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Plant viruses must invade and infect as much of
their hosts as possible to maximize their chances of
successful perpetuation. They move cell to cell via
plasmodesmata (PD), which they modify to a greater
or lesser extent, and to distant parts of the plant
through the vascular system. Plant viruses encode
one or more nonstructural proteins specifically re-
quired for movement within their hosts and many also
require their capsid (coat) protein(s). Classically, a viral
movement protein (MP) is defined by its ability to in-
crease the plasmodesmal size exclusion limit (SEL)
and to move cell to cell; however, other viral proteins
that do not themselves move may be essential for the
movement process. Viruses that infect plants have de-
veloped a variety of strategies to move from cell to cell
and are heavily dependent on endogenous host trans-
port systems during movement, as with all aspects of
their life cycles. Rather than attempt to cover all re-
ported virus-host interactions during movement, in
this short review, we would like to focus on some
common themes that appear in the literature regarding
each of the steps involved in viral cell-to-cell move-
ment. These are the use of the endoplasmic reticulum
(ER)/actin network as an intracellular transport path-
way, recognition of adhesion sites at the cell periphery,
modification of PD by alteration of the cell wall struc-
ture, heat shock protein (Hsp) 70-class chaperones as
potential translocation factors, and regulation of
movement. We will discuss how the movement pro-
cesses of different viruses may utilize these steps in
different ways or may not involve all of these steps.
Other reviewers have covered different aspects of
short and long distance movement processes, such as
the role of the cytoskeleton and the requirement for
suppression of host defense responses (for example,
Reichel et al., 1999; Oparka, 2004; Waigmann et al.,
2004; Voinnet, 2005).

INTRACELLULAR MOVEMENT USING THE ER

With the constant streaming of the plant cell cyto-
plasm, one could imagine that viral MPs would only

need to go with the flow and bind to PD or other
peripheral target sites when they encounter proteins
that they recognize. Evidence from numerous studies
suggests that this is not generally the case, although
one cannot discount that a proportion of any MP may
arrive at its destination in this way. Cell-to-cell move-
ment is generally an early event in the infection pro-
cess, occurring in 4 h for tobacco rattle virus in
Nicotiana clevelandii or 5 h for tobacco mosaic virus
(TMV) in N. tabacum (Fannin and Shaw, 1987; Derrick
et al., 1992), and the level of MP produced in the first
few hours is likely to be quite low. Thus, random
movement with the cytoplasmic flow may be too
inefficient. Many viruses form replication centers en-
riched in ER (for examples, see Schaad et al., 1997;
Heinlein et al., 1998; Mas and Beachy, 1999; Carette
et al., 2000; Ritzenthaler et al., 2002), and many viral
proteins required for movement appear to be mem-
brane proteins, often shown to locate to the ER. For
example, the triple gene block (TGB) proteins 2 and 3
of potato mop top virus (PMTV) and potato virus X
(PVX) when fused to fluorescent proteins label the ER
(Solovyev et al., 2000; Cowan et al., 2002; Krishnamurthy
et al., 2003; Mitra et al., 2003; Haupt et al., 2005). Only
TGB2 of poa semilatent virus locates to the ER
(Solovyev et al., 2000; Zamyatnin et al., 2002). TMV
MP fused to fluorescent proteins labels the ER early in
infection (Heinlein et al., 1998; Gillespie et al., 2002)
and the 126/183-kD protein(s), which are also re-
quired for movement (Hirashima and Watanabe,
2001, 2003) and associate with movement complexes
(MCs; complexes of viral RNA, MPs, and other viral,
and perhaps host, proteins; Kawakami et al., 2004),
have been shown to locate to membranes (Hagiwara
et al., 2003). The p6 MP of beet yellows closterovirus
and the MP of alfalfa mosaic virus fused to green
fluorescent protein (GFP) also label the ER (Huang and
Zhang, 1999; Peremyslov et al., 2004).

The MCs of viruses with ER-located MPs are likely
to be assembled on the ER (Figure 1a). The ER passes
through PD in the form of the desmotubule and is in-
timately entwined with the actin cytoskeleton (Boevink
et al., 1998); therefore, the simplest and most efficient
route for MCs of these viruses to take to PD from rep-
lication centers would be along the ER membrane. ER-
attached MCs may specifically interact with myosin
motors either directly or indirectly for transportation
along the ER. The TMV MP appeared to colocalize
with actin filaments in protoplasts (Mclean et al.,
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1995), although this apparent localization could per-
haps have been a result of the ER association of theMP.
The tomato spotted wilt virus (TSWV) MP has been
found to interact with a protein showing homology
to myosin and kinesin motor proteins, At-4/1 (von
Bargen et al., 2001). A Rab-like protein was found to be
associated with the MC of groundnut rosette virus (N.
Kalinina and M. Taliansky, personal communication),
and the cauliflower mosaic virus MP interacts with a
Rab acceptor homolog (Huang et al., 2001). Rab pro-
teins, which are better known as regulators of vesicle
fusion events, have been shown to interact with myo-
sins (Pruyne et al., 1998; Schott et al., 1999), and a
Drosophila Rab11 homolog was shown to be involved
in RNA trafficking (Dollar et al., 2002).

Proteins in the ER membrane flow very rapidly, so it
is extremely difficult to photobleach patches of labeled
ER, and this flow is directional and dependent on the
actin/myosin system (Runions et al., 2005). When the
actin is depolymerized, membrane proteins move in a
slower diffusive manner (Runions et al., 2005). There-
fore, MPs may not require specific interactions with
actin to move rapidly through the ER; theymay simply
be carried with the extremely rapid flow, relying on

actin/myosin tomaintain the speed of that flow (Figure
1b). In this scenario, they would have the ability to
diffusewithin themembrane if the actinwasdisrupted.
This may explain why the recovery of fluorescence of
TMVMP-GFP in PD after bleaching of labeled PD was
not completely abolished by actin depolymerization or
myosinmotor inhibition (K.M.Wright,N.T.Wood,A.G.
Roberts, S. Chapman, P. Boevink, K.M. MacKenzie, and
K.J. Oparka, unpublished data).

The MPs of the tubule forming grapevine fanleaf
virus (GFLV) and cowpea mosaic virus, which are re-
presentative of a large group of viruses that modify PD
extensively for movement, were not noted to associate
with the ER (Pouwels et al., 2002; Laporte et al., 2003).
During tubule formation inPD, thedesmotubule is lost;
thus, the direct ER connection to PDwould be severed.
Therefore, despite the fact that GFLV replicates in ER-
derived replication centers (Ritzenthaler et al., 2002),
the ER would not serve as a direct route to PD once
tubule construction had commenced.

An alternative route to PD would be to bind to
a protein that was being targeted there by the host
secretory pathway, such as the recently identified
reversibly glycosylated polypeptide (Sagi et al.,

Figure 1. Diagram depicting possible explanations for some of the virus–host interactions with host proteins during movement.
Many viruses replicate in replication centers (RC) rich in ER. The viral RNA extending from the replicase is bound by proteins
involved in movement, and the MC is assembled with viral and host factors (a). The MC may then move with the rapid flow of the
ER membranes (indicated by the chevrons; b). The viral proteins may bind to peripheral markers such as attachment points or
PD-targeted proteins such as calreticulin (CRT) when encountered (c). Through associations with cell wall enzymes such as
PME, viral-movement-associated proteins may loosen the wall structure (d), and Hsp70-like proteins may translocate the
MP-RNA complex through the pore (e). Later in infection, movement-associated proteins are probably targeted for degradation.
For TMV, calreticulin may play a role in removing the MP from the ER for degradation by the proteasome (P), with the excess bind-
ing to the microtubules (f). N and CW indicate the nucleus and cell wall, respectively.
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2005). This has been suggested for TMVMP binding to
pectin methylesterase (PME; Jackson, 2000; Oparka,
2004) and could also be suggested for PVX TGB2 and
the TGB12K-interacting proteins that interact with
b-1,3-glucanase (Fridborg et al., 2003). However, the
plasmodesmal targeting abilities of TMV MP and
PMTV TGB3 were shown to be disrupted by actin
depolymerization but not by inhibition of the secretory
pathway; therefore, targeting of these viral proteins in
secretory vesicles is unlikely (Haupt et al., 2005; K.M.
Wright, N.T. Wood, A.G. Roberts, S. Chapman,
P. Boevink, K.M. MacKenzie, and K.J. Oparka, unpub-
lished data). Targeting of the cowpea mosaic virus MP
to peripheral foci was not dependent on either the
secretory pathway or cytoskeleton (Pouwels et al.,
2002), whereas targeting of the GFLV MP was (Laporte
et al., 2003), suggesting that there are fundamental
mechanistic variations among tubule-forming viruses.

RECOGNITION OF PD OR PERIPHERY

Few plasmodesmal protein-virus MP interactions
have been reliably demonstrated. TMV, turnip vein
clearing virus, and cauliflower mosaic virus MPs bind
PME (Dorokhov et al., 1999; Chen et al., 2000). PMEs
were found to be present in the wall around PD and in
other regions of the wall in flax and tobacco (Morvan
et al., 1998; Chen et al., 2000). Therefore, if PME is
a receptor for MPs, then it is likely to be a general
peripheral target rather than a PD-specific one. Inter-
actions with PMEs may help the MPs remain at the
periphery. The TMV MP also interacts with a cell-
wall-associated kinase (Citovsky et al., 1993). The
proteins that interact with PVX TGB2 (Fridborg et al.,
2003) and the At-4/1 myosin-kinesin-like protein that
interacts with TSWV MP (von Bargen et al., 2001) are
also potential candidates for PD-associated proteins,
but they have not been localized.
Several virus MPs appear to bind to peripheral

attachment sites (Heinlein et al., 1998; Huang et al.,
2000; Satoh et al., 2000; Pouwels et al., 2002; Laporte
et al., 2003). These are points at which the plasma
membrane and the ER are anchored to the cell wall.
Results from several virus movement studies suggest
that the protein complexes associated with these at-
tachment sites are also associated with PD (i.e. that
there are attachment points at PD; Figure 1c). Hechtian
strands emanate from PD and other attachment points.
GFLV MP fused to GFP-labeled peripheral Hechtian
attachment sites that also contained calreticulin. How-
ever, it is not clear what the GFLVMP binds to at these
sites (Laporte et al., 2003). Calreticulin is a ubiquitous
ER lumen-located chaperone that has a variety of func-
tions, including the regulation of integrin-mediated
cell adhesion in animals (Coppolino et al., 1997). Fluo-
rescently tagged calreticulin has been reported to label
the ER, PD, and/or peripheral sites in different studies
(Denecke et al., 1995; Baluska et al., 1999, 2001; Torres
et al., 2001; Laporte et al., 2003). Turnip crinkle virus

MP p8 interacts with an Arabidopsis (Arabidopsis
thaliana) Arg-Gly-Asp (RGD)-containing protein Atp8
(Lin and Heaton, 2001). RGD motifs are recognized by
plant integrin-like proteins (references in Lin and
Heaton, 2001). It would be a convenient convergence
of logic if GFLV MP also bound to an RGD-containing
protein or calreticulin. An exciting finding is that the
TMV MP has been found to bind calreticulin (Chen
et al., 2005).

An apparently conserved Tyr-based sorting motif
YXXF (where Y is Tyr, X is any amino acid, andF is an
amino acid with a bulky hydrophobic side chain) has
been noted in some very different viral MPs. For
PMTV TGB3, the motif YQDLN, and in particular the
Y residue, was shown to be essential for correct tar-
geting of the protein (Haupt et al., 2005). Targeting
of poa semilatent virus TGB3 was disrupted when
the distance between the conserved Y and L residues
was increased by insertion of four other amino acids
(Solovyev et al., 2000). Laporte et al (2003) noted that
the YXXF motif was conserved among nepovirus
MPs, in KNOLLE and other syntaxins, and also in
KORRIGAN. YXXF motifs are among those recog-
nized by clathrin-coated vesicle adaptors at PM and
Golgi in animals (Bonifacino and Lippincott-Schwartz,
2003). The presence of these motifs in viral MPs may
therefore indicate involvement of secretory and/or
endocytic vesicles rather than being peripheral target-
ing motifs per se. Recent studies indicate that both
GFLV and PMTV may utilize vesicular trafficking
(Laporte et al., 2003; Haupt et al., 2005).

MODIFICATION OF PD

Since the first demonstration of the ability of the
TMV MP to increase plasmodesmal SELs, a process
referred to as gating (Wolf et al., 1989), this has been
regarded as a key property of classic MPs. We now
know that many MCs are more complex than origi-
nally thought, and the various functions required for
movement may be carried out by separate proteins.
However, gating appears to be a fundamental require-
ment for cell-to-cell movement of nontubule-forming
viruses.

There is not a great deal known about how the
plasmodesmal aperture is regulated in the plant. Ding
et al. (1996) demonstrated that actin is involved by
depolymerizing the actin and measuring a subsequent
increase in PD SEL. Callose deposition is known to
close PD during defense and wound responses (for
review, see Roberts and Oparka, 2003). Several studies
indicate that deposition of callose acts as a barrier to
virus movement (Wolf et al., 1991; Beffa et al., 1996;
Iglesias and Meins, 2000; Bucher et al., 2001). The
demonstration of an interaction between PVX TGB2
and proteins that interact with b-1,3-glucanase, a cal-
lose degrading enzyme (Fridborg et al., 2003), suggests
that one strategy PVX may use to gate PD is to
accelerate callose degradation.
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It has been proposed that myosin spokes line the
plasmodesmal channel, linking actin to the plasma
membrane (Overall and Blackman, 1996), and it may
be that structural alteration of these spokes or release
of the spokes from one of their anchor points alters the
SEL (Oparka, 2004). The myosin/kinesin-like protein
At-4/1 found to interact with TSWV MP (von Bargen
et al., 2001) may be required for trafficking to the PD,
but another exciting possibility is that it could be a PD
component involved in gating.

The interaction of TMV MP with PME may regu-
late the activity of PME and thus loosen the cell wall
around PD, allowing the PD to open more easily
(Figure 1d). With this in mind, an alternative view of
the interaction between PME and TMV MP might be
that the MP could be recruiting additional PME to the
PD in order to assist gating rather than merely relying
on PME for targeting. The association of TMVMPwith
calreticulin (Chen et al., 2005) also has potential reg-
ulatory possibilities by influencing local Ca21 concen-
trations (for a discussion of the regulation of PD by
calcium, see Roberts and Oparka, 2003) or by regulat-
ing the PD-associated adhesion site structure.

TRANSLOCATION THROUGH THE PORE

Hsp70 family chaperones are involved in many
cellular processes (Mayer and Bukau, 2005). Viruses
maywell exploit Hsp70s in general protein folding (for
reviews of Hsp70 chaperone functions, see Bukau and
Horwich, 1998; Hartl and Hayer-Hartl, 2002), virion
construction (Napuli et al., 2000; Satyanarayana et al.,
2000; Alzhanova et al., 2001), and perhaps also regu-
lation of host defenses (Kanzaki et al., 2003) either di-
rectly or indirectly through interactions with J-domain
proteins.

The demonstration of PD trafficking of Hsp70-class
proteins from the phloem (Aoki et al., 2002) and the
fact that Hsp70s have motor activities that drive pro-
tein translocation (Pilon and Schekman, 1999; Voisine
et al., 1999) suggest that Hsp70 proteins may have the
ability to actively translocate viral MCs through PD
pores (Figure 1e).

Closteroviruses are the only known group to en-
code their own Hsp70 homologs, and these proteins
have been shown to be MPs (Peremyslov et al., 1999;
Alzhanova et al., 2001). The beet yellows closterovirus
Hsp70 homolog could also function as a MP for TGB
viruses from both classes of TGB viruses (Agranovsky
et al., 1998). The interaction of PMTV TGB2 with a
J-domain protein may therefore play a role in trans-
location through PD in addition to the proposed role
in protein recycling (Haupt et al., 2005). The MPs of
viruses unrelated to closteroviruses have also been
shown to interact with J-domain proteins (Soellick
et al., 2000; von Bargen et al., 2001), suggesting a
conserved role for Hsp70 in plant virus cell-to-cell
movement.

REGULATION OF MOVEMENT

It is unlikely that the observed regulation of viral
MPs is entirely due to host defense responses, as it
is in the interests of a virus to minimize the damage
to its host. Thus, viruses may collude in the down-
regulation of their movement functions. The efficient
down-regulation or removal of viral MP would ensure
that the disruption of PD SEL and hence of signal and
nutrient flow does not continue ad infinitum. The
TMV MP is rapidly degraded about six cells away
from the leading edge of a viral infection site, forming
the classic halo pattern observed when the MP is fused
to fluorescent proteins (Szecsi et al., 1999). The 26S
proteasome has been demonstrated to be involved in
MP degradation, and this was specifically suggested to
be a damage limitation activity (Reichel and Beachy,
2000). The gating of PD in TMV infection was found to
be limited to the leading edge even though the PD of
cells in the centers of infection foci were labeled with
the MP-GFP (Oparka et al., 1997). This indicated that
the MP must be rendered nonfunctional in the PD of
cells in the central region. Phosphorylation of the TMV
MP has been demonstrated to down-regulate its gating
ability (Waigmann et al., 2000; Trutnyeva et al., 2005),
and it has been shown to be phosphorylated by a cell-
wall-associated kinase (Citovsky et al., 1993). A puta-
tive PD kinase may therefore phosphorylate the MP to
inactivate it. Alternatively, or in addition, insertion of
the MP into the cavities of branched PD (Ding et al.,
1992) may remove it from its active site in the PD.

Two proteins shown to interact with TMV MP, the
microtubule-associated protein MPB2C (Kragler et al.,
2003) and calreticulin (Chen et al., 2005), were found to
inhibit cell-to-cell movement when overexpressed.
Calreticulin overexpression also increased the amount
of MP targeted to microtubules. Calreticulin is a chap-
erone that plays a role in removal of misfolded pro-
teins from the ER for degradation by the proteasome
(for review, see Michalak et al., 1999); therefore, it may
help to remove excess MP from the ER membrane
(Figure 1f), an activity that may have been exaggerated
by its overexpression. The increased labeling of micro-
tubules by the released TMV MP may simply be a
result of higher concentrations of MP in the cytoplasm
and the high affinity of the MP for microtubules
(Boyko et al., 2000), or it may signify an involvement
of microtubules in MP degradation as we have pre-
viously suggested (Gillespie et al., 2002).

PMTV TGB2 was found to associate with vesicle-
like structures and interact with an RME8 homolog, a
J-domain protein involved in endocytosis (Haupt et al.,
2005). TGB3 was only found in vesicle structures when
coexpressed with TGB2. Endocytic recycling of TGB2
and 3 may regulate the viral movement in a number
of ways. TGB2 may remove TGB3 from PD, thus
preventing permanent gating of the pore and reducing
cytopathic effects of infection. At later stages of infec-
tion, the recycling of TGB2 and 3 may inhibit further
movement by increasing the concentrations of these
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proteins (Yang et al., 2000); conversely, early in in-
fection, the recycling may assist movement by in-
creasing the quantities of TGB2 and 3 available to
form MCs.

CONCLUSION

Although viruses are capable of enormous varia-
tion, their cell-to-cell movement strategies are neces-
sarily limited by the cellular equipment available for
them to exploit and by the fact that all viruses studied
to date must pass through PD. Some of the interactions
between viral and host proteins may be explained in
several ways, suggesting that these interactions may
bemultifunctional. The indications of common themes
arising from viral movement studies imply that there
has been convergent evolution of viral cell-to-cell
movement mechanisms. The convergence of data sug-
gests that we may be uncovering the fundamental
cellular processes involved in macromolecular traf-
ficking such as those that may be used by non-cell
autonomous host proteins like KNOTTED1 (Lucas
et al., 1995; Kim et al., 2002, 2005).

Received June 6, 2005; revised June 30, 2005; accepted June 30, 2005; published
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