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Biotic and abiotic stresses limit agricultural yields, and plants are often simultaneously exposed to multiple stresses. Combinations
of stresses such as heat and drought or cold and high light intensity have profound effects on crop performance and yields. Thus,
delineation of the regulatory networks and metabolic pathways responding to single and multiple concurrent stresses is required
for breeding and engineering crop stress tolerance. Many studies have described transcriptome changes in response to single
stresses. However, exposure of plants to a combination of stress factors may require agonistic or antagonistic responses or
responses potentially unrelated to responses to the corresponding single stresses. To analyze such responses, we initially compared
transcriptome changes in 10 Arabidopsis (Arabidopsis thaliana) ecotypes using cold, heat, high-light, salt, and flagellin treatments as
single stress factors as well as their double combinations. This revealed that some 61% of the transcriptome changes in response to
double stresses were not predictable from the responses to single stress treatments. It also showed that plants prioritized between
potentially antagonistic responses for only 5% to 10% of the responding transcripts. This indicates that plants have evolved to cope
with combinations of stresses and, therefore, may be bred to endure them. In addition, using a subset of this data from the
Columbia and Landsberg erecta ecotypes, we have delineated coexpression network modules responding to single and
combined stresses.

Plants are often simultaneously exposed to various
biotic and abiotic stresses in their natural or agronomic
habitats (Ahuja et al., 2010). Roughly 300 cellular stress
genes are conserved in all organisms to defend or re-
pair vital macromolecules against environmental fac-
tors (Kültz, 2005). However, stress response genes also
evolve rapidly as organisms adapt to changing envi-
ronments. Thus, antifreeze proteins evolved separately
in different phyla (Cheng, 1998), and roughly half of
the osmoresponsive genes in the model plant Arabi-
dopsis (Arabidopsis thaliana) are plant specific (Rabbani

et al., 2003). Because biotic and abiotic stresses reduce
harvest yields, considerable research has aimed to
understand the responses of model plants and crops to
single stresses (for review, see Hirayama and Shinozaki,
2010; Chew and Halliday, 2011). This work has
identified sets of canonical response genes induced by
heat, cold, osmotic, or high-light stresses (Kreps et al.,
2002; Seki et al., 2002; Rizhsky et al., 2004; Oono et al.,
2006; Kleine et al., 2007; Hannah et al., 2010; González-
Pérez et al., 2011) and in response to pathogen infec-
tion and exposure to pathogen-associated molecular
patterns (Navarro et al., 2004; Nielsen et al., 2007).
It has also revealed that plant responses to different
stresses are coordinated by complex and often inter-
connected signaling pathways regulating numerous
metabolic networks (Nakashima et al., 2009). None-
theless, apart from a notable study on the effects of
simultaneous drought and heat stress (Rizhsky et al.,
2004), the effects of stress combinations have been little
studied (Mittler, 2006; Atkinson and Urwin, 2012).
Therefore, further work is needed if we wish to un-
derstand the full complement of stress responses by
comparing data on single stresses with data on mul-
tiple stress responses. Such data will be relevant to
agronomy (Oerke et al., 1994) and provide tools to
answer basic questions about signaling “cross talk” in
systems biology (Mundy et al., 2006).

Whole-genome expression profiling with microarrays
is a useful tool to monitor changes in transcript levels
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and thereby gene expression in response to stresses and
other factors (Seki et al., 2009). Most such studies have
used Arabidopsis as a model because of its amenability
to subsequent forward and reverse genetic analyses
(Somerville and Koornneef, 2002). Robust algorithms
have been developed for high-throughput microarray
data to decipher global biological processes and to
generate testable biological hypotheses (Harr and
Schlötterer, 2006; Chawla et al., 2011). For example,
lists of transcripts differentially responding to different
stresses can be generated and ranked by biological
criteria (Dudoit et al., 2002; Nielsen et al., 2007).
Network-based algorithms can successfully deal with
some of the complexities of biological and other phy-
sical systems (Barabási and Oltvai, 2004). Different
methods and algorithms have been developed (Chawla
et al., 2011) to construct major types of biological net-
works, including gene-metabolite, protein-protein in-
teraction, transcriptional regulatory, gene regulatory,
and coexpression networks (Yuan et al., 2008). Coex-
pression or coregulation of genes may implicate them in
similar biological processes, such that individual mod-
ules of genes can be attributed to specific processes. A
primary assumption is that, in such networks, strongly
coregulated or coexpressed groups of genes participate
in similar biological processes, such as signaling or
metabolic pathways (Williams and Bowles, 2004). For
example, a study by Weston et al. (2008) showed that
a coexpression network-based analysis could delineate
population-level, adaptive physiological responses of
plants to abiotic stress. In addition, by meta-analysis of
microarray data and other publicly available information
(Mentzen and Wurtele, 2008), modular coexpression-
based analysis can dissect regulon organization in the
Arabidopsis genome by identifying functional modules
that share a similar expression profile across multiple
spatial, temporal, environmental, and genetic conditions.

We conducted a large-scale microarray experiment to
analyze plant responses to multiple, concurrent stresses
and to identify the levels and functions of stress regu-
latory networks. To this end, 10 ecotypes of the model
Arabidopsis were subjected to five individual stress
treatments and six combinations of these stress treat-
ments under the same growth and experimental condi-
tions. Here, we present and analyze this homogeneous
data set of ecotype responses to single and combined
stresses. Importantly, our analysis shows that, when two
stresses were combined, an average of 61% of the tran-
scripts responded in modes that could not be predicted
from individual single stress treatments. In addition,
only a minor fraction (6%) of the transcripts exhibited
antagonistic responses to stress combinations under
which the plants apparently must prioritize between
the responses. Given the novelty of the responses
we uncovered, we explored the modular organization
of transcription networks using weighted gene coex-
pression network analysis (WGCNA; Zhang and Horvath,
2005). This permitted us to identify stress-responsive
modules and potentially key regulatory genes to further
understand plant responses to multiple stresses.

RESULTS

Transcript Profiling of Stress Treatments

To investigate the effects of five single stress treat-
ments (cold, high light, salt, heat, and flagellin [FLG])
and six combined stress treatments (cold and high
light, salt and heat, salt and high light, heat and high
light, heat and FLG, and cold and FLG) on global
transcript levels in Arabidopsis, labeled RNA was
hybridized in triplicate to Arabidopsis NimbleGen
ATH6 microarrays (Supplemental Table S1). A total of
210 arrays covering stress experiments from 10 dif-
ferent ecotypes (Columbia [Col], Landsberg erecta
[Ler], Columbia 24, Cape Verde Islands, Kashmir,
Antwerpen, Shakdara, Kyoto 2, Eringsboda, and Kon-
dara) were hybridized, and three arrays were identified
as outliers (data not shown) and removed to achieve a
total of 207 arrays. The array contained probes for 30,380
transcripts for which significant changes in levels were
determined by comparing single or double stress treat-
ments with ecotype-matched controls and used in fur-
ther analyses.

Responses to Single Stresses and Intraspecific Variation

We initially compared the Col and Ler transcript re-
sponses of the single stress treatments with a bench-
mark set of responses to similar stress treatments.
Despite the fact that the benchmark sets are composed
from previously published studies using various eco-
types and experimental setups, there was a good overall
overlap (Supplemental Table S2), including key stress-
responsive transcripts (Supplemental Table S3). These
results indicate that the individual stress treatments we
applied had effects similar to those described previ-
ously in other analyses and that our individual stress
treatments were appropriate.

We then investigated how the ecotypes responded
to single stress treatments to identify ecotype differ-
ences (Supplemental Fig. S1). In general, the responses
of the 10 ecotypes were highly correlated, except for
Col, which behaved as an outlier for responses to heat,
salt, or high light. Such intraspecific variation in re-
sponses to environmental stimuli have been well
documented in a number of plant species, including
Arabidopsis ecotypes (Koornneef et al., 2004). As Col
and Ler are widely used for Arabidopsis research, we
focused on these two ecotypes to obtain consensus
results. Using the Col and Ler transcript sets, we
compared transcript overlap and congruency between
each of the responses. This revealed low overlap be-
tween abiotic and biotic transcript stress responses.
Among the single abiotic stresses, cold and high light
were most similar (33% transcript overlap) with very
congruent responses such that 87% of the transcripts
responded in the same direction (increased or reduced
levels; Supplemental Fig. S2). In contrast, considerable
dissimilarity was observed between responses to salt
and cold or salt and heat single stresses, while re-
sponses to salt and high light were more congruent.
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Responses to Combined Stresses

In principle, when plants are exposed to combined
stresses, their responses to the single stresses must be
modulated to produce a combined response. The re-
sponses of a given transcript to two single stresses may
be neutral, agonistic, antagonistic, or unrelated, and
the response to the combined stresses may be a com-
bination of such responses. However, as described
below, the response of transcripts to combined stresses
is not easily predictable. To describe these responses,
we clustered significantly responding transcripts
(Supplemental Table S4) from the two single stresses
and the combined stress treatments to predefined ex-
pression profiles (see “Materials and Methods”) and
defined five transcript response behaviors or modes:
“combinatorial,” “canceled,” “prioritized,” “indepen-
dent,” and “similar” (Fig. 1). Transcripts in combina-
torial mode have similar responses to the two single
stresses and different responses to the combined stresses.
Transcripts in canceled mode respond differently to the
single stresses and are returned to control levels in re-
sponse to the combined stress treatment. Transcripts
in prioritized mode respond differently to the single
stresses and remain at one of these levels in response
to the combined stresses. Importantly, these three
modes represent transcript responses or regulatory
modes between two stress factors that cannot be pre-
dicted from single stress experiments. In contrast, tran-
scripts in independent mode, whose regulation patterns
do not respond to the addition of a second stress, as well
as transcripts in similar mode for the two single and the
combined stresses might be more readily identified from
single stress experiments.
Comparison of the responses of single versus com-

bined stresses revealed that, on average, 61% of the
transcripts responded in a mode (combinatorial, can-
celed, or prioritized) in which the two single stress re-
sponses interact such that the response to the combined
stresses cannot be predicted from the single stress ex-
periments alone (Fig. 2A). The extents of these interact-
ing modes were dependent on the particular stresses
applied and ranged from 49.3% of the transcripts in the
heat and FLG experiment to 73.8% in the salt and heat
double stress experiment (Fig. 2B). The majority of the
interacting transcript responses were canceled or com-
binatorial, with averages of 29.3% and 24.7%, respec-
tively. However, on average, only 6.8% of the transcripts
responded in the prioritized mode, in which the plant
must decide between antagonistic responses. This in-
dicates that responses to multiple stresses involve re-
latively few, oppositely responding transcripts. The
experiment with the smallest fraction of transcripts
responding in prioritized mode is the cold and high light
experiment (3.0%; Fig. 2B). This is in good agreement
with the responses to the two single stress treatments,
which share a large overlap in transcripts and thus ex-
hibit very congruent responses (Supplemental Fig. S2).
In contrast, the combined salt and heat treatments show
the highest level of prioritized transcripts (12.1%).

The independent and similar response modes, in
which stress responses apparently do not interact upon
combined stress exposure, constituted on average 39% of
the transcript responses, and the number of transcripts
regulated in the independent mode generally was the
larger fraction of these (28%). The response to combined
salt and heat treatment was the most oppositely directed
in that it had the highest level of unpredictable responses
(combinatorial, canceled, or prioritized), with the fewest
number of transcripts in similar mode (1.5%), whereas
the combined cold and high light treatments had the
largest number of transcripts in similar mode (18.6%).
This corresponds well to the congruency and similarity
of the single stress treatments and the levels of priori-
tized transcripts found above for these double stress
combinations.

We also searched for transcripts that consistently be-
haved in an interactive or a noninteractive mode across
all double stress experiments. This identified two
transcripts regulated in combinatorial mode in more
than four of the experiments: Arabinogalactan Protein10
(AGP10; At4g09030) and a noncoding retrotransposon,
AT5TE39795 (At5g28913). In addition, 11 transcripts
were found to be regulated in more than four experi-
ments in canceled mode: AOR (for alkenal/one oxi-
doreductase; At1g23740; Gene Ontology [GO] process
oxidative stress), GBSS1 (for UDP-glycosyltransferase;
At1g32900; light and low temperature), G-TMT (for
g-tocopherol methyltransferase; At1g64970; oxidative
stress), FKF1 (At1g68050; blue light), At1g73325 (Kunitz
trypsin inhibitor), ATUTR1 (for UDP-glycosyl transfer-
ase; At2g02810; protein folding), At2g36220 (oxidative
stress, high light), ARC5 (for dynamin-like GTPase;
At3g19720; circadian clock), SEX4 (for glucan phospha-
tase; At3g52180; circadian rhythm), PIF6 (At3g62090;
light), and CIPK20 (for calcineurin B-like kinase;
At5g45820; abiotic stress, abscisic acid).

We then investigated whether transcripts of the
particular response modes could be associated with
biological functions via their corresponding, signifi-
cant GO terms (Supplemental Fig. S3; Supplemental
Table S5). Several patterns appear clear, as three of the
response modes are associated with sets of GO terms
specific to them. The independent mode is associated
with chloroplastic or photosynthetic terms including
thylakoid membrane organization and responses to
cyclopentenones and high light intensity. This indi-
cates that the effects of high-light treatment may con-
tain a specific set of transcripts that are not influenced
by the other stress treatments and may solely be as-
sociated with light treatment. The canceled mode is
primarily associated with terms related to secondary
metabolism (anthocyanin, indoleacetic acid, phenyl-
propanoid, etc.) and growth regulation (ethylene and
auxin responses). This may indicate that different stresses
promote different secondary metabolite pathways and
differentially affect growth in response to auxin and
ethylene. The combinatorial mode is primarily associated
with defense terms (systemic acquired resistance, pro-
grammed cell death, salicylate biosynthesis, etc.), which
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may reflect the intersecting pathways regulating defense
against varied pathogens as well as alterations in
defense-related programs, such as endoplasmic stress,
in response to abiotic stresses. Not surprisingly, other,
more general GO terms, such as response to hormones
and water deficit, are shared among five and four of the
response modes.

We note that the transcript response mode assign-
ments were stable using different transcript signifi-
cance thresholds (Supplemental Fig. S4) and verified
the profiles and assignments for six transcripts by
quantitative PCR (qPCR; Supplemental Fig. S5).

To further investigate the dominance in a pair of
stress treatments, we quantified the extent of the in-
fluence regulation that each stress imposed on the
other in a stress combination (Fig. 3). Interestingly, this
indicated that the single stress responses were not al-
ways dominated by another stress or vice versa. For
example, transcripts that significantly responded to the
single high-light treatment were regulated to a lesser
extent when combined with cold or salt than when
high light was combined with heat. However, tran-
scripts responding to single heat treatment were reg-
ulated less in this combination (high light and heat)
than when combined with a different stress than high
light. In contrast, the transcript response to FLG
treatment alone in both cases was regulated to a lesser
extent than the abiotic transcript responses (heat and
cold), whereas the cold and salt single stress transcript
responses were regulated to a greater extent in their
stress combination experiments.

WGCNA

To group these stress-responding transcripts into
stress regulatory modules, we performed a WGCNA
on the 2,236 most differentially regulated transcripts
with a thresholding power of 7, which was the lowest
power for a good fit of the scale-free topology index
(see “Materials and Methods”; Supplemental Fig. S6).
This identified nine significant coexpression modules
(Table I; Supplemental Table S6). These describe

Figure 1. Clustering of transcripts to predefined expression profiles
generating the transcriptional response modes. For each stress com-
bination, transcript sets were created by the union of the 500 most
significant transcripts for each single stress and for the combination.
These transcripts were clustered to 20 predefined expression profiles,
each categorizing a potential expression change that may occur when
multiple stresses are applied. Each transcript was assigned to the
profile with the highest Pearson correlation coefficient. Boxes at left
represent the 20 predefined expression profiles described by the
transcript expression pattern for stress 1 (S1), stress 2 (S2), and the

combination of stress 1 and stress 2 (S1+S2). The dotted line represents
transcript expression with no change compared with the control. In the
boxes at right, each column represents the union of the two single
stresses and the combined stress for a given double stress experiment.
In each box, the value and color represents the percentage of tran-
scripts that correlate with the particular predefined expression profile
(green is higher). The transcriptional response modes are composed of
a given set of the predefined expression profiles as indicated on the
right: combinatorial, similar levels in the two individual stresses but a
different response to combined stresses; canceled, transcript response
to either or both individual stresses returned to control levels; priori-
tized, opposing responses to the individual stresses and one stress
response prioritized in response to combined stresses; independent,
response to only one single stress and a similar response to combined
stresses; similar, similar responses to both individual stresses and to
combined stresses. HL, High light.
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transcript sets that have similar response profiles
throughout the sample series of Col and Ler ecotypes.
These modules were associated with stress treatments by
singular value decomposition (Langfelder and Horvath,
2007), which significantly associated modules 2, 6, 7,
and 8 to abiotic, cold and high light, cold, and biotic
stress treatments, respectively (Fig. 4). In addition, GO

enrichment of transcripts in each module (Table I) was
performed. Only 104 transcripts could not be placed
in any of the modules and were assigned to module
10. Furthermore, the network node degree distribution
of the WGCNA showed scale-free behavior and could
identify highly connected transcripts inside the modules
(Supplemental Fig. S7; Supplemental Table S6). Some of
these are known to be central stress regulators, in par-
ticular a number of transcription factors (TFs). Four of
the most significant, functionally associated modules are
described below.

Module 8: Biotic Stress Response Module

Module 8 showed significant association with biotic
stress (FLG) and with combinations of biotic and tem-
perature stresses. It did not show any association with
single cold, heat, salt, or high-light stress. This module
included 72 annotated TFs (Guo et al., 2005). Some of
these TFs with higher connectivity within the module
were WRKY6 (At1g62300; Robatzek and Somssich,
2002), WRKY11 (At4g31550; Journot-Catalino et al.,
2006), WRKY17 (At2g24570; Journot-Catalino et al.,
2006), WRKY22 (At4g01250; Asai et al., 2002), WRKY25

Figure 2. Overview of the mode of responses for the combined stress
experiments, showing the percentage of transcript responses that cluster
in each response mode (A) and per stress combination (B). Combinatorial,
Similar levels in the two individual stresses but a different response to
combined stresses; canceled, transcript response to either or both indi-
vidual stresses returned to control levels; prioritized, opposing responses
to the individual stresses and one stress response prioritized in response to
combined stresses; independent, response to only one single stress and a
similar response to combined stresses; similar, similar responses to both
individual stresses and to combined stresses. HL, High light.

Figure 3. Cumulative log-fold changes of the 500 most significantly
responding transcripts in the single stress experiments when the par-
ticular stress is combined with another stress in a double stress ex-
periment. The extent of the response of significant transcripts upon
combination with the other stress in a double stress experiment (e.g.
cold and FLG) is given by the length of the bars from the center, where
longer bars represent a greater response of the transcripts. For example,
when the plants are exposed to both heat and high light (HL), there is a
higher response of the high-light transcripts compared with the heat
transcripts.
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(At2g30250; Zheng et al., 2007), WRKY28 (At4g1817; van
Verk et al., 2011),WRKY29 (At4g23550; Asai et al., 2002),
WRKY33 (At4g23810; Zheng et al., 2006), WRKY40
(At1g80840; Pandey et al., 2010), WRKY55 (At2g40740),
JAZ10 (At5g13220; Chung and Howe, 2009), MYB15
(At3g23250; Zhou et al., 2011), and ANAC13 and
ANAC53 (At1g32870; At3g10500). Significantly, all but
the last three (MYB15, ANAC13, and ANAC53) have
been functionally linked to responses to pathogen in-
fection or to the phytohormones ethylene, jasmonate,
and/or salicylate, which coordinate immune responses.
This clearly indicates the relevance of this module to
further analyses of how plants orchestrate responses to
pathogens.

Module 7: Cold Stress Response Module

Module 7 showed significant association with cold,
high light, combined cold and high light, and combined
cold and FLG. It had very little association with com-
bined salt and high light and none with single FLG
treatment. The latter indicates that combined biotic
stress (FLG) and cold generates a unique stress response
pattern different from the single stress treatments.
Based on their connectivity within the module, two
TFs apparently important in cold temperature re-
sponses are PRR7 (At5g02810; Salomé et al., 2010)
and HMGB2 (At4g23800; Kwak et al., 2007). PRR7 has
been implicated as a morning loop component in
temperature compensation, while HMG2 has been
shown to be induced by cold treatment. Other highly
connected transcripts in this module with functional as-
sociations to cold stress include COR47 (At1g20440),
PGM (At5g51820), RSA4 (At5g01410), LTI30 (At3g50970),
HVA22D (At4g24960), and ERD7 (At2g17840; Oono et al.,
2006).

Module 6: Cold and High Light Stress Response Module

Module 6 showed significant association with two
independent abiotic treatments, cold and high light. The
gene enrichment results clearly reflect these associations
(Table I). The presence of some previously reported cold
response regulators such as CBF1 (At4g25490), CBF2
(At4g25470), and DREB1A (At4g25480) clearly impli-
cates this module in responses to cold. The module in-
cludes 17 other TFs, and some of these that are highly
connected are IAA19 (At3g15540), At2g46670, APRR9
(At2g46790), APRR5 (At5g24470), ATHB-2 (At4g16780),
CCA1 (At2g46830),HFR1 (At1g02340), PIL1 (At2g46970),
as well as a MYB and homeodomain-like protein
(At3g10113), a basic helix-loop-helix protein (At3g21330),
and three zinc finger proteins (At1g73870, At5g48250,
and At5g44260). Most of these TFs have clear functional
connections to temperature- and light-dependent devel-
opmental programs. For example, APRR5 and APRR9,
CCA1, and PIL1 are involved in temperature compen-
sation in circadian rhythms (Salomé et al., 2010), HFR1
regulates a phytochrome A-dependent photomorpho-
genesis pathway (Yang et al., 2009), ATHB-2 regulates
photomorphogenesis and shade avoidance (Steindler
et al., 1999) in part by modulating auxin-responsive
growth mediated by IAA19 (Tatematsu et al., 2004),
and At5g48250 appears to be a target of Flowering Locus
C-independent effects of the autonomous floral pathway.
The module also has some association with combined
cold and FLG but no association with single FLG treat-
ment. This again highlights the fact that the interaction of
a biotic stress factor (FLG) with cold was unique.

Module 2: Abiotic Stress Response Module

Module 2 exhibited significant association with both
single and combined abiotic stresses such as single

Table I. Coexpression module GO associations

The number of transcripts and GO functional enrichment of the 10 coexpression modules are shown.

Module No. of Transcripts Functional Enrichment Analysis

1 66 No significant category detected
2 403 Response to organic substance, response to hormone stimulus, regulation of anion channel activity

by blue light, response to abiotic stimulus, maltose metabolic process, response to chemical stimulus
3 328 Response to stress, nucleotide binding, transporter activity, hydrolase activity, electron transport

or energy pathways
4 71 Response to abiotic or biotic stimulus, signal transduction, developmental processes, protein metabolism
5 60 Water transport, fluid transport
6 62 Response to abiotic stimulus, cellular response to red or far-red light, circadian rhythm, response to radiation,

shade avoidance, response to cold, response to hormone stimulus
7 69 Response to cold, response to blue light, cold acclimation, auxin homeostasis, response to far-red light,

cellular response to carbohydrate stimulus, sugar-mediated signaling pathway, response to nonionic
osmotic stress, response to abscisic acid stimulus, hyperosmotic salinity response, detection of gravity

8 907 Response to biotic stimulus, response to abiotic stimulus, multiorganism process, response to bacterium,
response to heat, response to wounding, response to fungus, response to oxidative stress, response
to light intensity, innate immune response, response to jasmonic acid stimulus, response to cold,
indole glucosinolate metabolic process, flavonol metabolic process, host programmed cell death,
response to hormone stimulus, salicylic acid metabolic process, response to ethylene stimulus,
posttranslational protein modification, response to ozone, lignin metabolic process

9 166 Response to stress, electron transport or energy pathways, cell organization and biogenesis
10 104 These transcripts were not placed in any of the modules
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heat, high light, and salt, combined salt and high light
or salt and heat, and slight association with cold and
high-light. The module did not exhibit any significant
association with FLG treatments. Functional enrich-
ment analysis (Table I) showed significantly enriched
categories associated with various abiotic stress re-
sponses. This abiotic stress-responsive module has
24 TFs including IAA1, IAA5, and IAA17 (At4g14560,

At1g15580, and At1g04250), RGL1 (At1g66350; Wen and
Chang, 2002), MYB59, MYB73, and MYB86 (At5g59780,
At4g37260, and At5g26660; Mu et al., 2009), TCP3 and
TCP14 (At1g53230 and At3g47620; Kieffer et al., 2011),
HSFB4 (At1g46264; Begum et al., 2012), HB31
(At1g14440; Torti et al., 2012), and RVE2 (At5g37260;
Zhang et al., 2007). These TFs have been implicated
in developmental processes such as root, leaf, and

Figure 4. Relationships between four modules and the 11 stress treatments. The heat maps show transcript levels across
treatments. Magenta is positive expression, black is neutral, and green is negative expression in comparison with the control
treatment. Treatments are shown on the bottom as horizontal axis labels. HL, High light. Bar plots are eigengene values (i.e. the
first principal component) calculated from the singular value composition for each module.
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internode growth, which are regulated by auxin and
gibberellin. Little is known of the functions of other
TFs in this module, including DREBA-4 (At5g52020),
SRS6 (At3g54430), emb2746 (At5g63420), HMG1/2-like
(At1g76110), DOF (At5g65590), ZN-finger (At2g37430),
SMAD/FHA (At2g21530), and two BLH genes (At2g16400
and At5g5091).

DISCUSSION

This study was designed to investigate combina-
tions of stresses that mimic harsh environmental con-
ditions that occur in the field. Therefore, we examined
high light intensity that may occur due to diminished
ozone layer protection, in combination with low or
high temperature, as well as saline irrigation combined
with high temperature. Furthermore, we were inter-
ested in the interaction of abiotic stresses such as low
or high temperature combined with biotic stresses
such as the immune response to pathogens induced by
the FLG elicitor. Here, we provide a benchmarked set
of transcript profiles responding to such single and
combined stresses. We initially determined that the
transcript responses we detected to five single stresses
were similar to those of a benchmark set of responses
to similar stresses described by others. This meant that
the stresses we applied were comparable to other studies
and permitted us to then analyze the transcript profiles
responding to combinations of these stresses. We note,
however, two potential limitations to the stress applica-
tions that others and we have used. First, due to logistics
and costs, we harvested rosettes after stress applications
at a single time point based on previous studies. The
assessment, therefore, will not detect the temporal dy-
namics of single stress responses or of the interactions
between combinations of stresses. Nonetheless, we chose
the sampling time point before the onset of visual stress
symptoms to attempt to detect responses caused
specifically by the environmental insult and not sys-
temic responses that occur “downstream” or as indi-
rect consequences of the specific stress combinations.
Second, the assessment does not detect the relative
intensities of single stresses. Despite these caveats, we
expect that our profiles, as the largest robust such
data set at present, can be productively mined by other
researchers.

The second aim of this study was to analyze the
response profiles to identify the behaviors or modes of
regulation of sets or modules of transcripts in response
to combined stresses. To these ends, we used two
types of analyses to attempt to capture the range of
responses displayed in the data. Our analysis of tran-
script behaviors or modes was based on clustering the
top 500 most significantly responding transcripts for
each single stress and for the stress combinations. Five
transcript response modes (combinatorial, canceled,
prioritized, independent, and similar) were identified
that describe potential transcript regulatory complexity
and assign predictabilities to the responses of individual

transcripts. Importantly, the combinatorial, canceled,
and prioritized response modes on average constitute
61% of the total transcripts, and these modes cannot be
predicted from the corresponding single stress exper-
iments. That the majority of the transcript responses
are not predictable when two stresses are combined
points to the limitations of attempts to delineate com-
mon stress responses or points of cross talk between
signaling pathways during multiple stresses by simply
identifying overlapping sets of genes that are regulated
by both stresses (Kreps et al., 2002; Mentzen and
Wurtele, 2008; Carrera et al., 2009). Additionally un-
predictable are transcripts that respond only to the
combined stresses and not to either individual stress.
For example, using the 500 most significant transcripts
from each stress experiment, we found that 55.8% to
79.6% of the transcripts regulated in the double stress
experiment were not among the most significant tran-
scripts in the corresponding single stress experiments.
Therefore, these potentially novel stress-related tran-
scripts will be absent in analyses using only single stress
response experiments.

Overall, the most abundant transcript response modes
are canceled, independent, and combinatorial, which
together on average include 85% of the total transcripts.
The combinatorial response (27.1%) of transcripts with
similar responses to two single stresses and different
responses to the combined stresses is indicative of
the level of interaction between responses to different
stresses. For example, combined heat and FLG treat-
ment has the lowest level of combinatorial transcripts
(7.1%) and the highest level of independent transcripts
(39.7%) along with a relatively high level of prioritized
transcripts (9.1%). The low overlap in transcripts be-
tween the abiotic and biotic single stress experiments
(approximately 5%; Supplemental Fig. S2) could indi-
cate that the early transcriptional responses to an innate
immune elicitor versus an extreme physical change in
the environment target different transcript sets.

The independent mode (28.2%) contains transcripts
that are regulated in either of the single stresses and
whose regulation is maintained without interference
from the other stress. These transcripts define the
proportion of the responses to combined stresses that
are not shared by, and do not interfere with, the re-
sponses to the single stresses. For example, responses
to combined cold and high light have the lowest level
of independent (18.5%) and prioritized (3.0%) tran-
scripts. This is in line with the highest (33%) and most
congruent (0.87%) transcript overlap between re-
sponses to cold or high light singly and the highest
similar response mode of combined cold and high
light (18.6%). In addition, 60% of the transcripts re-
spond to combined cold and high light in canceled or
combinatorial mode, indicative of strong regulatory
interactions between these two stresses. This may
mirror the ecology of the temperate Arabidopsis
ecotypes used here, in that combined cold and high-
light stress is common in temperate regions (Ivanov
et al., 2012).
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The most common mode is canceled (30.6%), in which
transcripts responding oppositely to single stresses return
to control levels in response to the combined stresses. For
example, responses to salt or heat stress are significantly
dissimilar (0.31%) and the transcript response modes to
combined salt and heat have the highest level of priori-
tized transcripts (12.1%) of all the combined stress ex-
periments. In addition, combined salt and heat have the
lowest level of similar transcripts (1%) compared with an
average of 11.2% for all combined stress experiments and
have very high fold changes compared with the single
salt or heat stresses (Fig. 3). The latter indicates that, un-
der the conditions we applied, responses to heat stress
largely dominate responses to salt stress. Despite the ca-
veats noted above concerning stress durations and in-
tensities, this result suggests that adaptation to combined
salt and heat stresses is more difficult than adaptation to
the other combined stresses assessed here. Nonetheless,
such a conclusion may only apply to temperate plants
with similar ecologies to Arabidopsis, given the extent of
adaptive diversity in related plants such as the halophyte
Thellungiella salsuginea (Wu et al., 2012).
Our description of the transcript sets or modules

responding to combined stresses employed weighted
gene coexpression analysis (Langfelder and Horvath,
2008) to hierarchically cluster modules with similar
transcript profiles. The resulting weighted transcrip-
tional networks exhibited scale-free, modular topol-
ogy, and the clustering resulted in nine significant
modules. Eigengene significance-based analysis showed
that among the nine modules, four have significant as-
sociations with different biotic and abiotic stresses.
Module 2 appears to be associated with abiotic stress,
while module 6 exhibits cold- and high light-associated
response signatures. Modules 7 and 8 have significant
association with biotic stress (FLG) and with combina-
tions of biotic and temperature stresses. Transcripts in
modules 7 and 8 may be useful for addressing agro-
nomic problems, such as reduced crop productivity due
to new pathogen invasions coupled with temperature
stress in predicted scenarios of global climate change.
Using network connectivity and gene significance mea-
sures, supported by existing information from Arabi-
dopsis TF databases, we have identified a number of TFs
as targets for future translational experiments to engineer
increased stress resistance in crops.

MATERIALS AND METHODS

Plant Stress Treatments

Arabidopsis (Arabidopsis thaliana) plants of ecotypes Col, Ler, Columbia 24,
Cape Verde Islands, Kashmir, Antwerpen, Shakdara, Kyoto 2, Eringsboda,
and Kondara were subjected to the following stress treatments: salt, cold, heat,
high light, salt + heat, salt + high light, cold + high light, heat + high light, as
well as FLG (flg22 peptide), cold + FLG, and heat + FLG. In addition, FLG-
treated plants were grown with two control conditions, control and control +
Silwet (control for the effect of Silwet detergent used for FLG application).
Stress treatments were selected from previous studies (Kreps et al., 2002;
Seki et al., 2002; Kilian et al., 2007) and microarray experiments compiled at
www.weigelworld.org/resources/microarray/AtGenExpress. Combinations
of high light (800 mmol photons m22 s21), cold (10°C), heat (38°C), high

salinity (100 mM NaCl), and foliar spray application of a bacterial elicitor
(20 mM FLG peptide flg22) were performed in environmentally controlled
chambers (RISØ DTU National Laboratory). A pilot study using Col and Ler
ecotypes was performed to identify sublethal doses of combined stress treat-
ments. This identified an optimal period of 3 h before the onset of visible
phenotypic responses such as wilting. To ensure independence between bio-
logical replicates, the stress treatments and plant growth were done in three
independent batches. Each stress treatment lasted 3 h and was done on 3-
week-old plants. The high-salinity treatments were performed by soil irriga-
tion with 100 mM NaCl solution. In order to saturate the soil, irrigation with
the saline solution started at the end of the light period the night before col-
lection and was refilled at the onset of the combined treatment. For the cold +
high-light treatment, heat from three sodium lamps was displaced by circu-
lating fans and a plexiglass shield, and ambient plant temperature was
maintained by ice trays and monitored at 10°C with an infrared thermometer
(ThermaTwin TN408LC). To reduce the effects of circadian rhythmicity,
treatments were performed 5 h after chamber dawn. After stress treatments,
leaves were collected and frozen in liquid nitrogen.

RNA Isolation and Microarray Hybridizations

Total RNA samples were isolated (RiboPure kit; Ambion), and reverse
transcription of mRNA was performed from total RNA using a double-
stranded cDNA synthesis kit (Superscript; Invitrogen). The copy DNA
(cDNA) obtained was subsequently labeled with Cy3, and the product was
precipitated using NimbleGen kits according to the NimbleGen Gene Ex-
pression protocol for microarrays. Four micrograms of the labeled products
was loaded onto microarrays, hybridized overnight, and washed in the
NimbleGen Wash Buffer Kit following the NimbleGen protocol. Scanning was
performed on a Roche 2-micron scanner, and the images were analyzed with
the NimbleScan software. The microarray used was the Arabidopsis NimbleGen
12-plex chips using the ATH6 build (Gene Expression Omnibus no. GPL16226) in
a Latin Square design with four independent probes per transcript. A total of 210
arrays were hybridized.

Microarray Data Preprocessing

Data were imported into R (R Core Team, 2012) using the oligo (Carvalho
and Irizarry, 2010) and pdInfoBuilder (Falcon et al., 2012) packages using the
AgilentAT6 build. If more than one scan was available for an array, the best
scan was selected using singular value decomposition as the array with the
lowest residuals. The data were normalized using quantiles (Bolstad et al.,
2003), and three outliers were removed by comparing the arrays using Pearson
correlation coefficient and singular value decomposition plots, giving a total of
207 arrays for the analysis. Expression indexes were calculated using robust
multiarray average (Irizarry et al., 2003). All statistical comparisons between
experiments were performed by Student’s t test using the normalized log2
transcript expression indexes. All treatments were compared with the control
experiments except treatments including FLG, which were compared with
control and Silwet samples. Transcript annotation was acquired from The
Arabidopsis Information Resource 10 (Lamesch et al., 2012) using the biomaRt
data-mining tool (Guberman et al., 2011). The microarray data are available at
the Gene Expression Omnibus with the record GSE41935.

Benchmarking

Because the benchmarking gene sets are derived from various experiments,
ecotypes, and sources, we used all transcripts from the Col and Ler single stress
experiments with P # 0.01 as input for the benchmarks. Additionally, we used
the top 500 most significant transcripts from each treatment from comparisons
using all ecotypes as a single group. The benchmarking gene sets were derived
from the following sources (Ashburner et al., 2000; Huala et al., 2001; Navarro
et al., 2004; Thimm et al., 2004; Kilian et al., 2007; Kleine et al., 2007; Kant et al.,
2008; Papdi et al., 2008; Shameer et al., 2009; González-Pérez et al., 2011; Less
et al., 2011; Avin-Wittenberg et al., 2012; Kilian et al., 2012) and are listed in
Supplemental Table S2.

Transcriptional Response Modes

For each stress combination, transcript sets were created by the union of the
top 500 most significantly responding transcripts for each single stress and for
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the combination of the two stresses. Thereafter, the transcript sets were
clustered using Pearson correlation coefficient to 20 predefined expression
profiles, each categorizing a potential expression pattern that may occur
upon multiple stress application. The predefined expression profile with the
highest Pearson correlation coefficient was selected for each transcript. The
transcriptional response modes (combinatorial, canceled, prioritized, inde-
pendent, and similar) were a multiset of several predefined expression
profiles. Association of transcriptional response modes with GO terms was
performed using GO-slim from The Arabidopsis Information Resource as of
December 12, 2012 (Berardini et al., 2004) using Fisher’s exact test with a
significance threshold of 1025 after Bonferroni correction. To simplify the
network for GO terms with identical connectivity, we only kept the most
specific term.

qPCR Verification of Microarray Transcripts

qPCR was performed using the Brilliant II SYBR Green one-step kit (Agi-
lent Technologies) with 10 pmol of each primer and 12.5 ng of total cDNA in
10 mL, and the reactions were run on a CFX 96 Thermocycler (Bio-Rad). For
this verification, biological triplicate Col samples were used and relative log2
expression was determined using ACT2 (AT3G18780), which was determined
to be highly expressed with minimal variation across the different treatments
in the microarray data. All primer efficiencies were within 100% 6 2%, and
expression levels were calculated assuming 100% efficiency. Primers used and
an agarose gel of PCR products matching the expected product sizes are
shown in Supplemental Table S7.

WGCNA

A weighted gene coexpression network was constructed using the R
package WGCNA (Langfelder and Horvath, 2008) using a united list of sig-
nificant transcripts (P # 0.01) generated from Student’s t tests between control
and treated plants in the Col and Ler ecotypes. A total of 2,236 transcripts that
responded to at least two of the stress treatments were used to construct the
weighted network from the normalized expression data by transforming the
pairwise gene correlation matrix to a weighted matrix with a scaling factor
beta (b = 7) and using the assumption that biological networks are scale free.
Here, weight represents the connection strength between gene pairs (Zhang
and Horvath, 2005). To minimize the effects of intrinsic noise in high-
throughput transcriptomic data, we transformed the adjacency into a topo-
logical overlap matrix (Yip and Horvath, 2007). The tree was created using
hierarchical clustering, and the dynamic tree-cut algorithm was used to
identify modules with similar expression patterns. A minimum module size of
30 and a height cut of 0.25 corresponding to a correlation of 0.8 were used to
merge similar transcripts. The module eigengenes were used to define mea-
sures of module membership (at the significance level P # 0.001), intra-
modular connectivity, and gene significance (Langfelder and Horvath, 2007).
Intramodular connectivity of transcripts was used to identify hubs in the
modules and was measured by computing the whole-network connectivity
(kTotal), the within-module connectivity (kWithin), and the outgoing con-
nectivity (kOut = kTotal 2 kWithin). BiNGO (Maere et al., 2005), an open-
source Java tool, was used to determine which GO terms were significantly
overrepresented in our module transcript lists (P values were Bonferroni
corrected).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Comparison of ecotype responses to the single
abiotic stresses (salt, cold, heat, and high light).

Supplemental Figure S2. Overlap congruence between responses to indi-
vidual stress treatments based on comparisons between the top 500
transcripts of each single treatment.

Supplemental Figure S3. Network of transcriptional response modes and
their associated GO terms.

Supplemental Figure S4. Comparison using different thresholds for gen-
erating the transcriptional response modes shows consistent profiles.

Supplemental Figure S5. Microarray and qPCR transcript profiles for six
transcripts verifying the transcriptional data and profile assignments.

Supplemental Figure S6. Hierarchical clustering, soft threshold, and clus-
tering dendrogram of transcripts of the WGCNA network.

Supplemental Figure S7. Scale-free behavior of network node degree dis-
tribution of the WGCNA network.

Supplemental Table S1. Overview of the experimental setup with regard
to ecotypes, stress treatments, and biological replicates.

Supplemental Table S2. Benchmark of single stress experiment data ver-
sus previous single stress experiments showing overlap, including the
reference gene sets used for benchmarking.

Supplemental Table S3. Selection of the key single stress benchmark genes
identified in benchmarking.

Supplemental Table S4. Top 500 regulated transcripts for each of the stress
treatments from the combined analysis of Col and Ler ecotypes.

Supplemental Table S5. P values of the GO terms and transcriptional
response modes for overrepresentation used to build the network.

Supplemental Table S6. WGCNA module membership and connectivity
for each of the included transcripts.

Supplemental Table S7. Primers used for qPCR and agarose gel showing
PCR products with expected sizes.
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