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Abstract
Environmental stresses from climate change can alter source–sink relations during plant maturation, leading to premature
senescence and decreased yields. Elucidating the genetic control of natural variations for senescence in wheat (Triticum aes-
tivum) can be accelerated using recent developments in unmanned aerial vehicle (UAV)-based imaging techniques. Here,
we describe the use of UAVs to quantify senescence in wheat using vegetative indices (VIs) derived from multispectral
images. We detected senescence with high heritability, as well as its impact on grain yield (GY), in a doubled-haploid popu-
lation and parent cultivars at various growth time points (TPs) after anthesis in the field. Selecting for slow senescence us-
ing a combination of different UAV-based VIs was more effective than using a single ground-based vegetation index. We
identified 28 quantitative trait loci (QTL) for vegetative growth, senescence, and GY using a 660K single-nucleotide poly-
morphism array. Seventeen of these new QTL for VIs from UAV-based multispectral imaging were mapped on chromo-
somes 2B, 3A, 3D, 5A, 5D, 5B, and 6D; these QTL have not been reported previously using conventional phenotyping meth-
ods. This integrated approach allowed us to identify an important, previously unreported, senescence-related locus on
chromosome 5D that showed high phenotypic variation (up to 18.1%) for all UAV-based VIs at all TPs during grain filling.
This QTL was validated for slow senescence by developing kompetitive allele-specific PCR markers in a natural population.
Our results suggest that UAV-based high-throughput phenotyping is advantageous for temporal assessment of the genetics
underlying for senescence in wheat.
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Introduction
Consumed by half the world, wheat (Triticum aestivum) is a
major contributor to food security, but its production needs
to increase by 3 billion tons annually by 2050 to meet global
needs (Tester and Langridge, 2010). To achieve sustainable
wheat production as climate change increase the severity of
stresses on plants, we need to integrate new genomics and
phenomics technologies in studies to more deeply dissect
the mechanisms of plant stress responses to various
extremes (Araus et al., 2018). Breeding based on such cross-
disciplinary knowledge that links important physiological
and biochemical interactions to new genetic information
will better enable us to overcome agricultural challenges
(Rasheed et al., 2020). The physiochemical, morphological,
and molecular changes in plants in response to climatic fluc-
tuations such as drought and heat (Zhu, 2016; Sade et al.,
2017) can alter source–sink relationships, which affect
growth and yield of plant. Two mechanisms are mainly in-
volved in these alterations: (1) premature senescence/yellow-
ing and (2) inhibition of photosynthesis activity by
producing assimilates in source organs. This helps to de-
crease consumption of resources within the source organs
and increase their mobilization toward sink tissues (Albacete
et al., 2014; Yolcu et al., 2017).

Although senescence is a genetically programmed system
of plants for dynamic accumulation of nutrients to sink tis-
sues, a “stress-induced senescence” can also be activated by
external stress stimuli to tradeoff the losses in sink tissues
under stress conditions (Schippers et al., 2015; Sade et al.,
2017). Under normal conditions, the coordinated breakdown
of chlorophyll is an integral process of senescence that is de-
velopmentally planned to facilitate the remobilization of
nutrients from senescing tissues to newly growing organs/
tissues such as young leaves (Lim et al., 2007). Elucidating
the progress of senescence by temporal remote sensing of
green biomass and chlorophyll degradation is of key impor-
tance in developing climate-resilient genotypes (Christopher
et al., 2016). However, such selection for slow senescence
has been difficult and error prone in the field.

Adapting field-based advanced remote sensing technology
to phenotyping physiological and biochemical traits beyond
conventional traits that are assessed by eye is the future of
crop breeding (Araus and Cairns, 2014). Physiological attrib-
utes such as canopy chlorophyll content (CCC) and photo-
synthesis and the impact of nutrients, water and heat stress
on plant growth (Araus et al., 2018; Yang et al., 2020) can
only be quantified nondestructively by measuring variations
in the spectral reflectance (Jin et al., 2020). For example,
when growing conditions are optimal, healthy plants look
greener than those under stress because the absorbance
maximum for chlorophyll is in the red wavelength region
and green wavelengths are reflected (Hatfield et al., 2008).
Handheld active sensors can estimate chlorophyll levels and
photosynthetic rates (Pleban et al., 2020), wheat physiology
can be assessed using traits derived from light reflectance
such as normalized difference vegetation index (NDVI) to

select for genotypes tolerant to abiotic stress (Christopher
et al., 2016). Operational and resolution limitations of sen-
sors for capturing a wide range of light bands when light re-
flection fluctuates, however, contribute to the difficulty in
resolving the complexity of senescence and underlying
genetics.

The integration of new techniques for image (RGB (Red-
Green-Blue), X-ray or hyper/multispectral)-based data acqui-
sition of traits can improve the accuracy of plant phenotyp-
ing and accelerate the molecular breeding process by
increasing the rate of gene discovery (Yang et al. 2014;
Ruckelshausen and Busemeyer, 2015; Campbell et al. 2017;
Araus and Kefauver, 2018; Zhou et al. 2019). Many com-
puter vision-based tools and imaging from various types of
sensors have become vital for phenotyping with high accu-
racy and throughput (Mochida et al., 2018). By converting
these digital measurements into useful biological knowledge
(crop traits), scientists can have “smart” eyes on disease,
photosynthesis, chlorophyll status, senescence, and other
physiochemical properties of crops (Tardieu et al., 2017;
Araus et al., 2018; Su et al., 2019; Rasheed et al., 2020).
Recent deployment of unmanned aerial vehicle (UAV) plat-
forms for aerial surveillance of crops using hyper/multispec-
tral imaging has increased the access and capability of
scientists to cover large number of experimental trials at
multiple times during growth over a limited time (Jin et al.,
2020; Rasheed et al., 2020). UAV-based multispectral traits
derived from the visible and beyond-visible range of the light
spectrum, such as NDVI, green and red edge chlorophyll in-
dices, and normalized difference red edge have been used as
smart indicators to differentiate senescence rates among
genotypes exposed to drought and heat stresses (Duan et al.
2017; Hassan et al., 2018). However, no effort has been
made to use this knowledge in the genetic dissection of
complex traits such as senescence. Therefore, linking UAV-
based VIs with high-density single-nucleotide polymorphisms
(SNPs) will open a new avenue in quantitative genetic stud-
ies to discover new loci for breeding.

Some genes including NAC, WRKY, MYB, AP2/EREBP, and
bZIP have been reported to play significant roles in the regu-
lation of age-induced senescence in many plant species such
as Arabidopsis thaliana (Woo et al., 2013), wheat (Gregersen
and Holm, 2007), and rice (Liu et al., 2008). Interestingly,
these same genes are involved in stress tolerance. Most
attempts to identify genes that control variation in a target
trait have used data from a single time point (TP), usually at
maturity or a fixed number of days from planting. Precision
phenotyping to monitor plant growth over time remains a
bottleneck (Furbank and Tester, 2011). Advances in UAV
and computer vision are overcoming barriers to score traits
at multiple times during development (Salas Fernandez et
al., 2017; York, 2018). To the best of our knowledge, no
studies have yet reported on integration of VIs derived from
UAV-based multispectral pixels to identify loci controlling
dynamic senescence in wheat. Therefore, the aims of this
study were to (1) digitally quantify senescence from heading
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(H) to maturation using UAV-based VIs, (2) identify highly
heritable predictive traits to evaluate senescence, and (3)
identify loci that contribute to variations in wheat
senescence.

Results

Adaptation of field-based UAV system for multi-
spectral scan of wheat physiology
We previously optimized the UAV platform for high-
throughput multispectral phenotyping of the wheat canopy
and predicted grain yield (GY) by monitoring seasonal
growth. The accuracy of the estimates of the UAV-based
traits was highly consistent with values from conventional
measurements (Hassan et al., 2018; 2019a, 2019b). The mul-
tispectral scans by the UAV system could thus be used to
quantify the wheat senescence and thus phenotype wheat
doubled-haploid (DH) populations to identify loci control-
ling senescence (see Materials and methods). The average
maximum focal length for each sensor was 1,445.20 pixels
(5.40 mm) to capture four multispectral images of light re-
flection, that is, near-infrared (NIR), red, green, and red-edge
bands of varying wavelengths, with optimized ground sam-
pling distance (GSD) of 2.23 cm (i.e. 1 pixel indicated
2.23 cm distance at ground; Figure 1D). Dense point-clouds
for making 2D mosaic maps, over five images were over-
lapped for each pixel with an average reprojection error of
0.21 pixels across the whole data collection campaign
(Figure 1E). In total, 240 GB data in the form of raw multi-
spectral images were collected through aerial surveillance of
2,400 plots during the whole phenotyping campaign consist-
ing of 2 years and sites within 5 h flight time (Supplemental
Table S1). This raw data were converted into useful pixel in-
formation through machine learning to calculate UAV-based
VIs data (400 kb) to estimate the physiological status of all
five growth TPs (GTPs) (see process in “Materials and meth-
ods”). The combination of multispectral pixels from different
light reflectance gives a better overall estimate of the physio-
logical status of plants. The red band is reportedly more reli-
able at stages before maturation due to saturation issues in
detecting high chlorophyll level after canopy closure
(Hatfield et al., 2008). The NIR band is best for detecting a
wide range of variations in green biomass and chlorophyll,
and reflectance in the green and red-edge bands ranges is
also sensitive to the whole range of variations in chlorophyll
and green biomass (Hatfield et al., 2008). Senescence is a
complex quantitative trait, rapid, precise temporal pheno-
typing of each individual beyond typical physiological meas-
urements was possible because phenotypic correlations were
high (up to r = 0.82) between UAV-based VIs and GY com-
pared to ground NDVI measurements (Figure 1I).

Phenotypic variations in UAV-based VIs, ground
NDVI, and GY
All five UAV-based VIs derived from the pixels of the 2D
multispectral images obtained by aerial surveillance of field
trials and the ground NDVI from the ground GreenSeeker

sensor were normally distributed at all GTPs. Significant var-
iations (at P5 0.05) among genotypes across environments
and genotype � environment (G � E) factor were observed
for five UAV-based VIs, senescence, ground NDVI at H, an-
thesis (Ans), early (TP90 at 10% senescence), mid (TP50 at
50% senescence), and late (TP10 at 90% senescence con-
cluded) grain filling (GF) GTPs (Supplemental Table S2).
Genotypes also varied significantly (P5 0.05) for GY in both
environments, and the G � E interaction was also signifi-
cant. The mean broad-sense heritabilities for UAV-based VIs
and GY at each GTP ranged from 0.71 to 0.95 at both loca-
tions. Heritabilities for the ground NDVI data set ranged
from 0.73 to 0.95 at various GTPs (Figure 2; Supplemental
Table S3). As expected, variances among TPs increased
postAns for all traits (Supplemental Table S2). Two UAV-
based VIs, CCC index (CCCI) and red NDVI (RNDVI), were
selected to visualize the physiological status of wheat canopy
using images generated by different combinations of multi-
spectral pixels for NIR, red, green, and red-edge reflectance
for four GTPs (Figure 3). Visualization results of CCCI and
RNDVI also illustrated a temporal decline in canopy green-
ness and phenotypic variations for slow senescence in some
DH lines at TP50 to TP10. The temporal pattern of the de-
cline in UAV-based VIs was not linear in most cases, indicat-
ing slow senescence in some DH lines (Figure 4). Several DH
lines (DH-082, DH-116, DH-123, and DH-197) had slow-
senescence phenotypes with high GY. Multispectral pixel vi-
sualization results were in accordance with the graphical
results for these DH lines. Senescence in Zhongmai 895 was
delayed compared to Yangmai 16 across the postAns GTPs,
and transgressive segregation was observed for all five UAV-
based VIs (Figure 5).

Relevance of UAV-based VIs with GY assessment
All UAV-based VIs were strongly correlated with GY at all
GTPs in both environments (Supplemental Table S4). For
example, genotypic correlations of RNDVI, CCCI, green chlo-
rophyll index (GCI), and red-edge chlorophyll index (RECI)
with GY ranged from r = 0.22–0.82 at TP90, r = 0.28–0.62 at
TP50, and r = 0.22–0.69 at TP10 in E1, while r = 0.59–0.80 at
TP90, r = 0.64–0.81 at TP50, and r = 0.61–0.69 TP10 in E2.
Genetic correlations between ground NDVI and GY were
low, ranging from r = 0.31–0.36 in E1 and from r = 0.19–
0.29 in E2 at all GTPs. A similar trend was observed in phe-
notypic correlations of RNDVI, CCCI, GCI RECI, and CVI
with GY. Correlations for E2 were higher, ranging from 0.55
to 0.79 at TP90, 0.61 to 0.79 at TP50, and 0.58 to 0.68 at
TP10 from ground NDVI compared to E1. CVI had low cor-
relations with GY, ranging from 0.12 to 0.23 in E1.

We also examined the relevance of GTPs TP90 to TP10
for predicting GY in terms of high genetic and phenotypic
correlations. To further examine the relevance of UAV-based
VIs to GY, we plotted the average UAV-based VIs for the
10% higher- and 10% lower-yielding genotypes against the
mean-yielding genotypes for each environment (Figure 4).
Clear differences were found between the highest and
lowest-yielding genotypes under both environments, with
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the higher-yielding genotypes having high values for UAV-
based VIs. The differences appear greatest in the UAV-based
VIs and ground NDVI in both environments, except for CVI
in E1. The smallest differences in UAV-based VIs and ground
NDVI between the high- and low-yielding groups were at
TP90 when the correlation between yield and UAV-based
VIs was low. These results are in accordance with the ge-
netic correlations observed between yield and UAV-
based VIs (Figure 6). UAV-based VIs of high-yielding

genotypes declined slower than those of the low-yielding
genotypes, but the difference in UAV-based VIs in most
of the graphs decreased as senescence progressed, such
that they attained full senescence at a similar time after
Ans (Figure 3). Some DH lines showed a significant delay
in trait decline with high-yielding effects. It is unlikely
that the yield contrast between high- and low-yielding
groups resulted from differences in the date of Ans.
Differences between groups in the mean period from

Figure 1 High-throughput phenotyping of wheat canopy using an UAV. A, Trial locations and details, (B) UAV system, (C) data acquisition work
flow, (D) results for average image overlapping to estimate each pixel in orthomosaic generation, (E) results for dense point clouds, (F) important
GTPs when data were collected, (G) mechanism behind capturing different light reflectance (H) general equation for estimating value for VIs and
visualization of UAV-based VIs using multispectral pixels (m-pixels) (green color indicates highest VI and red lowest VI values) and (I) correlations
of VIs with GY.
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sowing to Ans were small (ranging from 3 to 4 d) and
nonsignificant for all environments (P4 0.05).

Multispectral image-based senescence was high at
TP10
Senescence derived from UAV-based VIs and ground NDVI
at TP90, TP50, and TP10 was not linear for most of traits
under both environments (Supplemental Figure S1). Among

the DH lines, canopy senescence (CS) was slow from Ans to
TP50 in many DH lines as illustrated in the CCCI and
RNDVI multispectral pixels maps and graphical results
(Figure 3; Supplemental Figure S2). However, a sudden in-
crease was observed from TP50 to TP90. For senescence to
start slowly but completing at a similar time in the slow-
and the fast-senescence genotypes, senescence must prog-
ress faster at particular points, resulting in an increase in

Figure 2 Heritabilities (H2) of all phenotypic traits at five GTPs. The heat maps show broad-sense H2 of the investigated traits in two environments
E1 (Xinxiang), E2 (Luohe), and mean of both environments. The color intensity indicates high (dark) and low H2.

Figure 3 Temporal visualization of important VIs. A, CCCI and (B) RNDVI were derived through combining the multispectral pixels of NIR, red
and green bands. Image on left and right in (A) and (B) show overall and differential illustrations of the traits among DH lines at TP90, TP50, and
T10 for experimental site in Luohe, respectively. Green pixels indicate maximum VI values within the plot.
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overall green leaf area and higher yield. Therefore, a majority
of the DH lines reached maturity at a similar time due to
the trend for fast CS at TP10. The slow CS from TP90 to
TP50 provided sufficient time for the mobilization of

nutrients from source to sink nutrient, resulting in high GY.
CS at TP50 was estimated to be higher for GCI and RECI in
E1 compared to other UAV-based VIs and E2. The box plot
in Figure 6A shows a significant deviation in UAV-based VIs

Figure 4 Logistic regressions of mean values for VIs. Yellow dashed line shows highest-yielding DH lines that is, 10% higher from mean-yielding
DH lines (solid black line) and the red dashed line shows lowest-yielding DH lines that is, 10% lower from mean-yielding DH lines in (A) E1
(Xinxiang) and (B) E2 (Luohe) at five GTPs.

Figure 5 Assessment of senescence progress using CCCI visualization and impact on GY. A and B, CCCI was estimated for four high-yielding and four low-
yielding DH lines compared with parent cultivars at TP90, TP50, and TP10. Green pixels indicate maximum VI values within the plot. C, GY comparison of
slow and fast senescence DH lines and parents. Statistical significance was determined by t test: *P5 0.05, **P5 0.01.

2628 | PLANT PHYSIOLOGY 2021: 187; 2623–2636 Hassan et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/article/187/4/2623/6380558 by guest on 10 April 2024



from their means level across the postAns GTPs especially
at TP10. This kind of natural variation in CS at TP10 can be
used to detect potential loci for slow senescence and stable
GY.

VIs-based selection of low-senescence and high-
yielding genotypes
A principal component analysis (PCA)-biplot was used to
examine relationships between CS calculated from UAV-
based VIs and yield for selecting the low-senescence DH
lines, while maintaining high yield compared to fast-senes-
cence individuals (Figure 6B). As anticipated, high CS was
negatively correlated with GY, as discussed above, high-
yielding DH lines maintained higher UAV-based VIs level
across the postAns GTPs compared with the low yielding. A
strong negative correlation was observed between CS de-
rived from UAV-based VIs and GY especially at TP50 and
TP10 in both environments. CS measured from CCCI and
CVI were negatively correlated with those from GCI, ground
NDVI, RECI, and RDVI across the postAns GTPs in E1.
Vectors of CS for CCCI, CVI, GCI, and RECI were in a similar
direction at TP90 and TP50 but slightly opposite at TP10,
for which vectors were close to ground NDVI and RNDVI
under E2. As Figure 6B illustrates, CS was higher at TP10
than at TP90 and TP50; CS vectors at TP10 were plotted

opposite of those for TP90 and TP50 in E2. But an exception
was observed in case of CCCI and CVI in E1; all of their CS
vectors were in a similar direction and had high correlations
with each other.

QTL were identified for senescence at individual
GTPs and GY
QTL was identified for all UAV-based VIs, ground NDVI, and
GY measured in multiple environments (Supplemental
Table S5). From inclusive composite interval mapping-
additive (ICIM-ADD) scans of the average data of 2 years
(2016–2017, 2017–2018) at Xinxiang (E1) and at Luohe (E2),
and BLUEs by combining E1 and E2 (i.e. analyzing data for
each GTP separately), we identified 28 consistent QTL. Of
these, 22 QTL were identified as senescence loci that con-
trolled at least one of the UAV-based VIs at any postAns
GTP and detected in at least two environments
(Supplemental Figure S2), and 17 QTL were identified only
from UAV-based VIs. Genetic regions associated with QTL
were identified on chromosomes 1B, 2B, 3A, 3D, 4B, 4D, 5A,
5B, 5D, 6A, 6D, 7A, 7B, and 7D (Supplemental Figure S3).
QTL associated with yield were identified on chromosomes
2B, 4D, 5A, 5B, and 6D, coinciding with senescence QTL
(QS) on 4D, 5B, and 6D and found to colocalize with QS on
2B and 5A.

Figure 6 Variations among the DH lines and phenotypic selection for senescence. A, Boxplots show the range of phenotypic means of CS derived
from ground NDVI, RNDVI, CCCI, GCI, RECI, and CVI at three GTPs for environments E1 (Xinxiang) and E2 (Luohe). Bars are indicating the upper
and lower limited of the boxplots from their central line which indicates median. Dots outside of the upper and lower limited of both quantiles of
boxplots are considered as outliners. B, Biplots results from PCA of CS plotted against the GY. Different line colors represent the variables, blue
dots are DH lines, and red circles indicate the low-senescence DH lines with high GY. Dots near the GY vector within the red circle were selected
as high-yielding with slow senescence across environments. DH lines near the CS vectors were considered as prone to rapid senescence and low
GY. Data are BLUEs.
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Three QTL on chromosomes 1B and 2B were associated
with CCCI, CVI, GCI, RECI, and RNDVI only during H and
Ans GTPs, explaining 8.9%–16.4%, 5.6%–9.8%, and 5.5%–
6.8% of phenotypic variations, respectively (Supplemental
Table S5). For photoperiod response (Ppd), vernalization re-
sponse (Vrn), or earliness per se genes, there is little evi-
dence of association with putative senescence loci in our
DH population. But a QTL-caas.1B (722.5 Mb) on chromo-
some 1B that was identified at H was linked with a major
photoperiod response gene Ppd-B2 (Supplemental Table S5).
Six QTL in total among chromosomes 5A, 6D, and 7B were
detected for single postAns GTP, whereas five QTL in total
among chromosomes 3A, 5A, and 7D were identified in
more than one postAns GTPs. Eleven QTL in total among
chromosomes 2B, 3D, 4B, 4D, 5B, 5D, 6D, and 7A were
detected at both preAns and postAns GTPs. QTL on 4B, 4D,
and 5D explained a high percentage of the phenotypic varia-
tions explained by QTL (PVE), up to 23.4%, for traits mea-
sured at postAns GTPs compared to other QTL. Zhongmai
895 contributed a positive additive effect for identified QTL
(Supplemental Table S5).

In some cases, plant height QTL were also detected as se-
nescence loci (Pinto et al., 2016; Christopher et al., 2018).
Height QTL associated with Rht-B1 (4B) and Rht-D1 (4D)
genes, were closely colocalized with QS on chromosomes 4B
and 4D in all environments (Supplemental Table S5). In our
DH population, Rht-B1b was contributed by Yangmai 16
and Rht-D1b by Zhongmai 895 (Hassan et al., 2019a, 2019b).
QTL on chromosomes 2B, 3A, 3D, and 5D were detected as
new QTL for senescence in wheat with 5.2%–18.1% of PVE.
As QTL-caas.5D (315.5 Mb) showed high PVE for the senes-
cence (Figure 7A), two SNPs in the region of this QTL at
315.5 Mb and 320.5 Mb with 18.13% and 10.1% of PVE, re-
spectively, were converted successfully to kompetitive allele-
specific PCR (KASP) markers. To check the effectiveness of
this genomic region for slow senescence in wheat, 207 acces-
sions of a natural population were genotyped with these
KASP markers. Results showed significant differences in chlo-
rophyll levels between genotypes within full and limited irri-
gations based on SNPs linked with QTL-caas.5D (Figure 7b).

Discussion
To bridge the genome to phenome gap, predictive traits
with high heritabilities in the field condition are urgently
needed (Araus and Kefauver, 2018; Rasheed et al., 2020).
Traits derived from UAV-based multispectral imaging have
been described for precise and rapid phenotyping of wheat
growth dynamics (Hassan et al., 2018). The complex mecha-
nism underlying senescence in plants involves dynamic and
diverse responses that are controlled by many loci with
moderate to minor effects (Sade et al., 2017; Christopher et
al., 2018). Minor-effect loci can be difficult to discover using
traditional assessments of senescence-related traits. UAV-
based multispectral traits can accelerate the identification of
both major and minor loci and advance our understanding

of the genetic architecture behind the temporal responses
of plants during senescence.

We extracted five different UAV-based VIs through inte-
grating light of various wavelengths reflected from the can-
opy and compared with ground truth NDVI measurements.
UAV-based VIs and ground NDVI were measured at vegeta-
tive GTPs (i.e. H, Ans) and senescence GTPs (i.e. TP90, TP50,
and TP10) in multiple environments (i.e. two locations in
2 years) (Figure 1, A and F). This strategy allowed us to mon-
itor the consistency of UAV-based image pixels for calculat-
ing UAV-based VIs to predict senescence and behavior
(G � E) of the genotypes in the varied environments. This
approach could increase the efficiency of predicting complex
physiological traits over that of traditionally limited
approaches for trait acquisitions. Transgressive segregation
for UAV-based VIs and yield suggests that alleles for
improvements in each of these traits could be contributed
by either of the parents, though they were more often con-
tributed by Zongmai 895 (Supplemental Table S5). The heri-
tability (H2) of UAV-based VIs was generally high in all
environments, highlighting high genetic variances within
environments. UAV-based VIs showed higher genetic and
phenotypic correlations with GY compared to ground
NDVI, as in our previous study on GY prediction based on
multispectral traits (Hassan et al. 2018). High correlations in-
dicate that UAV-based VIs from image pixels can be used as
secondary traits to predict GY and that variations in these
traits can explain the underlying genetics. Multispectral
pixel-based field visualization also accurately illustrated the
transgressive segregations in DH lines at all postAns GTPs,
as validated through selected high and low senescence DH
lines. Our results suggest that field trials using multispectral
visualization could speed up assessment of the overall status
of genotypes. High genetic correlations between UAV-based
VIs and GY especially CCCI, illustrated distinct average dif-
ferences in UAV-based VIs of low- and high-yielding DH
lines at senescence GTPs, especially at TP50 and T10
(Figures 3 and 4). Most of the DH lines started and com-
pleted senescence within a similar time span, with some
exceptions. Thus, the low rate of senescence was not due to
the duration between Ans and maturity but due to the
slow degradation of chlorophyll at TP90 to TP50 in high-
yielding DH lines (Christopher et al., 2016, 2018). During this
period, source to sink mobilization was the highest as evi-
denced by the retention of a high green area, resulting in a
high yield (Senapati et al., 2018). TP50 to TP10 senescence
was greatly accelerated due to internal and external factors
with the least impact on GY in high-yield DH lines. In low-
yield DH lines, the rate of senescence was rapid from right
after Ans to TP10, resulting in lower yields due to the rapid
degradation of chlorophyll (Senapati et al., 2018). The rate
of senescence from TP90 to TP50 is more crucial in terms of
yield losses and grouping the high- and low-yielding geno-
types (Figure 5). But TP10 is also vital for final refilling of the
sink, that could also significantly increase GY through a re-
enforcement mechanism (Lim et al., 2007; Borrell et al.,
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2014; Christopher et al., 2016). For example, GY significantly
differed among DH-082 and three other slow-senescence
DH lines due to rapid senescence at TP10, whereas a signifi-
cant difference for GY was also observed among four slow
and four rapid senescence DH lines at TP10. We detected

the same kind of phenotypic tradeoff in DH lines as
reported by Christopher et al. (2016). Previous PCA-biplot
results showed negative correlations between CS and GY at
all postAns GTPs (Hassan et al., 2018), whereas all postAns
GTPs are similarly involved in affecting the GY (Figure 6B).

Figure 7 KASP markers validation for QS identified on 5D chromosome. A, 5D QTL, LOD and percentage phenotypic variation explained by the
QTL (PVE) across the GTPs, (B) validation of two KASP markers developed for SNPs linked with the 5D locus regarding effectiveness of this QTL
for senescence using 207 genotypes of a natural population. Capital alphabets indicate variation for chlorophyll level at P5 0.05 (by t test) among
the genotypes with GG, AG, and AA SNPs within the full irrigation treatments while small alphabets indicate variation within the limited irrigation
treatments. Error bars are indicating the standard deviations. Chlorophyll was estimated at MGF stage for 207 genotypes with full or limited irriga-
tion treatments to validate the KASP markers.

UAV-based imaging identifies senescence QTL PLANT PHYSIOLOGY 2021: 187; 2623–2636 | 2631

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/article/187/4/2623/6380558 by guest on 10 April 2024



Based on our results, multiple UAV-based VIs are more suit-
able for selecting slow senescence with high GY as com-
pared to a single ground-based trait because CS through
multi-angle data sets of light reflection plotted against GY
instead of a traditional trait (ground NDVI) can provide a
clear picture about the physiological performance of geno-
types and increase the selection accuracy.

QTL that was identified consistently in both sites and
years were considered credible, and QTL common to UAV-
based VIs and ground NDVI indicated the higher accuracy
and credibility of UAV-based data sets for QTL analysis. QTL
detected across the GTPs were temporal loci, suggesting
that the causative alleles have persistent effects at the vari-
ous vegetative and senescence GTPs as reported in other
time-series studies (Guo et al., 2018; Lyra et al., 2020).
Clustering of the QTL for different UAV-based VIs (for bio-
mass and chlorophyll) to the same chromosomal region
indicates that a single or multiple genes at one locus affect
multiple UAV-based VIs for plant physiology. Each UAV-
based VI was equationally different, that is, they were de-
rived from combinations or ratios of different spectral
bands, but a surrogate of the same trait. For example, both
RNDVI and CVI were proxy traits of green biomass, whereas
CCCI, GCI, and RECI for chlorophyll content. Therefore,
identifying QTL for any surrogate trait means that these
QTL likely contributed to biomass or chlorophyll. Most of
the QS detected in our study have been reported previously
for stay-green or senescence-related traits (Vijayalakshmi et
al., 2010; Pinto et al., 2016; Shi et al., 2017; Christopher et al.,
2018). For example, Christopher et al. (2018) detected stay-
green QTL on chromosomes 4B, 4D, 5B, and 7B based on
analysis of a DH population in four environments. Similarly,
Pinto et al. (2016) identified QTL on chromosomes 1B, 4B,
4D, 5B, 7A, and 7D in an RIL population in five heat-stress
environments. In our results, loci on chromosomes 2B, 3A,
3D, and 5D were detected as new QS. QTL-caas.2B_2
(560.5Mb) on 2B temporally controlled CCCI and CVI at
Ans and at TP90 and TP50 and colocalized with GY locus
QTL-caas.2B_1 (567.5 Mb). A QS on chromosome 3D at
248.5 Mb also contributed to controlled stage-specific senes-
cence, influencing chlorophyll and green biomass surrogates
CCCI, RECI, and CVI from Ans to TP10. We found that the
QS QTL-caas.5D (315.5 Mb) identified for contributing to
slow senescence was not closely linked with a major vernali-
zation response gene (Vrn-D1) previously reported on chro-
mosome 5D (Eagles et al., 2009). Our analysis of candidate
genes showed that SNPs of the 5D locus were linked with
the TraesCS5D02G403900 gene, while the gene was anno-
tated as encoding a glycosyltransferase (Supplemental Table
S6). The glycosyltransferase protein family has been reported
to be involved in stress response regulation in A. thaliana
(Rehman et al., 2018) and rice (Shi et al., 2020). Moreover,
our validation results of 5D QTL using two KASP markers
indicated that it could be used to select slow-senescence
genotypes. Both QTL on 4B and 4D associated with Rht
alleles were identified as QS across the GTPs as reported

previously (Pinto et al., 2016; Christopher et al., 2018),
whereas GY QTL was also colocalized with senescence on
4D chromosome. GY QTL on 5A and 5B were also identified
near a QS. QTL-caas.6D_3 (455.6 Mb) for CCCI, RECI and
RNDVI identified at postAns GTPs also colocalized with a
GY QTL on chromosome 6D. In most of these cases, alleles
conferring slower senescence also conferred improved yield.
In those experiments where major QTL for yield are not co-
incident with QTL for senescence traits, genetic factors other
than senescence have a greater influence on yield
(Christopher et al., 2018).

In conclusion, we found that UAV-derived VIs could be
used to predict senescence and GY at postAns GTPs. More
importantly, most of the traits are very difficult to measure
by conventional methods and now can be assessed tempo-
rally using the low-cost UAV system. Previous QTL mapping
studies have been based on conventional phenotypic data
at limited growth stages, but still QTL reported in our
results have good overlap with QTL previously found in sev-
eral stay-green and senescence-related studies (Vijayalakshmi
et al., 2010; Pinto et al., 2016; Shi et al., 2017; Christopher et
al., 2018). Around 75% of the QS was detected using UAV-
based VIs rather than ground NDVI. Four QTL for senes-
cence colocalized with GY, indicating that senescence influ-
ences low- and high-yielding DH lines. We found several
new QTL for senescence on chromosomes 2B, 3D, 3A, and
5D that explained the high phenotypic variations (5.2%–
18.1%). We also demonstrated the temporal nature of the
5D QTL control at preAns and postAns GTPs. However,
KASP markers based on SNPs linked with the 5D QTL can
be used to select for slow senescence genotypes in breeding
programs. Combining high-throughput phenotyping tech-
nology and large-scale QTL analysis not only greatly expands
our knowledge of the dynamics of wheat development but
also provides a new strategy for breeders to optimize plant
physiology toward ideotype breeding in wheat.

Materials and methods

Germplasm and field trial
A DH population of 198 lines derived from Yangmai16/
Zhongmai895 cultivars was used to phenotype UAV-based
multispectral traits to quantify senescence and discover loci
that control natural variations in senescence. Yangmai16 is a
spring wheat cultivar that was released in the Yangtze River
area of Jiangsu Province, China in 2004. It is a popular culti-
var because of its high-yield potential and stability under
drought. The facultative wheat Zhongmai895 was released
in the southern Yellow and Huai River valleys in 2012. It has
a high yield potential with high GF rate, high nitrogen-use
efficiency, and tolerance to drought and high-temperature
fluctuations (Yang et al., 2020).

Field trials were conducted during two cropping seasons
(2016–2017 and 2017–2018) at two sites in Henan Province,
China: Xinxiang (environment 1 [E1], 35�180000N,
113�520000E) and Luohe (E2, 33�340000 N, 114�20000E)
(Figure. 1A). Both sites had experienced fluctuations in
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temperature, rain and daylight during maturation in both
years (Supplemental Figure S3), which can decrease yield in
nonresilient genotypes. The experiment was designed with
600 plots at each site, with each plot (3.6 m2 area
[3 � 1.2 m]) having one DH line in six rows at 0.20 m spac-
ing. Randomized complete blocks were set up with three
replications at both sites and in both years to minimize ex-
perimental error. Plots were equally irrigated across the trials
at the same stages: tillering and right after Ans. Plots were
agronomically managed according to local practices at each
site.

A natural population of 207 genotypes was used to vali-
date the KASP markers results using chlorophyll content
data. These genotypes were grown under two water treat-
ments (i.e. full and limited irrigations) with two replications
at Xinxiang (35�180000N, 113�520000E), Henan province, China
during 2018–2019. The plot dimension was consistent
(3.6 m2 area [3 � 1.2 m]) under both treatments.

UAV platform, multispectral imaging, and pixel
extraction
A DJI Phantom drone (SZ DJI Technology Co., Shenzhen,
China) carrying a Micasense RedEdge multispectral sensor
(Micasense, Seattle, WA, USA) (https://support.micasense.com/
hc/en-us/articles/235402807-Getting-Started-With-RedEdge) was
used for all multispectral imagery (Supplemental Figure 1B).
User manual of RedEdge sensor can be downloaded using link
given in online links section. The DJI Phantom can fly slowly
and at low altitude for 16 min. The red-edge sensor consists of
five sensors, one for blue, green, red, red-edge, and NIR spectral
bands. A sunshine sensor and GPS device were connected to
the multispectral sensor on the top of the Phantom to cali-
brate environmental irradiation during light reflectance mea-
surement and geo-referencing. Band values before and after
flight were standardized using a calibration board with known
reflectance provided by Micasense. DJI pro version 3.6.0
(https://www.DJI.com) was used to design the flight mission.
All flights were conducted at 30 m altitude at 2 m s–1, main-
taining 85% forward and side overlaps among images to gener-
ate a dense point cloud for good quality orthomosaic. Average
GSD of sensor was between 2.0 and 2.5 cm.

Pix4D mapper software (version 1.4, PIX4d, Lausanne,
Switzerland) was used for orthomosaic generation
(Figure 1C). Key steps for the orthomosaic generation using
Pix4D mapper comprised camera alignment, georeferencing,
point cloud creation, and orthomosaic generation as previ-
ously reported (Hassan et al., 2018, 2019a, 2019b; Figure 1, D
and E). QGIS version 3.2 (an open-source geographic infor-
mation software that support viewing and editing of data)
was used for image segmentation of each plot. For this,
polygon shapes were generated with the specific plot ID for
a particular DH line. Spectral values in the form of pixels
were extracted from the segmented parts of orthomosaic
TIFF images of five different bands using polygon shapes as
mask through a computer vision approach in the program
IDL (version 8.6, Harris Geospatial Solutions, Inc., Broomfield,

CO, USA) (Figure 1C). The plant density of each plot was
well enough to ignore the data noise due to background
soil. Multispectral data were collected by the UAV at five
TPsthat is, H, Ans, 10 d (TP90), 17 d (TP50), and 24 d (TP10)
after Ans (Figure 1f).

Five UAV-based VIs were quantified from multispectral
image pixels captured from the reflectance of four spectral
bands at five important GTPs (Figure 1G): red NDVI
(RNDVI), chlorophyll VI (CVI) for green biomass, CCCI (GCI,
and RECI for chlorophyll content estimation. The equations
for the estimation of all VIs are given in Figure 1H and
Supplemental Table S1. VIs were visualized through the
combinations of particular multispectral pixels of light reflec-
tance bands using Pix4D calculator (Figure 1H). The assess-
ment of GY through VIs was done by correlation analysis
(Figure 1I).

Estimation of ground truth measurements
Ground NDVI was measured using a handheld GreenSeeker
at five TPs that is, H, Ans, at 10 (TP90; 10% senescence), 17
(TP50; 50% senescence), and 24 (TP10; 90% senescence)
days after Ans for DH lines. Agronomic and yield-related
traits such as number of days to reach to H, flowering, phys-
iological maturity, and GY were also recorded using standard
procedures detailed previously (Gao et al., 2017).
Chlorophyll level of natural population was assessed using
SPAD-502 Plus (Konica Minolta, Japan) at mid GF (MGF)
stage to validate the KASP markers. Chlorophyll was aver-
aged from flag leaves of 10 plants of each genotype.

Estimation of CS
Estimated values for the UAV and ground-based VIs were
highest at H stage compared with all other TPs; thus, the
value at this stage was considered to be the maximum VI
value (VImax). The degree of senescence was estimated by
subtracting the decreasing values of VIs measured at 10
(TP90; 10% senescence), 17 (TP50; 50% senescence), and 24
(TP10; 90% senescence) days after Ans. The mean senes-
cence was estimated after each 100 degree-days since Ans
using the following equation:

CS ¼ VImax � VIðTP90; TP50 and TP10Þ;

where CS is mean CS, VImax indicates the maximum VI value
(at H), GTP TP90, TP50, and TP10 indicate the VI values at
10%, 50%, and 90% senescence stages, respectively. These
TPs were calculated according to thermal TPs after Ans
(Lopes and Reynolds, 2012; Christopher et al., 2018).
Genotypes with slow senescence were selected by plotting
the UAV-based VIs derived senescence at TP90 to TP10
against the GY using a PCA-biplot analysis.

SNP genotyping and QTL mapping
The 198 DH lines and parents were genotyped using the
commercially available Wheat 660K SNP array that was de-
veloped by Affymetrix and Prof. Jizeng Jia at the Institute of
Crop Sciences, CAAS (Capital Bio Corporation, Beijing,
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China). Previously, our research group constructed a genetic
map for mapping QTL for key yield-related traits. Markers
with distorted segregation, no polymorphisms among
parents, and missing at a rate 420% were removed in a
subsequent linkage analysis. Around 10,242 markers, each
representing a bin site, were selected to construct the link-
age map for the DH population. The map comprises 25 link-
age groups for all 21 chromosomes of the A, B, and D
genomes. Inclusive composite-interval mapping was used for
QTL analysis in IciMapping version 4.1 software (Meng et al.,
2015). The averaged data of each trait and GTPs from
2 years at Xinxiang (E1) and Luohe (E2) separately, and best
linear unbiased estimates (BLUEs) values of across environ-
ments (E1 and E2) were used for QTL detection. BLUEs val-
ues were calculated using a model explained by Alvarado et
al. (2020) for a randomized complete block design (RCBD)
experiment in META-R software (a multi-environment
analysis tool developed at CIMMYT, Mexico City, Mexico).
The genotype of Yangmai 16 was defined as A, that of
Zhongmai 895 as B. Hence, alleles from Yangmai 16 reduced
trait values when the additive effects were negative.
Recombination frequencies were converted into map dis-
tance using the Kosambi mapping function. Locations of
QTL for the traits were determined by ICIM-ADD using the
same software as for the linkage analysis. The threshold for
declaring the presence of a significant QTL for each trait
was defined by 1,000 permutations at P5 0.05, and the
minimum LOD score of 2.5 was chosen; the walking speed
was set at 1.0 cM.

KASP marker development
KASP markers for locus QTL-caas.5DL were developed based
on two corresponding SNPs to validate the UAV-based VIs
for genetic dissection of senescence (Supplemental Table
S5). The flanking sequences of the SNPs were used as
queries in a blast search against the reference genome of
wheat using IWGSC (CS Refseq version 1.0; IWGSC 2018).
Chromosome-specific KASP primers were developed by
alignment of homologous sequence. Allele-specific primers
carrying FAM and HEX were designed with targeted SNPs at
the 30-end, and common reverse primers were designed
with less than 200 bp of amplified sequences for
chromosome-specific amplification. The detailed information
about the two KASP markers is provided in Supplemental
Table S7. The KASP assay mixture consisted of 40mL of
common primer (100mL), 16mL of each tailed primer
(100mL), and 60mL ddH2O. Each reaction mixture com-
prised 2.5mL of 2�KASP master mixture (LGC Genomics,
Hoddesdon, UK), 0.056mL of KASP assay mixture, and 2.5mL
of DNA (30–50 ng/mL). PCR was performed in a 384-well
plate with denaturation at 95�C for 15 min; 9 touchdown
cycles (95�C for 20 s touchdown at 65�C initially then
deceasing by 1�C per cycle for 1 min); and 32 cycles of dena-
turing, annealing, and extension (95�C for 10 s, 57�C for
1 min). KASP genotyping results were compared among 207
accessions of a natural population for chlorophyll level at
mid to late GF (LGF) stage and original chip-based results

using a t test in XLSTATE software to confirm the associa-
tion of the KASP markers with the trait.

Analysis of putative candidate genes
The genes located in the physical intervals of the genomic
region of identified QTL were screened based on annota-
tions in the wheat reference genome (CS RefSeq version 1.0;
IWGSC 2018), and those related to growth, development,
stress resistance, and nutrient mobilization were considered
as candidate genes. Gene annotations were retrieved using
EnsemblPlant and EMBL—EBI (http://www.ebi.ac.uk/inter
pro) databases. Gene annotations for putative proteins were
done using BLAST2GO (https://www.blast2go.com/).

Statistical analyses
Phenotypic and genetic correlation matrices were calculated
to evaluate the relationship between all observed parame-
ters using META-R software (a multi-environment analysis
tool developed at CIMMYT, Mexico City, Mexico; Alvarado
et al., 2020). Logistic regression was done to check the rele-
vance of UAV-based VIs for GY using a generalized linear
model in XLSTAT software by Addinsoft. A mixed linear
model was used to test the significance of variation among
DH lines, and G � E interaction for UAV-based VIs, ground
truth NDVI and GY explained by Alvarado et al. (2020). The
results were considered as significant at P5 0.05.

Yijk ¼ lþ Loci þ RepjðLociÞ þ Genk þ Genk � Loci þ eijk (2)

Where Yijk is the trait of interest, l is the overall mean ef-
fect, Loci and Repj is the random effect of the ith location
and jth replicate, Genk is the fixed effect of the kth geno-
type, Loci and Loci � Genk are the random effects of the
ith environment and the G � E interaction, respectively,
and eijk is the effect of the error associated with the ith loca-
tion, jth replication and kth genotype, which is assumed to
be independently and identically distributed (iid) normal
with mean zero and variance re

2.
To confirm that phenotypic variations of traits were due

to genetic diversity, we calculated broad-sense heritabilities
for all traits in each and across the environments using
entries as a random effect using the following equation
(Sehgal et al., 2015):

H2 ¼ rg
2=rg

2 þ rge
2=eþ re

2=ðreÞ; (3)

where rg
2 and re

2 represent the genotypic and error varian-
ces, respectively. The term rge

2 is the G � E interaction vari-
ance component, e is number of environments (locations
and years) and r is the number of replications for each ge-
notype in each environment. To calculate the H2 for each of
two locations e is considered number of years. H2 of each
component at all growth stages provides an indication of
the consistency of the trait in a particular environment.

PCA was used to assess the diversity among DH lines for
senescence. The basic equation used for the PCA in matrix
notation was
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Y ¼ W0X; (4)

where W is a matrix of coefficients that is determined by
PCA and X is an adjusted data matrix consisting of n obser-
vations (rows) on p variables (columns).

Online links
RedEdge sensor User-Manual

(1) (https://support.micasense.com/hc/en-us/articles/
215261448-RedEdge-User-Manual-PDF-Download-)

(2) (https://datadryad.org/stash/share/
vKMNaejboHluo1Qxgi6Z_STD5RqA82pvQ_bbk8I__
DQ)

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Climate conditions (tempera-
ture and rain) during 2016–2017 and 2017–2018 growing
seasons.

Supplemental Figure S2. CS estimated from VIs at three
GTPs for two environments.

Supplemental Figure S3. Summary of QTL identified as
contributing to temporal control of senescence at individual
GTPs and GY.

Supplemental Table S1. Information of VIs, data size in
raw and biological formats and total time for the entire field
phenotyping campaign.

Supplemental Table S2. Significance test (ANOVA)
results for all traits and GTPs.

Supplemental Table S3. H2 results for all traits and
growth time points (GTPs).

Supplemental Table S4. Average genetic and phenotypic
correlations between GY and VIs.

Supplemental Table S5. QTL identified for vegetative
growth, senescence and GY.

Supplemental Table S6. QTL with corresponded candi-
date genes and putative proteins.

Supplemental Table S7. Primers in KASP assay for SNPs
linked to QTL-caas.5D.
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