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Various abiotic stresses such as drought, high salin-
ity, high temperature, and low temperature negatively
impact plant growth and productivity of crops. Plants
have adapted to respond to these stresses at the
molecular, cellular, physiological, and biochemical
level, enabling them to survive. Various adverse envi-
ronmental stresses induce the expression of a variety
of genes in many plant species (Xiong et al., 2002;
Shinozaki et al., 2003; Bartels and Sunkar, 2005). Nu-
merous stress-induced genes have been identified
using microarray experiments (Kreps et al., 2002;
Seki et al., 2002). The products of these genes are
thought to promote stress tolerance and to regulate
gene expression through signal transduction path-
ways (Xiong et al., 2002; Shinozaki et al., 2003).

Abscisic acid (ABA) is produced under water deficit
conditions and plays an important role in the stress
response and tolerance of plants to drought and high
salinity. Exogenous application of ABA induces a
number of genes that respond to dehydration and
cold stress (Zhu, 2002; Shinozaki et al., 2003). Several
reports have characterized genes that are induced by
dehydration and cold stress, but do not respond to
exogenous application of ABA in Arabidopsis (Arabi-
dopsis thaliana; Zhu, 2002; Yamaguchi-Shinozaki and
Shinozaki, 2006). This suggests the existence of ABA-
independent and ABA-dependent signal transduction
pathways that convert the initial stress signal into
cellular responses. To better understand the molecular
mechanisms regulating gene expression in response to
abiotic stresses, including dehydration and cold stress,
studies have initially focused on the analysis of Arabi-
dopsis cis- and trans-acting elements and their role
in mediating stress responses (Yamaguchi-Shinozaki
and Shinozaki, 2006). Recently, abiotic stress-inducible
genes and their cis- and trans-acting elements were

also studied in rice (Oryza sativa), a preferred crop
plant to study stress responses because of its commer-
cial value, relatively small genome size (approxi-
mately 430 Mb), diploid origin (2x = 24), and close
relationship to other important cereal crops.

Transcription factors (TFs) are master regulators
that control gene clusters. A single TF can control the
expression of many target genes through specific
binding of the TF to the cis-acting element in the
promoters of respective target genes. This type of
transcriptional regulatory system is called regulon.
Several major regulons that are active in response to
abiotic stress have been identified in Arabidopsis.
Dehydration-responsive element binding protein 1
(DREB1)/C-repeat binding factor (CBF) and DREB2
regulons function in ABA-independent gene expres-
sion, whereas the ABA-responsive element (ABRE)
binding protein (AREB)/ABRE binding factor (ABF)
regulon functions in ABA-dependent gene expression
(Fig. 1). In addition to these major pathways, other
regulons, including the NAC and MYB/MYC regu-
lons, are involved in abiotic stress-responsive gene
expression. Recent studies demonstrated that DREB1/
CBF, DREB2, AREB/ABF, and NAC regulons have
important roles in response to abiotic stresses in rice
(Fig. 1). In this article, we focus on the regulation of
gene expression in response to dehydration, high
salinity, cold, and heat stresses, with particular em-
phasis on the role of DREB1/CBF, DREB2, AREB/ABF,
and NAC regulons in grasses, including important
crops such as rice, wheat (Triticum aestivum), maize
(Zea mays), and barley (Hordeum vulgare), in compar-
ison to Arabidopsis. For a more comprehensive over-
view on the very complex signal transduction pathways
controlling abiotic stress responses, we refer the reader
to the many excellent review articles that have recently
been published (Chinnusamy et al., 2004; Bartels and
Sunkar, 2005; Sunkar et al., 2007).

DREB1/CBF AND DREB2 REGULONS

Identification and Expression of DREB1/CBF and DREB2
in Arabidopsis

The dehydration-responsive element (DRE) contain-
ing the core sequence A/GCCGAC was identified as
an ABA-independent cis-acting element important for
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the regulation of gene expression in response to
drought, high salinity, and cold stresses in Arabidopsis
(Yamaguchi-Shinozaki and Shinozaki, 1994). Similar
cis-acting elements, named C-repeat (CRT) and low-
temperature-responsive element, both containing the
DRE core motif, are present in cold-inducible genes
(Baker et al., 1994; Jiang et al., 1996). DRE/CRTs were
identified in many promoters of stress-inducible genes
from various plants, including Arabidopsis and grasses.
The Arabidopsis cDNAs encoding DREB1/CBF and
DREB2 were isolated using yeast one-hybrid screening
(Stockinger et al., 1997; Liu et al., 1998). These proteins
contain APETALA2 (AP2)/ethylene-responsive ele-
ment binding factor (ERF) motifs and specifically
bind to the DRE/CRT sequence, thereby activating
transcription of genes driven by the DRE/CRT se-
quence in Arabidopsis. The AP2/ERF motif is specific
to plants and functions as a DNA-binding domain.
The Arabidopsis genome contains six DREB1/CBF
genes and eight DREB2 genes (Sakuma et al., 2002),
including DREB1A, DREB1B, and DREB1C, which are
rapidly and transiently induced by cold, but not by
dehydration and high-salinity stress (Liu et al., 1998;
Fig. 1). By contrast, DREB2A and DREB2B genes are
induced upon dehydration and high salinity, but not
by cold stress (Liu et al., 1998; Nakashima et al., 2000;
Fig. 1). Transcript levels of three other DREB1- and six
other DREB2-related genes were low under these
stress conditions (Sakuma et al., 2002). DREB1A,
DREB1B, and DREB1C proteins aremajor TFs required
for cold-inducible gene expression, whereas the Arabi-
dopsis DREB2A and DREB2B are major TFs required
for high salinity- and drought-inducible gene expres-
sion, respectively. However, CBF4/DREB1D, DREB1E/

DDF2, and DREB1F/DDF1 are weakly induced by
osmotic stress, suggesting the existence of cross talk
between the DREB1/CBF and the DREB2 pathways
under osmotic stresses (Haake et al., 2002; Sakuma
et al., 2002; Magome et al., 2004).

The DREB1/CBF Regulon in Response to Cold Stress
in Arabidopsis

Transgenic Arabidopsis plants overexpressing
DREB1B/CBF1 or DREB1A/CBF3 under control of
the cauliflower mosaic virus (CaMV) 35S promoter
showed strong tolerance to drought, high salinity, and
freezing (Jaglo-Ottosen et al., 1998; Liu et al., 1998;
Kasuga et al., 1999), suggesting that DREBs/CBFs
target multiple genes. In fact, more than 40 target
genes of DREB1/CBF have been identified using both
cDNA and GeneChip microarrays (Seki et al., 2001;
Fowler and Thomashow, 2002; Maruyama et al., 2004).
Most of those target genes contained the DRE/CRT or
related core motifs in their promoters (Maruyama
et al., 2004). Examples of the target genes include
TFs, phospholipase C, an RNA-binding protein, a
sugar transport protein, a desaturase, carbohydrate
metabolism-related proteins, LEA (late embryogenesis
abundant) proteins, KIN (cold-inducible) proteins,
osmoprotectant biosynthesis proteins, and protease in-
hibitors. Most of the target proteins are known to func-
tion in response to stress and are thought to be
responsible for the observed stress tolerance of the
transgenic overexpressor lines. In fact, the transgenic
plants overexpressing DREB1A/CBF3 accumulated os-
moprotectants, such as Pro and various sugars, under
control (i.e. non-stress condition; Gilmour et al., 2000).

Figure 1. Major transcriptional regulatory networks of cis-acting elements and TFs involved in abiotic stress-responsive gene
expression in Arabidopsis and grasses such as rice. TFs controlling stress-inducible gene expression are shown in ellipses. cis-
Acting elements involved in stress-responsive transcription are shown in white boxes. Protein kinases involved in phosphor-
ylation of TFs are shown in light purple boxes. Small filled circles illustrate modifications of TFs, for example, through
phosphorylation, in response to stress signals.
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However, overexpression of DREB1/CBF also caused
severe growth retardation under optimal growth condi-
tions. To overcome the negative impact on growth and
development, the stress-inducible RD29A promoter in-
stead of the strong constitutive CaMV 35S promoter was
used for overexpression ofDREB1A (Kasuga et al., 1999).

DREB1/CBF Regulon in Response to Cold Stress

in Grasses

DREB1/CBF-homologous genes were identified in
various grasses such as rice, wheat, diploid wheat
(Triticum monococcum), barley, wild barley (Hordeum
spontaneum), maize, sorghum (Sorghum bicolor), rye
(Secale cereale), oat (Avena sativa), and perennial rye-
grass (Lolium tremulentum; Dubouzet et al., 2003; Xue,
2003; Qin et al., 2004; Bräutigam et al., 2005, Skinner
et al., 2005; Vágújfalvi et al., 2005; Xiong and Fei, 2006;
James et al., 2008; Zhao and Bughrara, 2008). In rice, a
low-temperature-sensitive cereal, four DREB1/CBF
homologous genes,OsDREB1A,OsDREB1B,OsDREB1C,
and OsDREB1D, have been isolated (Dubouzet et al.,
2003). The DREB1/CBF-type TF ZmDREB1Awas also
identified in maize (Qin et al., 2004). Skinner et al.
(2005) reported that barley, a diploid Triticeae model
and a low-temperature-tolerant cereal, contains a large
DREB1/CBF family consisting of at least 20 genes
(HvCBFs). The increase in size and complexity of the
barley DREB1/CBF family might be derived from the
genome size (barley, 5 Gb; rice, 430 Mb; Arabidopsis,
145 Mb). Most of these DREB1 genes showed a rapid
response to cold stress (Fig. 1). Overexpression of
DREB1/CBF homologous genes from rice, maize, barley,
perennial ryegrass, and wheat in transgenic Arabidopsis
or tobacco (Nicotiana tabacum) plants resulted in growth
retardation and in overexpression of stress-inducible
genes downstream of Arabidopsis DREB1A under non-
stress conditions. Furthermore, these overexpressor
lines exhibited tolerance to abiotic stresses such as
drought and freezing (Dubouzet et al., 2003; Qin et al.,
2004; Skinner et al., 2005; Xiong and Fei, 2006; Zhao and
Bughrara, 2008). These results suggest that theDREB1/
CBF genes from various grasses can function as TFs
similar to the Arabidopsis DREB1A TF.

Several DREB1/CBFs were overexpressed in vari-
ous grasses such as rice, wheat, tall fescue (Festuca
grundinacea), and bahiagrass (Paspalum notatum; Lee
et al., 2004; Pellegrineschi et al., 2004; Oh et al., 2005;
Ito et al., 2006; Zhao et al., 2007; James et al., 2008).
These transgenic plants showed tolerance to drought,
high salinity, or cold stress. In transgenic rice plants,
some downstream genes were induced under control
conditions by overexpression of ArabidopsisDREB1B/
CBF1, DREB1A/CBF3, or rice OsDREB1A (Lee et al.,
2004; Oh et al., 2005; Ito et al., 2006). Transgenic rice
constitutively overexpressing Arabidopsis DREB1A
accumulated osmoprotectants, including Pro and var-
ious sugars, under control conditions (Ito et al.,
2006). Transgenic tall fescue, which contained DREB1A
driven by the stress-inducible RD29A promoter, accu-

mulated a significantly higher level of Pro under
drought conditions than control plants (Zhao et al.,
2007). These data suggest that the DRE/DREB1 regu-
lon exists in a variety of grasses and can be used to
improve tolerance to drought, high salinity, and cold
stresses by gene transfer in economically important
cereals. Interestingly, an Fr-Am2 or Fr-H2 locus was
identified as a quantitative trait locus that functions in
tolerance to cold stress. Some DREB1/CBF genes map
to these loci in diploid wheat and barley, respectively
(Vágújfalvi et al., 2005; Francia et al., 2007). In addition,
mRNA levels of the DREB1/CBF genes within the
Fr-Am2 or Fr-H2 locus correlated with frost resistance
(Vágújfalvi et al., 2005; Stockinger et al., 2007).

Taken together, the DREB1/CBF regulon responds
to cold stress and functions in stress tolerance without
posttranscriptional modification in most grasses.
Therefore, induction of the DREB1/CBF genes in re-
sponse to cold appears to be important for regulation
of this regulon (Fig. 1).

DREB2 Regulon in Response to Osmotic and Heat Stress
in Arabidopsis

TheDREB2A gene was isolated as a gene encoding a
DRE/CRT-binding protein and was shown to be in-
duced by osmotic stresses (Liu et al., 1998). However,
investigations studying the function of DREB2 genes
did not proceed as rapidly as those analyzing the role
of DREB1 genes because overexpression of DREB2A
did not result in any phenotypic changes in transgenic
plants (Liu et al., 1998). Domain analysis of DREB2A
using Arabidopsis protoplasts revealed that the cen-
tral region of DREB2A contains a negative regulatory
domain and that deletion of this region makes DREB2A
constitutively active (DREB2A-CA). Overexpression
of DREB2A-CA in transgenic Arabidopsis induced
expected phenotypic changes, including dwarfism,
up-regulation of many stress-inducible downstream
genes, and drought tolerance. When DREB2A-CA
protein was fused to GFP, stable expression (i.e. green
fluorescence) was observed in the nucleus. However,
full-length DREB2A proteins fused to GFP protein
were not stable in the nuclei of transgenic Arabidopsis
plants, suggesting that the central region of DREB2A
is required for regulation of the stability of DREB2A
proteins. DREB2A protein degradation is thought to
be mediated by DRIPs (DREB2A-interacting protein,
C3HC4 RING domain-containing proteins), which
bind to DREB2A. DRIP proteins function as E3 ubiq-
uitin ligases and are capable of mediating DREB2A
ubiquitination, as was revealed in an in vitro ubiquiti-
nation assay (Qin et al., 2008).

AlthoughDREB2Awas isolated togetherwithDREB1A
(Liu et al., 1998), it was found that some DREB2A
downstream target genes were different from those of
DREB1A. The reason for this probably lies in the fact
that the DNA-binding specificity of DREB2A slightly
differs from that of DREB1A. Specifically, DREB1A has
a high affinity to A/GCCGACNT sequences, whereas
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DREB2A preferentially binds ACCGACmotifs (Sakuma
et al., 2006a). Overexpression of DREB2A-CA also
induced expression of heat shock (HS)-related genes
and improved thermotolerance in transgenic plants
(Sakuma et al., 2006b). Furthermore, overexpression of
DREB2C was found to induce the expression of many
HS stress-inducible genes, resulting in thermotolerance
in transgenic Arabidopsis (Lim et al., 2007). Collec-
tively, these data indicate that DREB2 regulons function
in both osmotic and HS stress responses (Fig. 1).

DREB2 Regulons in Response to Dehydration and High
Salinity in Grasses

DREB2 homologous genes were isolated in grasses
such as rice, wheat, barley, maize, and pearl millet
(Pennisetum glaucum; Dubouzet et al., 2003; Shen et al.,
2003; Xue and Loveridge, 2004; Egawa et al., 2006;
Qin et al., 2007; Agarwal et al., 2007). Most of them
respond to high salinity and drought (Fig. 1). Themaize
ZmDREB2Awas responsive to high temperature, which
was also shown for the ArabidopsisDREB2A gene (Qin
et al., 2007). Wheat TaDREB1, wheat WDREB2, maize
ZmDREB2A, and pearl millet PgDREB2 are also re-
sponsive to cold stress, whereas Arabidopsis DREB2A
and riceOsDREB2A are not (Dubouzet et al., 2003; Shen
et al., 2003; Egawa et al., 2006; Agarwal et al., 2007; Qin
et al., 2007). DREB2 transcripts were shown to be
regulated by alternative splicing in barley, wheat, and
maize. Although nonfunctional forms of transcripts
accumulated, functional forms of transcripts were in-
duced by stress treatments (Xue and Loveridge, 2004;
Egawa et al., 2006; Qin et al., 2007). Most of these
DREB2 proteins were reported to have transactivation
abilities in yeast or plant cells. Although pearl millet
PgDREB2 preferably binds to the ACCGAC sequence
as does DREB2A, the most preferred binding sequence
of barleyHvDRF1 is TT/ACCGCCTT (Xue andLoveridge,
2004; Agarwal et al., 2007). PgDREB2 was shown to
be phosphorylated by total cell extracts and that the
phosphorylated protein could not bind to DRE/CRT
(Agarwal et al., 2007).
Although overexpression of rice OsDREB2A did not

result in any phenotypic changes in transgenic Arabi-
dopsis, overexpression of wheat TaDREB1 andWDREB2
and maize ZmDREB2A caused phenotypic changes in
transgenic Arabidopsis and tobacco (Dubouzet et al.,
2003; Shen et al., 2003; Kobayashi et al., 2007; Qin et al.,
2007). For example, Arabidopsis overexpressing maize
ZmDREB2A were dwarf, but exhibited improved tol-
erance to drought and heat stress as did transgenic
Arabidopsis overexpressing DREB2A-CA. Microarray
analysis revealed that 28 of 44 up-regulated genes in
transgenic Arabidopsis overexpressing ZmDREB2A
were also up-regulated in Arabidopsis overexpressing
DREB2A-CA. Unfortunately, stress-tolerant grasses
overexpressing DREB2 have not yet been generated.
In conclusion, expression of DREB2 genes is in-

duced by dehydration and high salinity in grasses,
while some DREB2 genes respond to cold or heat

stress (Fig. 1). Stability of DREB2 proteins is required
for function in Arabidopsis, whereas RNA processing
of DREB2 genes is important in grasses (Fig. 1).

AREB/ABF REGULON

ABRE and Coupling Elements for
ABA-Mediated Responses

Many drought and high salinity-inducible genes
respond to ABA in Arabidopsis and rice (Seki et al.,
2002; Rabbani et al., 2003). Most ABA-inducible genes
contain a conserved, ABA-responsive, cis-acting ele-
ment, designated as ABRE (PyACGTGG/TC), in their
promoter regions. ABRE is a major cis-acting element
in ABA-responsive genes (Fig. 1). For ABA-dependent
transcription, a single copy of ABRE is not sufficient.
Rather, ABRE and coupling elements, including cou-
pling element 1 (CE1) and coupling element 3 (CE3),
constitute an ABA-responsive complex in the regula-
tion of wheat HVA1 and HVA22 genes (Shen et al.,
1996). Most known coupling elements are similar to
ABREs. For example, rice contains an A/GCGT motif
(Hobo et al., 1999a). In Arabidopsis, the DRE/CRT
sequence may serve as a coupling element of ABRE in
response to ABA (Narusaka et al., 2003), suggesting
that the existence of the interaction between the DREB
regulons and the ABRE-related regulons.

AREB/ABF Regulon in Response to ABA in Arabidopsis

Arabidopsis cDNAs encoding bZIP TFs, referred to
as AREB or ABFs, were isolated using yeast one-
hybrid screening (Choi et al., 2000; Uno et al., 2000). In
the Arabidopsis genome, 75 distinct bZIP TFs exist
and 13 members are classified as a subfamily of
AREB/ABFs that contain four conserved domains
(Bensmihen et al., 2002; Jakoby et al., 2002). Arabidop-
sis AREB1/ABF2, AREB2/ABF4, and ABF3 are mainly
expressed in response to dehydration and high salinity
in vegetative tissues, but not in seeds (Fujita et al.,
2005; Fig. 1). In contrast, Arabidopsis ABI5, AREB3,
AtDPBF2, and EEL were expressed during seed mat-
uration (Finkelstein and Lynch, 2000; Lopez-Molina
and Chua, 2000; Bensmihen et al., 2002). Fujita et al.
(2005) reported that transgenic Arabidopsis plants
overexpressing the active form of AREB1 showed
ABA hypersensitivity and enhanced drought toler-
ance. In addition, eight genes representing two groups
were up-regulated: LEA-class genes and ABA- and
dehydration stress-inducible regulatory genes, includ-
ing linker histone H1 and AAA ATPase.

ABA-responsive 42-kD kinases phosphorylate con-
served regions of AREB/ABFs, which suggests that
ABA-dependent phosphorylation may be involved in
activation of AREB subfamily proteins (Uno et al.,
2000). Activation of AREB1 requires ABA-dependent
posttranscriptional modification. ABA-activated 42-
kD kinase activity phosphorylates Ser/Thr residues
of R-X-X-S/T sites in the conserved regions of AREB1
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(Furihata et al., 2006). Transgenic plants overexpress-
ing the phosphorylated active form of AREB1 ex-
pressedmanyABA-inducible genes, including RD29B,
without ABA treatment (Furihata et al., 2006). There-
fore, these results suggest that the ABA-dependent
multisite phosphorylation of AREB1 regulates its own
activation in plants and that phosphorylation- and
dephosphorylation-regulated events are important for
ABA signaling.

Several type-2 SNF1-related protein kinases
(SnRK2-type), such as OST1/SRK2E in Arabidopsis
(Mustilli et al., 2002; Yoshida et al., 2002), were iden-
tified as ABA-activated protein kinases. They were
also shown to mediate the regulation of stomatal
aperture and to function upstream of ABA-responsive
gene expression. In Arabidopsis, nine of 10 SnRK2 are
activated by hyperosmolarity and five of nine SnRK2
are activated by ABA (Boudsocq et al., 2004). Furihata
et al. (2006) demonstrated that ABA-activated SnRK2
protein kinases, including SnRK2.2/SRK2D, SnRK2.3/
SRK2I, and SnRK2.6/SRK2E, phosphorylate the
AREB1 polypeptide. Recently, Fujii et al. (2007) dem-
onstrated that two protein kinases, SnRK2.2/SRK2D
and SnRK2.3/SRK2I, control responses to ABA in seed
germination, dormancy, and seedling growth in Arabi-
dopsis. The authors suggested that the mechanism of
SnRK2.2 and SnRK2.3 action in ABA signaling in-
volves the activation of ABRE-driven gene expression
through phosphorylation of AREB/ABFs (Fig. 1).

AREB/ABF Regulon in Response to ABA in Grasses

The rice TRANSCRIPTION FACTOR RESPONSI-
BLE FOR ABA REGULATION1 (TRAB1) and barley
HvABI5 show high homology to AREB2/ABF4. Ex-
pression of TRAB1 and HvABI5 genes was detected in
ABA-treated and drought-stressed seedlings, respec-
tively (Hobo et al., 1999b; Casaretto and Ho, 2003; Xue
and Loveridge, 2004; Fig. 1). HvABI5 binds to cis-
elements in the promoter region ofHVA1, an ABA- and
stress-responsive gene (Casaretto and Ho, 2003; Xue
and Loveridge, 2004). TRAB1 was shown to be phos-
phorylated rapidly in response to ABA in rice (Kagaya
et al., 2002). The rice bZIP TF OsABI5 was also isolated
from rice panicles (Zou et al., 2008). Expression of
OsABI5 was induced by ABA and high salinity, but
was down-regulated by drought and cold stress in
seedlings (Fig. 1). Overexpression of OsABI5 in rice
conferred high sensitivity to salt stress. In contrast,
down-regulation of OsABI5 promoted stress tolerance,
but resulted in decreased fertility of rice. These results
suggest that OsABI5 may regulate adaptation to stress
and plant fertility. Recently, Nijhawan et al. (2008)
surveyed the rice genome for bZIP family proteins and
analyzed the expression of 89 OsbZIP genes. Their
microarray analysis indicated that 26 genes were up-
regulated and 11 genes were down-regulated under
dehydration, salinity, and/or cold conditions. The
transcript level of TRAB1 (OsbZIP66; Hobo et al.,
1999b) was up-regulated under dehydration and salt

stress. However, the OsbZIP TFs remain to be ana-
lyzed in the context of stress signaling.

Ten SnRK2 protein kinases were identified in rice.
All family members are activated by hyperosmotic
stress. Three genes of this family are also activated by
ABA (Kobayashi et al., 2004). Rice ABA-activated
SnRK2 can phosphorylate TRAB1 (Kobayashi et al.,
2005). Therefore, ABA-activated SnRK2 protein kinases
phosphorylate and activate the AREB/ABF-type pro-
teins in rice as well as Arabidopsis (Fig. 1). Recently,
Chae et al. (2007) isolated a dehydration-inducible gene
(designated OSRK1) that encodes a 41.8-kD protein
kinase of the rice SnRK2 family. In vitro kinase assays
demonstrated that OSRK1 can phosphorylate both itself
and generic substrates. OREB1, a rice ABRE-binding
factor, was phosphorylated in vitro by OSRK1 at mul-
tiple sites of different functional domains.

In summary, Arabidopsis and rice use similar
AREB/ABF regulons in ABA-dependent gene expres-
sion during dehydration and high-salinity stresses
(Fig. 1). Phosphorylation of AREB/ABF-type TFs by
SnRK2 family kinases is important in ABA-dependent
stress signaling networks (Fig. 1).

NAC REGULON

NAC Regulon in Response to Dehydration and High

Salinity in Arabidopsis

There are additional gene expression pathways that
are regulated through NAC TFs under dehydration
stress in Arabidopsis (Fig. 1). Two different Arabidop-
sis cis-acting elements are necessary for induction of
gene expression by dehydration in EARLY RESPONSE
TO DEHYDRATION1 (ERD1), which encodes a Clp
protease regulatory subunit, ClpD (Nakashima et al.,
1997; Simpson et al., 2003). Three cDNAs encodingNAC-
like proteins, Arabidopsis NAC domain-containing
proteins ANAC19 (AT1G52890), ANAC055 (ATNAC3,
AT3G15500), and ANAC072 (RD26, AT4G27410), were
isolated using yeast one-hybrid screening and were
found to bind to one of the cis-elements in the ERD1
promoter (Tran et al., 2004). Microarray analysis of
transgenic plants overexpressing ANAC019, ANAC055,
or ANAC072/RD26 revealed that several stress-inducible
genes were up-regulated, conferring significantly in-
creased drought tolerance in the transgenic lines
(Fujita et al., 2004; Tran et al., 2004). However, ERD1
was not up-regulated in transgenic plants. Through
one-hybrid screening, cDNAs encoding zinc-finger
homeodomain (ZFHD) TFs that bind to the other cis-
element in the ERD1 promoter were isolated. One of
these TFs, ZFHD1, was shown to function as a tran-
scriptional activator in response to dehydration stress
(Tran et al., 2007). When both NAC and ZFHD proteins
were overproduced, ERD1 expression increased, sug-
gesting that both cis-acting elements are essential for
the expression of ERD1. Note that, in Arabidopsis,
NAC proteins function alone or act as transcription
activators in cooperation with ZFHD proteins (Fig. 1).
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NAC Regulon for Dehydration, High Salinity, and Cold

Stress in Grasses

The OsNAC6 gene is a member of the NAC TF gene
family in rice (Ohnishi et al., 2005; Nakashima et al.,
2007). Expression of OsNAC6 is induced by ABA and
abiotic stresses, including cold, drought, and high
salinity (Fig. 1). OsNAC6 gene expression is also in-
duced by jasmonic acid, wounding, and blast disease.
OsNAC6 was shown to function as a transcriptional
activator that localizes to the nucleus. Transgenic rice
plants overexpressing OsNAC6 exhibited growth re-
tardation and low grain yield. However, these trans-
genic rice plants had improved tolerance to dehydration
and high salt stresses and were more tolerant to blast
disease. It was found that stress-inducible promoters,
such as the OsNAC6 promoter, are more suitable for
overexpression in order to minimize negative effects
on plant growth in transgenic rice. Up-regulated genes
in rice plants overexpressingOsNAC6 contained many
genes that were induced by abiotic and biotic stresses,
as revealed by microarray analyses. This is supported
by results of a transient transactivation assay that
demonstrated that OsNAC6 activates the expression
of two genes, including a peroxidase-encoding gene.
Collectively, these results suggest that OsNAC6 func-
tions as a transcriptional activator in response to
abiotic and biotic stresses in plants. Recently, Hu
et al. (2006, 2008) reported that overexpression of the
stress-responsive genes STRESS-RESPONSIVE NAC1
(SNAC1) and SNAC2 enhance drought and salt toler-
ance in transgenic rice without growth retardation
(Fig. 1). It should be noted that SNAC1was reported to
enhance drought resistance in transgenic rice at the
reproductive stage (22%–34% higher seed setting than
control) when grown in the field under severe drought
stress. These plants, however, were not affected in
yield (Hu et al., 2006). Completion of the rice genome
project revealed that the rice genome contains six
paralogous genes, including OsNAC6 and SNAC1
(Ooka et al., 2003). Interestingly, one of the homologous
genes, ONAC010, encodes a protein showing high
similarity with the NAC protein, NAM-B1, regulating
senescence, whichwas shown to improve grain protein,
zinc, and iron content in wheat (Uauy et al., 2006).
These results indicate that, in contrast to Arabidop-

sis, the NAC regulon may have additional functions in
grasses (Fig. 1). Therefore, comparative analysis of gene
expression patterns, determining the functional role of
these genes in growth and tolerance to abiotic and biotic
stresses, and identification of target genes of TFs in-
volved in stress responses are important future tasks.

CONCLUSIONS AND PERSPECTIVES

Many plant genes are regulated in response to
abiotic stresses, such as dehydration, high salinity,
cold, and heat. These genes regulate responses to
stress and are thought to be important for stress
tolerance. Molecular and genetic studies provided

evidence that the dicot Arabidopsis and the monocot
rice share common regulatory mechanisms of gene
expression. TFs play important roles in the regulation
of gene expression in response to abiotic stresses and
most TFs are common between grasses and Arabidop-
sis (Fig. 1). TFs are powerful targets for genetic engi-
neering of stress tolerance because overexpression of a
single TF can lead to the up-regulation of a wide array
of stress response genes that are controlled by the TF.

The grasses include many agriculturally important
plants: major food crops such as rice, wheat, maize,
and barley, forage crops such as ryegrass, and bio-
mass/biofuel production species such as sugarcane
(Saccharum sp.). Many TFs, including DREB1/CBF,
DREB2, AREB/ABF, and NAC, can be used to im-
prove stress tolerance to abiotic stresses in various
grasses. However, several challenges have to be over-
come when using TFs for genetic engineering of abi-
otic stress tolerance in grasses. First, an effective
expression system, including suitable promoters, will
be required for each grass because constitutive pro-
moters are not always functional or can have negative
effects on plant growth and development. Second,
there is an urgent need to establish reliable systems to
evaluate abiotic stress tolerance in transgenic grasses,
especially under field conditions. Finally, the collective
and cooperative efforts of plant molecular biologists,
physiologists, and breeders are required to generate
stress-tolerant grasses through genetic engineering. It
is hoped that, in the future, these collective efforts and
results of collaborative studies will positively contrib-
ute to sustainable food production in the world and
will help to prevent global-scale environmental dam-
age that results from abiotic stress.
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