Z – Z* are deviations from steady-state values, and
where ‘*’ denotes that all functions and derivatives are evaluated at steady state.
Recognizing that ∂N/∂P = ∂N/∂Z = –1, these equations can be rewritten in terms
of the definitions in Table I as:

dp/dt –a – b –a – c p3 4 = 3 4 3 4 (3)
dz/dt d –e z

The stability of the linearized system can be assessed by finding the eigenval-
ues li of the matrix of partial derivatives defined above, i.e. by solving for the
roots li of the equation det A = 0, where

–a – b – l –a – c
A = 3 4 (4)

d –e – l

Expanding the determinant yields the characteristic equation for this system as

l2 + B1 l + B2 = 0 (5)

where B1 = a + b + e and B2 = e(a + b) + d(a + c).
The roots of equation (5) may be calculated using the binomial formula; the

system will be locally stable near an equilibrium point (i.e. the system will return
to that equilibrium following a small perturbation) if both eigenvalues have nega-
tive real parts. Alternatively, Rough–Hurwitz stability criteria (e.g. May 1973)
may be used to assess whether all eigenvalues have negative real parts; in particu-
lar, a system with two state variables will be locally stable if and only if B1 > 0 and
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Table I. Terms (and their signs, when known) for the
stability analysis of the model with parallel food
chains (Figure 1a). The symbol ‘|*’ denotes that all
variables and functions are evaluated at equilibrium.

ai = P*
i ∂µi/∂N |* > 0

bi = P*
i Z*

i ∂hi/∂Pi |*
ci = P*

i hi |* > 0
di = Z*

i ∂(giPihi)/∂Pi |* > 0
ei = Z*

i ∂«i(S
j  
Zj)/∂Zi |* ≥ 0



B2 > 0. The signs (and possibly magnitudes) of terms a, . . ., e therefore determine
local stability.

Consider first the case where e = 0. We expect a > 0 since per-capita growth
rates increase with nutrient concentration, at least until the concentration
becomes toxic. We expect c > 0 because P*h is total per-zooplankton predation
rate, which must be positive; and we expect d > 0 since the per-zooplankton
predation rate (the ‘functional response’; Holling, 1965) should increase monot-
onically with prey density. These three observations show that B2 is always >0
when e = 0.

In contrast, B1 may be positive or negative, depending on the sign of b, which
is determined by the shape of the functional response curve Ph(P). For concave-
downwards functional response curves such as the Monod function P/(P + KP), a
line drawn from the origin to any point P on the curve will lie completely under
the curve, and the slope of this line at point P will be larger than the slope of the
functional response curve itself. Mathematically, at point P we have h = (Ph)/P
> ∂(Ph)/∂P = h + P∂h/∂P, so that ∂h(P)/∂P < 0; therefore b < 0 and will tend to
be destabilizing by making B1 more negative (see Armstrong, 1976). In contrast,
S-shaped functional response curves and those with feeding thresholds will have
regions where b > 0, where they lend a stabilizing influence by making B1 more
positive (Armstrong, 1976; Steele and Henderson, 1992). This tension between
the inherently stabilizing property of the phytoplankton response to nutrient
concentration and the potentially destabilizing zooplankton functional response
to phytoplankton density determines whether the system will be stable or
unstable near its non-trivial equilibrium.

We next explore the case e > 0, which is taken to represent an increase in pre-
dation rates by higher level predators as prey (zooplankton) density increases;
Steele and Henderson (1992) advocate Zm – 1, m > 1, or Z/(Z + KZ) for the func-
tion «(Z). From the equations for B1 and B2, it is apparent that a system that is
stable for e = 0 (i.e. has a + b > 0) will not be destabilized by e > 0, since both B1

and B2 will remain >0, while a system that is unstable for e = 0 may or may not
be stabilized, depending on the magnitude of e [see Steele and Henderson (1992)
for further discussion].

n phytoplankton and n zooplankton

Next consider a system composed of n parallel food chains, and assume that they
are ‘symmetric’ in the sense that the growth functions for all taxa at the same
trophic level have the same functional forms and the same parameter values
(Armstrong, 1982, 1983). Order the equations such that those for successive Pi
are odd numbered and those for successive Zi are even numbered. Then to evalu-
ate the local stability of this system near its non-trivial equilibrium point (P1* =
P2* = … = Pn*, Z1* = Z2* = … = Zn*), linearize equations (1) near this point. The
linearized system can be written in terms of the definitions in Table I as:
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dp1/dt –a – b –a – c –a –a –a –a . . . p1
dz1/dt d –e 0 –e 0 –e . . . z1
dp2/dt –a –a –a – b –a – c –a –a . . . p23dz2/dt 4 = 3 0 –e d –e 0 –e . . . 4 3 z2 4 (6)
dp3/dt –a –a –a –a –a – b –a – c . . . p3
dz3/dt 0 –e 0 –e d –e . . . z3

. . . . . . . . . . . . . . . . . . . . . . . . . . .

Note that since the system is symmetric, the ai, bi, etc., are identical for all i, so
that the subscripts can be dropped. Note also that since phytoplankton and
zooplankton concentrations are measured as their nutrient equivalents, all the Pi
and Zi affect all the µi equally. The stability of the linearized system is found by
solving for the eigenvalues li of the 2n 3 2n Jacobian matrix defined above, i.e.
by solving for the 2n roots of the equation:

–a – b – l –a – c –a –a –a –a . . .
d –e – l 0 –e 0 –e . . .
–a –a –a – b – l –a – c –a –a . . .

det 3 0 –e d –e – l 0 –e . . . 4 = 0 (7)
–a –a –a –a –a – b – l –a – c . . .
0 –e 0 –e d –e – l . . .

. . . . . . . . . . . . . . . . . . . . .

Elementary row and column manipulations (Lipschutz, 1968) can be used to
rewrite equation (7) in a more useful form. First subtract column 1 from columns
3, 5, . . ., 2n – 1 and column 2 from columns 4, 6, . . ., 2n, producing:

–a – b – l –a – c b + l c b + l c . . .
d –e – l –d l –d l . . .
–a –a –b – l –c 0 0 . . .

det 3 0 –e d –l 0 0 . . . 4 = 0 (8)
–a –a 0 0 –b – l –c . . .
0 –e 0 0 d –l . . .

. . . . . . . . . . . . . . . . . . . . .

[This manipulation makes use of the fact that adding any column in a matrix to
any other column, or any row to any other row, does not change the determinant;
see, for example, Lipschutz (1968), p. 174.] Then add rows 3, 5, . . ., 2n – 1 to row
1 and rows 4, 6, . . ., 2n to row 2 to get:

–na – b – l –na – c 0 0 0 0 . . .
d –ne – l 0 0 0 0 . . .
–a –a –b – l –c 0 0 . . .

det 3 0 –e d –l 0 0 . . . 4 = 0 (9)
–a –a 0 0 –b – l –c . . .
0 –e 0 0 d –l . . .

. . . . . . . . . . . . . . . . . . . . .
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Expanding by cofactors the determinant of the ‘block-triangular’ (Press et al.,
1986) matrix (9) yields the characteristic equation:

det A1 A2
n – 1 = 0 (10)

where

–na – b – l –na – c
A1 = 3 4 (11)

d –ne – l

and

–b – l –c
A2 =3 4 (12)

d –l

Even without solving these equations, it is clear that one pair of eigenvalues
(determined from det A1 = 0) contains all the stabilizing effects of phytoplankton
limitation by nutrients (a) and all the potential stabilizing effects of
Steele–Henderson predator limitation (e). In contrast, the other n – 1 sets of
eigenvalues (determined from det A2 = 0) are bereft of these stabilizing influ-
ences and will only be stable if the predator functional response is stabilizing 
(b > 0). It is this reallocation of stabilizing influence among system components
that can cause the system to become unstable when multiple food chains are
linked through a common nutrient (Armstrong, 1983). The reallocation is from
oscillatory modes where phytoplankton densities vary ‘out of phase’ (where
some densities are increasing when others are decreasing) to modes that vary ‘in
phase’ (with all densities changing in parallel). This is apparently what happened
in the case of Moloney et al. (1991), whose functional response curves are
concave downward, and are therefore destabilizing. See the Appendix for
further details.

Finally, note that in the symmetric case one could easily stabilize the system
with an S-shaped functional response or a feeding threshold; in particular, the
feeding thresholds that were used by Armstrong et al. (1994) did confer stability
to those simulations. However, in systems with non-symmetric parameter values
and/or with more complex trophic structures, it is not at all clear that simply
adding enough curvature to the functional response curve or adding a feeding
threshold, which are used to stabilize within-chain oscillations, will generically
stabilize the out-of-phase motions that cause the instability. Instead, a better way
to combat instability may be to use a model structure that damps out-of-phase
oscillations.

A model of distributed grazing

Consider next a system in which a single state variable G represents the total
biomass of zooplankton grazers, and where grazing intensity is distributed among
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plankton taxa in proportion to their (past) abundances (Figure 1c). In particular,
assume that at steady state a fraction W*i of total grazing intensity is directed at
taxon i, and that the W*i can be calculated as W*i = ciPi/ 

n

S
j

cjPj [equation (13c)],
where cj is the susceptibility of taxon j to grazing (Armstrong, 1979). This scheme
is similar to that used by Fasham et al. (1990) to distribute grazing among bacteria,
phytoplankton and detritus. An important difference, however, is that here the
state variable G is identified not as the abundance of a single species, but as the
size of the entire grazing community.

We allow for a lag in the redistribution of grazing intensities as plankton dens-
ities change. This lag is embodied in equation (13b), where at any time t the
current distribution fractions Wi are assumed to be approaching their steady-state
values W*i logistically; this mathematical form is appropriate if changes in Wi are
driven more by changes in the relative abundances of grazer species than by
behavioral changes within prey species (contra the assumption of Fasham et al.,
1990). Note that away from steady state, the Wi need not sum to unity: far from
steady state, the efficiency of the grazing community may be impaired as taxa of
grazers that were previously rare increase in response to increases in their prey
populations.

The model can be written: 

dPi––– = Pi [µi(N) – G Wi hi (ci Pi)] (13a)
dt

dWi––– = ai Wi (1 – Wi/Wi*) (13b)
dt

Wi* = ci Pi/ 
n

S
j = 1

cj Pj (13c)

dG
––– = G [ 

n

S
i = 1

gi Pi Wi hi(ci Pi) – «(G)] (13d)
dt

N = T – 
n

S
i = 1

Pi – G (13e)

Note that the functional response curves hi are written as functions of suscepti-
bilities ci as well as of densities Pi [equations (13a) and (13d)]; while this nota-
tion is of little consequence here, it will facilitate generalizing the model to one
that can produce size spectra (see the following section).

In the case with a single phytoplankton taxon, there is no distribution of grazing
intensity, so that W1 = 1 and the stability matrix reduces to equation (4). For
multiple phytoplankton taxa, put the grazing state variable G in the first row, the
Pi in even rows, and the Wi in odd rows starting with row 3. Noting that the Pi*
are all equal, we can then write the stability matrix as:
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dg/dt –e d m d m d m . . . g
dp1/dt –a – c –a – b –fii –a 0 –a 0 . . . p1
dw1/dt 0 lii –a lij 0 lij 0 . . . w13dp2/dt4 = 3–a – c –a 0 –a – b –fii –a 0 . . .4 3p24 (14)
dw2/dt 0 lij 0 lij –a lij 0 . . . w2
dp3/dt –a – c –a 0 –a 0 –a – b –fii . . . p3
dw3/dt 0 lij 0 lij 0 lii –a . . . w3
. . . . . . . . . . . . . . . . . . . . . . . . . . .

The definitions (and signs) of the ai and ci (Table II) are unaltered from the
model with parallel food webs (Table I). The bi and di are also the same as in
Table I, except that the Zi* from Table I are replaced by GWi, and the parameter
e is now a function of the single grazing state variable G. The remaining terms
correspond straightforwardly.

Application of elementary row and column manipulations to the stability
matrix in equation (14) yields the characteristic equation:

–e – l d m 0 0 0 0 . . .
–n(a + c) –na – b – l –fii 0 0 0 0 . . .

0 lii + (n – 1)lij –a – l 0 0 0 0 . . .

det 3 –a – c –a 0 –b – l –fii 0 0 . . .4= 0 (15)
0 lij 0 lii – lij –a – l 0 0 . . .

–a – c –a 0 0 0 –b – l –fii . . .
0 lij 0 0 0 lii – lij –a – l . . .

. . . . . . . . . . . . . . . . . . . . . . . .

Note that ∂W*i /∂Pi = (n – 1)/(n2P*) > 0 and ∂W*i /∂Pj = –1/(n2P*) < 0, so that lii
+ (n – 1)lij = 0. This fact implies that the term in the third row, second column of
equation (15) is zero; the eigenvalues are therefore l = –a (once) and the roots
of:

det A3 A4
n – 1 = 0 (16)
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Table II. Terms (and their signs, when known) for the stability
analysis of the model with distributed grazing (Figure 1c).

ai = P*
i ∂µi/∂N |* > 0

bii = P*
i G* W*

i ∂hi/∂Pi |*
bij = 0
ci = P*

i W*
i hi |* > 0

di = G* giW*
i ∂(Pihi)/∂Pi |* > 0

e = G* ∂«(G)/∂G |* ≥ 0
fii = P*

i G* hi |* > 0
fij = 0
lii = ai ∂W*

i /∂Pi |* > 0
lij = ai ∂W*

i /∂Pj |* > 0
mi = G* gi P*

i hi |* > 0



where

–e – l d
A3 = 3 4 (17)

–n(a + c) –na – b – l

and

–b – l –fiiA4 = 3 4 (18)
lii – lij –a – l

Expanding det A3 = 0 yields the characteristic equation l2 + B1l + B2 = 0, where
B1 = na + b + e and B2 = e(na + b) + nd(a + c). Comparing this result to det A1 =
0 [equation (11)] for parallel food chains, the in-phase modes of both systems will
be stable (for e = 0) if na + b > 0 and will become somewhat more stable for 
e > 0, so that the stability of this mode is comparable in the two models.

However, the out-of-phase modes (whose stability is determined by det A4 =
0) now contain the grazing redistribution rate a on the principal diagonal, so that
B1 = a + b and B2 = ab + fii (lii – lij). The first stability condition (B1 > 0) can there-
fore be satisfied for any b, stabilizing or destabilizing, for a large enough.

The second condition (B2 > 0) requires a bit more work. Using the definitions
from Table II, we rewrite B2 as:

∂hi ∂Wi* ∂Wi*B2 = P* G* a 3 Wi* ––– + hi 1 ––– – ––– 2 4
∂Pi ∂Pi ∂Pj (19)

= P* G* a [(1/n) ∂hi/∂Pi + hi (1/nP*)]

The condition B2 > 0 will be satisfied whenever Pi∂hi/∂Pi + hi = ∂(Pihi)/∂Pi > 0; but
since Pihi is always an increasing function of Pi, B2 > 0 is always satisfied, and the
system will be stable whenever B1 > 0 (i.e. whenever a > max{0,–b}).

Using the model of distributed grazing to produce plankton size spectra 

Plots of abundance within size classes typically show a power-law dependence on
size (Sheldon et al., 1972; Sprules, 1988; Chisholm, 1992; Gin, 1996; Vidondo et
al., 1997). However, detailed investigation of these spectra reveals both that they
are ‘lumpy’ (because they represent an idealized fit to the summed abundances
of many discrete species; Sprules, 1988) and that they are often not simple power
laws (Vidondo et al., 1997). Here I show that by allowing for interaction of nearby
size classes through common grazers, the model developed in the previous section
can produce model size spectra of any general shape. Examination of parameter
values in the model may then suggest mechanisms whereby these spectra are
created and maintained.

Consider the nutrient density function n(x), where n(x)dx is the concentration
of nutrient between sizes x and x + dx. For convenience, let x be defined as the
logarithm of size, x = log (L/L0), where L is equivalent spherical diameter and L0
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is the (mean) equivalent spherical diameter of some reference size class (Hurtt
and Armstrong, 1996, 1999). For a power-law relationship, a plot of log(n(x))
against x will be a straight line.

In reality, the function n(x) is only an idealization of the spectrum produced by
the sum of the distributions of several discrete phytoplankton and bacterial popu-
lations. To connect this idealized distribution to the underlying distributions of
discrete taxa, assume first that individuals of population i are distributed along
the size axis according to some function fi(x), where

∞
∫

–∞
fi(x) = 1. In this case, the

nutrient density of taxon i at size x is the total nutrient concentration in taxon i
(Pi) multiplied by fi(x). Part of the variation in size described by the fi(x) will be
real (e.g. cells in different parts of the cell cycle will have different sizes), part will
reflect the range of sizes consumed by a given segment of the grazer spectrum,
and part will be due to measurement errors.

Using these functions, we can derive the best least-squares fit of the ensemble
of species present to the distribution n(x) by finding values of Pi that minimize
the quantity:

∞
∫

–∞
[n(x) – S

i
Pi fi(x)]2 dx (20)

This quantity will be minimized when the values of Pi are given by the solutions
to the set of linear equations

S
j

Cij Pj = Mi (21)

where the quantities

Cij ; ∫ fi(x) fi(x) dx / ∫ [fi(x)]2 dx (22a)

are normalized commonality coefficients (generalized cosines) between the
distributions of i and j, and where the quantities

Mi ; ∫ fi(x) n(x) dx / ∫ [fi(x)]2 dx (22b)

are the normalized number densities of the fitted distribution weighted by the
distributions of species i. MacArthur (1970) derived similar equations to describe
species competing for food along a size-based resource spectrum. By contrast, in
the present model, each species i responds to its own limiting nutrient through its
growth rate µi, while size-based interaction is through shared grazers.

Equations (21) and the values of the Cij and Mi can now be mapped directly to
the terms of the model with distributed grazing. From equation (13a), we have
that at steady state:

µi = G Wi hi (ci Pi) (23)

Using the fact that at steady state Wi = Wi*, and substituting the values of Wi* from
equation (13c), we can rewrite equation (23) as:
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µi = k Hi (ci Pi) (24)

where Hi(ciPi) ; ciPihi(ciPi) is the total per-grazer grazing rate of grazers associ-
ated with species i, and where k = G/S

j
cjPj is constant across species.

We can use these observations to link the model of distributed grazing directly
to the description of size spectra. First, replace the values of ciPi in equations
(13a) and (13c) with S

j
cijCijPj, where cij is the susceptibility of individuals of

species j to grazers centered on the distribution of species i. Next, invert equa-
tions (24), with the ciPi replaced by S

j
cijCijPj, to obtain:

S
j

cij Cij Pj = Hi
–1(µi/k) (25)

Finally, if cij/cii = 1 for all i, j, equation (25) becomes exactly equivalent to equa-
tion (21), with:

Mi ; Hi
–1(mi/k)/cii (26)

so that equation (25) can be used to represent the best least-squares fit to any
specified size spectrum n(x). In contrast, if cij ≠ cii for some i, j (e.g. if two species
are close to the same size, but have different susceptibilities to predation), the fit
of the model to any predetermined size spectrum will only be approximate.

These relationships can be used in two ways. First, if we can estimate the func-
tions fi(x) and the spectrum to be fitted n(x), we can estimate values for the Cij
and Mi, then choose values for the growth functions µi, the grazing functions Hi,
and the susceptibilities cii to yield Mi = Hi

–1(µi/k)/cii. In this way, the model can
be made to reproduce the best steady-state least-squares fit to any desired distri-
bution function n(x). We must assume cij = cii for all i, j to make this procedure
work, as noted above.

The second, more scientifically useful application of these results would be to
assume growth functions µi and predation functions Hi, and to derive the size
spectra they imply. For example, consider the form of µi(xi) under nutrient limi-
tation. Following Aksnes and Egge (1991), Moloney and Field (1991) and Hurtt
and Armstrong (1996, 1999), we assume that the half-saturation constants for
growth under nutrient limitation KN,i(xi) are allometric (power-law) functions of
x. We also assume that the maximum growth rate is independent of size
(Chisholm, 1992). With these assumptions, we can write the following equations
for size-dependent growth rates:

µi(xi) = µmax N/(KN,i(xi) + N) (27)

where
KN,i(xi) = KN(0)(Li/L0)bK

(28)
; KN(0) exp(bKxi)

and where bK is the ‘allometric coefficient’ for growth as a function of nutrient
concentration. When log(µi(xi)) is plotted against x, the resulting curve (Figure
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2a) has two straight-line sections connected by a short curved section; the left-
hand section has a slope of zero, while the right-hand section has a slope of –bK.
In Figure 2a, I set bK = 1; the ‘corner’ of the distribution, where µ/µmax = 0.5, was
set at x = 6 by choosing KN(0)/N such that [KN(0)/N ] exp(bKx) = 1 at x = 6.

We can use this model of size-dependent growth to generate values for the Mi.
In the simplest case where Hi = aPi and a is a constant, and where cii = cij ; c
for all i and j, we have: 

Mi(xi) = µi(xi)/(a k c) (29a)
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Fig. 2. An example of how the model of distributed grazing can generate size spectra. (a) A plot of
normalized growth rate µ/µmax versus size x for the model defined by equations (27) and (28). (b) A
size spectrum of algal abundance generated from the growth rate curve in (a). The dotted lines are
the abundances of individual species, the dashed line is the sum of the dotted lines, and the solid line
is a reference line that highlights the asymptotic behavior of the summed abundances [equation (31)].
See the text for further explanation.



In this case, the values of Mi are simply proportional to growth rates µi.
The Cij are calculated next. In this example, I assume that the fi(x) are normally

distributed with means xi and variances si
2, so that fi(x) = (2psi

2)–1/2 3 exp {–(x
– xi)2/2si

2}. If we further assume that all the variances are equal, then integrating
equation (22a) yields a particularly simple form for the Cij:

Cij = exp{–(xi – xj)2/4s2} (29b)

Figure 2b shows the results of combining these assumptions. Calculations were
made assuming µmax/(akc) = 1 and s2 = 1. I assumed that five phytoplankton popu-
lations were present, with their distributions centered at xi = {1,3,5,7,9}. Equations
(25) were solved for population sizes Pi, and Pifi(x) was plotted for each popu-
lation (dotted lines). The curve of total nutrient density SPifi(x) (dashed line) was
also plotted.

Qualitatively, the curve of total nutrient density is very similar in shape to the
curve for µi(xi) plotted in Figure 2a; in fact, to the left of the corner, the curve is
exactly the pattern of ‘equal biomass in equal logarithmic size classes’ empha-
sized by Chisholm (1992). Quantitatively, however, these curves are not the same,
since the curve for population size is the best fit to n(x), not to µ(x), and from
equation (22b) it is clear that these two functions are not simply proportional to
each other. To see how much they differ, note from equation (22b) that in regions
where n(x) is approximately constant:

n(x) ≈ Mi(xi) ∫ [fi(x)]2 dx / ∫ fi(x) dx (30)

When the fi(x) are N(xi,s2), integrating equation (30) and substituting equation
(29a) for the Mi(xi) yields:

n(x) ≈ µ(x) (a k c)–1 (4ps2)–1/2 (31)

I have plotted equation (31) (with s2 = 1) as the solid line in Figure 2b.
Comparison of these two lines shows that on the flat part of the curve, where µ(x)
is approximately constant and equation (31) should apply, the curves for SPifi(x)
and for n(x) are virtually identical; however, on the sloped part of the curves, the
curves are offset. Importantly, the comparison also shows that even where there
is an offset, the slopes are identical, implying that the asymptotic slope structure
is propagated through the integral of equation (22b). This last observation
suggests that asymptotic structures created by manipulating the components of
equation (25), particularly the functional response curves Hi and the preferences
cij, may be useful in suggesting mechanisms for the genesis and maintenance of
size spectra, and for representing these structures in models.

Concluding perspective

Trophic relationships in marine food webs are very complicated. In addition to
the obvious complications arising from zooplankton life histories with many
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stages, there are profound structural switches in marine ecosystems that may
promote the functional stability of ecosystems even in the face of oscillations of
individual populations (Armstrong, 1982, 1983). When these factors are absent
from population models, these models may exhibit extreme instability, and even
chaos (Hastings and Powell, 1991). To achieve realistic levels of stability, we must
therefore either add these potential stabilizing features or adopt a modeling strat-
egy that produces reliably stable ecosystem functioning without explicit represen-
tation of such processes.

Organisms show many behaviors that are potentially stabilizing. First, when
conditions become unfavorable, organisms such as diatoms may initiate sexual
activity leading to the production of resting stages (Crawford, 1995). By remov-
ing these species from the growing part of the phytoplankton community, the
production of resting spores should change the dynamics of the interaction of
phytoplankton with zooplankton, interrupting the wild swings in the abundances
of predators and prey that lead to chaotic behavior. Second, mixotrophy (Sier-
acki et al., 1992), where certain species are autotrophic at some times and hetero-
trophic at others, could lead to the persistence of these species, with different
community roles at different times, in the face of large changes in physical and
biotic conditions. Finally, bizarre adaptations, such as the putative killing of
diatoms by flagellate bacterivores, leading to enhanced production of bacterial
food (Nygaard and Hessen, 1994), may have unknown, but potentially large,
effects on the functional stability of marine ecosystems.

It is problematical how long it will be (if ever) before our knowledge of
ecosystem structure is complete enough and quantitative enough that we can
represent explicitly the feedbacks that may promote functional stability. The
empirical study of complex interactions in microbial communities is in its infancy,
yet has already shown that ecosystem functions such as community respiration
become less variable as biodiversity increases (McGrady-Steed et al., 1997).
Meanwhile, there is danger that the chaotic behavior of simple food chain models
(e.g. Hastings and Powell, 1991) may be taken to represent the aggregate behav-
iors of autotrophic and heterotrophic parts of the community, through the (incor-
rect) use of population-level models to represent ecosystem-level processes
(Armstrong, 1994).

The distributed grazing model presented above is designed to promote stab-
ility of ecosystem functioning without requiring explicit representation of all the
processes that could possibly stabilize community function. It is also very flexible.
By assigning different maximum growth rates µi,max, different susceptibilities to
grazing cij, and different growth efficiencies gi, it should be possible to represent
any reasonable set of steady-state phytoplankton densities Pi*, composite grazer
density G* and free nutrient density N*. Then, by allowing these quantities to be
functions of size, summary curves of species abundance such as in Figure 2b can
be raised, lowered, tilted or made more complicated in a variety of ways, allowing
the model to reflect the variety of curves obtained in different locations and
seasons (Gin, 1996).

The analysis presented in the previous section shows formally how the
parameters of the model may be chosen to provide the best least-squares fit to
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any specified particle size spectrum, and also gives some indication of how the
model may be used to reflect some aspects of mechanism (e.g. size-dependent
nutrient uptake). It is less clear how the parameters of the model can be inter-
preted to represent other aspects of food web structure, such as the interaction
of the microbial loop with higher trophic levels (Steele, 1998). However, the fact
that the model is capable of representing both aspects of the fundamental duality
of plankton community structure, easily reproducing the pattern of ‘equal
biomass in equal logarithmic size classes’ (Chisholm, 1992) while retaining the
ability to represent biogeochemical diversity, suggests that finding ways to map
other aspects of food web structure onto this model should be a profitable avenue
for further investigation.
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Appendix

In the model with multiple parallel food chains, the eigenvalues li from matrix A1 [equation (11)]
have eigenvectors ji

T = (ji1, ji2, . . .) in which ji1 = ji3 = ji5 = . . ., corresponding to motions in which
the densities of all phytoplankton taxa rise or fall together (‘in phase’). In these eigenvectors, it is also
true that ji2 = ji4 = ji6 = . . ., so that zooplankton densities also rise or fall in phase with one another
(though out of phase with the phytoplankton taxa). In contrast, the other sets of eigenvalues [from
matrix A2, equation (12)] do not have this structure, so that individual phytoplankton (zooplankton)
taxa may oscillate ‘out of phase’ (i.e. some can be increasing while others are decreasing).

To see this, we must assess the structure of the eigenvectors of the linearized matrix [call it M: equa-
tion (6)]. In particular, we must determine for which eigenvalues li the associated eigenvectors ji are
structured such that odd-numbered elements (ji1, ji3, ji5, . . .) are all equal and even-numbered
elements (ji2, ji4, ji6, . . .) are also all equal, and which eigenvalues do not have this structure. Since
the model is symmetric (though the matrix M is not), it will suffice to ascertain the relationship
between the first pair of eigenvector elements (ji1, ji2) and any other pair (ji,2j + 1, ji,2j + 2), j ≥ 1; without
loss of generality we choose j = 1. For the ith eigenvalue li, we write the first four terms of [M – liI]
ji = 0 as:

–(a + b + li)ji1 –(a + c)ji2 –aji3 –aji4 +  . . .  = 0
dji1 –(e + li)ji2 –eji4 +  . . .  = 0

(A1)
–aji1 –aji2 –(a + b + li)ji3 –(a + c)ji4 +  . . .  = 0

–eji2 dji3 –(e + li)ji4 +  . . .  = 0

Subtracting the third equation from the first and the fourth from the second yields:

–(b + li) (ji1 – ji3) –c (ji2 – ji4) = 0
(A2)

–d (ji1 – ji3) –li (ji2 – ji4) = 0

(Note that the terms ‘. . .’ in these four equations vanish.) We then rewrite these equations in matrix
form as:

–b – li –c ji1 – ji33 4 3 4 = 0 (A3)
d –li ji2 – ji14

Note that the matrix in equation (A3) is identical to A2 [equation (12)]. Therefore, when li is a root
of matrix A2, the determinant of the matrix in equation (A3) is 0 and eigenvectors with ji1 ≠ ji3 and
ji2 ≠ ji4 exist. In contrast, for all other values of li [e.g. the roots of matrix A1, equation (11)], the
determinant of matrix equation (A3) is not zero, and the only solution is ji1 – ji3 = 0 and ji2 – ji4 = 0,
so that all phytoplankton densities must vary ‘in phase’ with one another. Similar arguments apply to
the models with distributed grazing.
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