
Prog. Theor. Exp. Phys. 2021, 093E03 (26 pages)
DOI: 10.1093/ptep/ptab101

Backreaction of mass and angular momentum
accretion on black holes: General formulation of
metric perturbations and application to the
Blandford–Znajek process

Masashi Kimura1,∗, Tomohiro Harada1, Atsushi Naruko2, and Kenji Toma3,4

1Department of Physics, Rikkyo University, Tokyo 171-8501, Japan
2Center for Gravitational Physics,Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502,
Japan
3Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
4Astronomical Institute, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
∗E-mail: masashi.kimura.gr@gmail.com

Received June 15, 2021; Revised July 30, 2021; Accepted July 30, 2021; Published August 3, 2021

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We study the metric backreaction of mass and angular momentum accretion on black holes.
We first develop the formalism of monopole and dipole linear gravitational perturbations around
Schwarzschild black holes in Eddington–Finkelstein coordinates against generic time-dependent
matter.We derive the relation between the time dependence of the mass and angular momentum of
the black hole and the energy–momentum tensors of accreting matter. As a concrete example, we
apply our formalism to the Blandford–Znajek process around slowly rotating black holes. We find
that the time dependence of the monopole and dipole perturbations can be interpreted as a slowly
rotating Kerr metric with time-dependent mass and spin parameters, which are determined from
the energy and angular momentum extraction rates of the Blandford–Znajek process. We also
show that the Komar angular momentum and the area of the apparent horizon are decreasing and
increasing in time, respectively, while they are consistent with the Blandford–Znajek argument
of energy extraction in terms of black hole mechanics if we regard the time-dependent mass
parameter as the energy of the black hole.
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1. Introduction

Black holes in astrophysical situations are usually assumed to be Kerr black holes, and the matter
fields are treated as test fields. This is because the effects of matter distribution on the curvature are
typically small, and then the spacetime is determined from the vacuum Einstein equations which
only admit Kerr black holes as stationary regular black holes due to the uniqueness theorem in
general relativity [1–3]. Nevertheless, if we take into account the effect of matter distribution on the
spacetime, we can discuss the effect of the energy–momentum tensor on the metric by gravitational
perturbations around the background black holes. In particular, if matter accretion on black holes
exists, we expect that the mass and angular momentum of black holes secularly change. In this paper
we would like to clarify this issue by explicitly studying the gravitational perturbations around black
holes. As a first step, we focus on the case of the Schwarzschild black hole background.

The linear gravitational perturbations around Schwarzschild black holes were studied by Regge and
Wheeler [4] and Zerilli [5,6]. For higher-order multipole perturbations, where the degrees of freedom
of gravitational waves exist, the linearized Einstein equations reduce to second-order wave equations
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called the Regge and Wheeler, and Zerilli, equations with the source terms [4–7]. Because we are
now interested in the evolution of the black hole mass and angular momentum by matter accretion,
we need to study monopole and dipole perturbations. In Refs. [8,9], monopole perturbations against
generic stationary accreting matter around Schwarzschild black holes were studied. Recently, in
Ref. [10], it was shown that both monopole and dipole perturbations for generic time-dependent
matter around Schwarzschild black holes can be solved in a static coordinate system. In this paper
we extend the formalism in Ref. [9], where Eddington–Finkelstein coordinates are used, to the
case of monopole and dipole perturbations for generic time-dependent accreting matter. To study
the evolution of black hole mass and angular momentum, regularity of the accreting matter on the
black hole horizon is required and Eddington–Finkelstein coordinates are suitable for checking the
regularity. As shown in Sect. 2, we derive the relation between the time dependence of the mass and
angular momentum of the black hole and the energy–momentum tensors.

As an interesting phenomenon around rotating black holes we can consider energy extraction,
not just increasing the black hole mass. Energy extraction by test particles is known as the Penrose
process [11,12], and that by scattering waves is superradiance [13–18]. The energy extraction process
by force-free electromagnetic fields is the Blandford–Znajek process [19], which is a candidate
for the central engine for gamma-ray bursts and active galactic nucleus jets. The various aspects
of the Blandford–Znajek process have been studied in Refs. [20–30]. In this paper we discuss the
metric backreaction of energy extraction from rotating black holes by the Blandford–Znajek process.
Because the discussions in Ref. [19] are based on the slow rotation approximation of Kerr black holes,
we discuss the backreaction using non-linear gravitational perturbations around Schwarzschild black
holes, where both the effects of the slow rotation and the backreaction of the Blandford–Znajek
process are taken into account. In studying the non-linear gravitational perturbations, at each order,
we need to solve equations whose forms are the same as those of linear order but the non-linear
effects appear in the source terms. For this reason, our formalism can be applied to this problem.

This paper is organized as follows. In Sect. 2 we develop the formalism by extending the dis-
cussion in Ref. [9]. In Sect. 3, we briefly review the force-free electromagnetic fields considered
in Ref. [19]. Applying the formalism in Sect. 2 to electromagnetic fields in Sect. 3, we study the
metric backreaction of the Blandford–Znajek process in Sect. 4. The black hole mechanics in this
situation are discussed in Sect. 5. Section 6 presents a summary and discussions. We use units in
which c = G = 1.

2. Backreaction of mass and angular momentum accretion on Schwarzschild black
holes

Let us consider the situation where the effect of matter distribution on curvature is weak. Then, we
need to solve the Einstein equations

Gμν = 8πεTμν , (1)

with the small parameter ε. At the lowest order, O(ε0), the metric is given by a vacuum solution
of the Einstein equations. For later convenience, in this section we choose the lowest-order vacuum
solution as the Schwarzschild metric gSch

μν :

gSch
μν dxμdxν = −fdt2 + f −1dr2 + r2(dθ2 + sin2 θdφ2), (2)

with f = 1 − r0/r and r0 = 2M , where M denotes the background black hole mass. When we
consider the effect of εTμν , the spacetime will be described by the metric with a small deviation
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from the Schwarzschild metric,

gμν = gSch
μν + εhμν . (3)

The Einstein tensor of this metric becomes

Gμν = εδGμν

= ε

[
−1

2
∇μ∇νhα

α − 1

2
∇α∇αhμν + ∇α∇(μhν)α + 1

2
gμν(∇α∇αhβ

β − ∇α∇βhαβ)

]
+O(ε2)

=: εLSch[hαβ]μν + O(ε2), (4)

where ∇μ denotes the the covariant derivative of the Schwarzschild metric gSch
μν , and we raise or

lower indices by gSch
μν . At O(ε), we need to solve the equations

εLSch[hαβ]μν = 8πεTμν . (5)

The energy–momentum tensor satisfies

∇μTμν = 0, (6)

due to the Bianchi identity. We should note that the following discussion holds if only the basic equa-
tions formally take the form of Eq. (5). In particular, when we discuss the effect of the backreaction for
the Blandford–Znajek process in Sect. 4, we will solve Eq. (5) with the effective energy–momentum
tensor.

For a spherically symmetric spacetime background, we can decompose tensor quantities by the
tensor spherical harmonics characterized by 
, m (
 = 0, 1, 2 . . ., m = 0, ±1, . . . ± 
), and we can
separately discuss even and odd parities and different 
, m modes when we solve Eq. (5) [4–6]. In
this section we study 
 = 0 and 
 = 1 odd-parity time-dependent gravitational perturbations for a
generic time-dependent matter distribution because those modes are important for the study of the
backreaction of accreting matter on the mass and angular momentum of black holes. In Ref. [9],
the case of a stationary energy–momentum tensor was discussed, and recently, in Ref. [10], the
generic time-dependent case was discussed in the static coordinate system. In this paper we work
in Eddington–Finkelstein coordinates (V , r, θ , �) with dV = dt + f −1dr, d� = dφ, and the line
element becomes

gSch
μν dxμdxν = −fdV 2 + 2dVdr + r2(dθ2 + sin2 θd�2). (7)

In this coordinate system it is easy to discuss the regularity of tensor quantities at r = r0 because the
finiteness of the tensor components at r = r0 coincides with the regularity condition at the horizon.

2.1. Monopole perturbations

The perturbed metric for 
 = 0 is given by

h(+)
μν

∣∣

=0dxμdxν = H0(V , r)dV 2 + 2H1(V , r)dVdr, (8)

where we choose the gauge condition hrr = hθθ (= h��/ sin2 θ) = 0 (see Appendix A). In this
gauge choice there is a residual gauge mode H0 → H0 − 2f η(V ), H1 → H1 + η(V ), where η(V )
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is an arbitrary function of V . We note that this residual gauge mode corresponds to the rescaling of
the coordinate V . The generic energy–momentum tensor for 
 = 0 becomes

T (+)
μν

∣∣

=0dxμdxν

= TVV (V , r)dV 2 + 2TVr(V , r)dVdr + Trr(V , r)dr2 + T(V , r)r2(dθ2 + sin2 θd�2). (9)

The equation ∇μTμV = 0 shows that the quantity

A = 4πr2(fTVr + TVV ) (10)

satisfies

∂rA = −4πr2∂V TVr . (11)

The quantity A is interpreted as the accretion rate of the energy,

A =
∫ 2π

0

∫ π

0
Tμ

ν(∂V )μ(dr)νr2 sin θdθd�, (12)

which is related to the flux associated with the conservation law ∇μ(Tμν(∂V )ν) = 0. We note that
(∂V )μ := ∂xμ/∂V and (dr)ν := ∂r/∂xμ. If the energy–momentum tensor is stationary, A becomes
constant. Introducing a quantity E as

E =
∫ 2π

0

∫ π

0
Tμν(∂V )μ(∂V )νr2 sin θdθd�, (13)

we can write Eq. (11) as

(f ∂r + ∂V )A = ∂V E . (14)

In the static coordinates (t, r, θ , φ), Eq. (14) becomes f ∂rA = ∂tE , and we can easily see that this
corresponds to the local energy conservation law.1 The other components of the equations ∇μTμν = 0
show the relation among TVr , Trr , and T:

4rT − 2∂r(r
2(TVr + fTrr)) − r2Trr∂rf − 2r2∂V Trr = 0. (15)

In the same manner as Ref. [9], introducing new variables δM (V , r) and λ(V , r) as

H0(V , r) = 2δM (V , r)

r
+ 2f λ(V , r), H1(V , r) = −λ(V , r), (16)

the (V , V ), (V , r), and (r, r) components of the Einstein equations give

∂V δM = A, ∂rδM = −4πr2TVr , ∂rλ = −4πrTrr . (17)

These equations can be solved as

δM = δm +
∫ V

V0

A(V̄ , r)dV̄ − 4π

∫ r

r0

r̄2TVr(V0, r̄)dr̄, (18)

1 In our definition, A is positive when positive accretion into the black hole exists. The equation can be
written in the conventional conservation form ∂tE + f ∂r(−A) = 0.
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λ = −4π

∫ r

r0

r̄Trr(V , r̄)dr̄ + χ(V ), (19)

where δm and V0 are constants and χ(V ) is an arbitrary function of V . The function χ(V ) corresponds
to the residual gauge mode, i.e. the rescaling of V . We note that the other components of the Einstein
equations are automatically satisfied. To summarize, the perturbed metric for 
 = 0 is described by

h(+)
μν

∣∣

=0dxμdxν =

(
2δM

r
+ 2f λ

)
dV 2 − 2λdVdr, (20)

where δM and λ are given by Eqs. (18) and (19).
If there do not exist 
 ≥ 1 perturbations, due to the spherical symmetry of the spacetime, we can

calculate the Misner–Sharp mass2 for the metric gSch
μν + εhμν at (V , r) as

MMS = M + εδM , (21)

where δM is given by Eq. (18). We can see that the constant δm denotes the deviation of the Misner–
Sharp mass from the background mass parameter M at V = V0 and r = r0. We note that the degrees
of freedom in choosing δm and V0 are degenerate because if we change V0, δm is shifted. Also, the
quantity A determines the time dependence of the mass:

∂V MMS = εA. (22)

2.2. Odd-parity dipole perturbations

The perturbed metric for the 
 = 1 odd-parity modes is given by

h(−)
μν

∣∣

=1dxμdxν = 4

√
π/3 h0(V , r) sin θ(∂θY1,0)dVd�

= −2h0(V , r) sin2 θdVd�, (23)

where Y1,0 = 2−1√3/π cos θ ,3 and we choose the gauge condition hr� = 0 (see Appendix A). In
this gauge choice there is a residual gauge mode, h0 → h0 + r2ζ(V ), where ζ(V ) is an arbitrary
function of V . Note that this residual gauge mode corresponds to the shift of the coordinate � by
the function of V . The generic energy–momentum tensor for the 
 = 1 odd-parity modes becomes

T (−)
μν

∣∣

=1dxμdxν = −2 sin2 θd�[tV�(V , r)dV + tr�(V , r)dr]. (24)

The non-trivial component of ∇μTμν = 0 shows that the quantity

B = 16πr2

3r0
(tV� + ftr�) (25)

satisfies

∂rB = −16πr2

3r0
∂V tr�. (26)

2 The Misner–Sharp mass for spherically symmetric spacetime is given by MMS = (1 − |dr|2)r/2, where r
is the area radius and |dr|2 = gμν(dr)μ(dr)ν .

3 The other cases Y1,±1 can be obtained by acting the ladder operators of the spherical harmonics on the
perturbed metric in Eq. (23) if needed.
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The quantity B is interpreted as the accretion rate of the angular momentum,

B = − 1

M

∫ 2π

0

∫ π

0
Tμ

ν(∂�)μ(dr)νr2 sin θdθd�, (27)

where M = r0/2 and (∂�)μ := ∂xμ/∂�. This is related to the flux associated with the conservation
law ∇μ(Tμν(∂�)ν) = 0. When the energy–momentum tensor is stationary, B becomes constant.
Introducing a quantity J as

J = − 1

M

∫ 2π

0

∫ π

0
Tμν(∂V )μ(∂�)νr2 sin θdθd�, (28)

we can write Eq. (26) as

(f ∂r + ∂V )B = ∂V J . (29)

In the static coordinates (t, r, θ , φ), Eq. (29) becomes f ∂rB = ∂tJ , and we can easily see that this
corresponds to the local angular momentum conservation law.4 The (r, �) component of the Einstein
equations becomes

∂2
r h0 − 2

r2 h0 = 16π tr�. (30)

The general solutions of this equation are given by

h0(v, r) = C1(V )

r
+ r2C2(V ) + hIH

0 (V , r), (31)

where C1 and C2 are arbitrary functions of V , and hIH
0 is an inhomogeneous solution,

hIH
0 (V , r) = 16πr2

∫ r

r0

1

r̄4

[∫ r̄

r0

r̃2tr�(V , r̃)dr̃

]
dr̄. (32)

The other components of the Einstein equations give

∂V C1 = r0B|r=r0 . (33)

The general solution of this equation is given by

C1 = r0δa + r0

∫ V

V0

B(V̄ , r0)dV̄ , (34)

where δa is a constant. To summarize, the perturbed metric becomes

h(−)
μν

∣∣

=1dxμdxν = −2r0 sin2 θ

r
d�dV

[
δa +

∫ V

V0

B(V̄ , r0)dV̄ + r

r0

(
hIH

0 + r2C2(V )
)]

, (35)

where the function C2(V ) corresponds to the residual gauge mode.
If there do not exist m �= 0 perturbations, we can calculate the Komar angular momentum associated

with the Killing vector ∂� for the metric gSch
μν + εhμν at the radius r as

JKomar = εM

[
δa +

∫ V

V0

B(V̄ , r0)dV̄ + r

6M

(
2hIH

0 − r∂rhIH
0

)]
. (36)

4 In our definition, B is positive when positive angular momentum accretion onto the black hole exists. The
equation can be written in the conventional conservation form ∂tJ + f ∂r(−B) = 0.
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We note that hIH
0 = ∂rhIH

0 = 0 at r = r0. The time dependence of JKomar at the radius r becomes

∂V JKomar = εMB. (37)

We can see that δa corresponds to a constant shift in the Kerr parameter for slowly rotating cases,
and B determines the time dependence of the angular momentum at the radius r.

2.3. Remarks

2.3.1. Uniqueness of the Kerr metric if Tμν = 0 in the exterior regions for V ≥ V1

Let us assume that the energy–momentum tensor Tμν for r ≥ r0 vanishes for V ≥ V1 (> V0). This
corresponds to the situation that the matter fields are electrically neutral and they completely fall
into the black hole at V = V1. In that case, according to our formalism, the perturbed metric for

 = 0 and odd-parity 
 = 1 modes becomes that for slowly rotating Kerr black holes for r ≥ r0 and
V ≥ V1:

(gSch
μν + εh(+)

μν

∣∣

=0 + εh(−)

μν

∣∣

=1)dxμdxν

= −
[

1 − 2M[final]
r

]
dV 2 + 2dVdr + r2(dθ2 + sin2 θd�2) − 4Ma[final] sin2 θ

r
d�dV , (38)

with

M[final] = M + εδm + ε

∫ V1

V0

A(V , r0)dV , a[final] = εδa + ε

∫ V1

V0

B(V , r0)dV . (39)

Note that we can evaluate δM in Eq. (18) at r = r0 for V ≥ V1 because of the relation ∂rδM =
−4πr2∂V TVr = 0 for V ≥ V1. Thus, the integrals of A and B at r = r0 give the changes of the mass
and the angular momentum of the black hole, respectively.

2.3.2. Vaidya metric
The Vaidya metric [31] is the exact spherically symmetric solution with radiating matter,

Tμνdxμdxν = dM(V )/dV

4πr2 dV 2. (40)

On the other hand, using our formalism with Eq. (40), we obtain

(
gSch
μν + εh(+)

μν

∣∣

=0

)
dxμdxν = −

(
1 − 2(M + εM(V ))

r

)
dV 2 + 2dVdr + r2(dθ2 + sin2 θd�2).

(41)

Thus, we can see that our linear perturbation formalism reproduces the exact Vaidya metric [31].5

2.3.3. The conservation laws and fluxes
The quantities A in Eq. (11) and B in Eq. (26) are related to the energy and angular momentum fluxes
associated with the conservation laws ∇μ(Tμν(∂V )ν) = 0 and ∇μ(Tμν(∂�)ν) = 0, respectively. We

5 The metric in Eq. (41) takes the Kerr–Schild form [32,33]. It is known that the Einstein tensor of the
Kerr–Schild form is linear to the unknown function (see, e.g., Refs. [34,35]). This is the reason why linear
perturbation analysis can derive the exact solution.
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should note that this discussion holds only if the basic equations formally take the form of Eq. (5). In
particular, as discussed later, equations whose forms are the same as Eq. (5) but with Tμν replaced by
the effective energy–momentum tensors T eff

μν appear in the context of non-linear perturbations around
the Schwarzschild metric. In that case, the equations ∇μ(T eff

μν (∂V )ν) = 0 and ∇μ(T eff
μν (∂�)ν) = 0

hold for the covariant derivative with respect to the Schwarzschild metric, and the corresponding
global conservation laws exist.

3. The energy–momentum tensor of the Blandford–Znajek process
3.1. The force-free electromagnetic fields around the Kerr spacetime

We consider the test electromagnetic field Fμν = ∂μAν−∂νAμ with the electric current density vector
jμ on the Kerr spacetime. In this section, gμν denotes the Kerr metric and ∇μ denotes the corre-
sponding covariant derivative. The metric of the Kerr spacetime in the Boyer–Lindquist coordinates
(t, r, θ , φ) is given by

gμνdxμdxν = −� − a2 sin2 θ

�
dt2 − 2a sin2 θ(r2 + a2 − �)

�
dtdφ + �

�
dr2 + �dθ2

+ (r2 + a2)2 − �a2 sin2 θ

�
sin2 θdφ2, (42)

with

� = r2 + a2 cos2 θ , � = r2 + a2 − 2Mr. (43)

The constants M and a denote the mass and spin parameters. The black hole horizon is located at
r = r+ = M + √

M 2 − a2. The Maxwell equations on this spacetime are given by

∇μFμν = 4π jν . (44)

We note that the equations

∇[μFνρ] = 0 (45)

are automatically satisfied from Fμν = ∂μAν − ∂νAμ. The energy–momentum tensor of the
electromagnetic field,

T EM
μν = FμαFν

α − 1

4
gμνFαβFαβ , (46)

satisfies

∇μT EM
μν = −4πFνμjμ. (47)

If the right-hand side of Eq. (47), i.e. the Lorentz force term, is neglected, the force-free condition

Fνμjμ = 0 (48)

is satisfied. Then, the energy–momentum tensor of the electromagnetic field satisfies

∇μT EM
μν = 0. (49)
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We should note that under the condition T particle
μν � T EM

μν , where T particle
μν is the particle energy density,

the total energy–momentum conservation equations ∇μ(T particle
μν + T EM

μν ) = 0 reduce to Eq. (49).

This implies that T particle
μν � T EM

μν is a sufficient condition for Eq. (48). To summarize, the force-free
electromagnetic fields Fμν can be obtained by solving Eq. (49) with Eq. (46), and the electric current
density vector jμ can be calculated from Eq. (44).

Because the Boyer–Lindquist coordinates do not cover the black hole horizon, the location r = r+
becomes a coordinate singularity and tensors have apparently singular behavior there. In order to
solve this problem, we introduce the Kerr–Schild coordinates (T , r, θ , �) by dT = dt + 2Mrdr/�,
d� = dφ + adr/�. The Kerr metric in the Kerr–Schild coordinates becomes

gKS
μν dxμdxν = −� − a2 sin2 θ

�
dT 2 + 4Mr

�
dTdr − 4Mr

�
a sin2 θdTd� +

(
1 + 2Mr

�

)
dr2

+ �dθ2 + (r2 + a2)2 − �a2 sin2 θ

�
sin2 θd�2 − 2a sin2 θ

(
1 + 2Mr

�

)
drd�. (50)

3.2. The Blandford–Znajek solutions in the the Kerr–Schild coordinates

In Ref. [19], Blandford and Znajek studied stationary and axisymmetric force-free electromagnetic
fields around a slowly rotating Kerr metric, and the energy and angular momentum extraction though
the magnetic fields, called the Blandford–Znajek process. In this paper we focus on the so-called
split-monopole solution, and the solution in the Kerr–Schild coordinates is given by [19,20]

T BZ
μν =

(
FμαFν

α − 1

4
gKS
μν FαβFαβ

)
, (51)

where the explicit forms of Fμν are

FTr = ω∂rA�, (52)

FTθ = ω∂θA�, (53)

FT� = 0, (54)

Frθ =
√

| det(gKS
μν )|B�, (55)

Fr� = ∂rA�, (56)

Fθ� = ∂θA�, (57)

and

ω = ω1
a

M
+ O(a3), (58)

B� = B�1
a

M
+ O(a3), (59)

A� = A�0 + A�2

( a

M

)2 + O(a4). (60)

The functions A�0, A�2, ω1, and B�1 are given by

A�0 = −C cos θ , (61)

A�2 = CF(r) cos θ sin2 θ , (62)
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ω1 = 1

8M
, (63)

B�1 = −C

8Mr2

(
1 + 4M

r

)
, (64)

where C is implicitly assumed to be of different signs for different signs of cos θ , and the function
F(r) is a regular solution of the differential equation

d2F
dr2 + 2M

r(r − 2M )

dF
dr

− 6F
r(r − 2M )

+ M (r + 2M )

r3(r − 2M )
= 0. (65)

The explicit form of F(r) is

F(r) =
[

Li2

(
2M

r

)
− ln

(
1 − 2M

r

)
ln

r

2M

]
r2(2r − 3M )

8M 3

+ M 2 + 3Mr − 6r2

12M 2 ln
r

2M
+ 11

72
+ M

3r
+ r

2M
− r2

2M 2 , (66)

where Li2 is the second polylogarithm function,

Li2(x) = −
∫ 1

0
dt

ln(1 − tx)

t
. (67)

The asymptotic behaviors of F at r = 2M and r = ∞ are

F = 6π2 − 49

72
+ 6π2 − 61

24M
(r − 2M ) + O((r − 2M )2), (68)

F = M

4r
+ M 2 ln(r/M )

10r2 − M 2(11 + 20 ln 2)

200r2 + O((ln r)/r3), (69)

respectively. We can confirm that T BZ
μν satisfies the equations for force-free electromagnetic fields,

Eq. (49).6 Also, Fμν satisfies the degenerate condition

�FμνFμν = 0, (70)

where �Fμν = Fαβεαβμν/2 and εαβμν is the Levi-Civita tensor.7 As shown in Refs. [19,20], the
energy and angular momentum extraction rates are given by

ĖBZ := −
∫ 2π

0

∫ π

0

√
| det(gKS

μν )| T BZ
μ

ν(∂T )μ(dr)νdθd� = π

24

a2C2

M 4 + O(a4), (71)

J̇BZ :=
∫ 2π

0

∫ π

0

√
| det(gKS

μν )| T BZ
μ

ν(∂�)μ(dr)νdθd� = π

3

aC2

M 2 + O(a3). (72)

We can see that the relation ĖBZ = ωJ̇BZ holds at this order.

6 We note that Fμν satisfies Eq. (45), and this implies that Aμ with Fμν = ∂μAν − ∂νAμ exists.
7 The degenerate condition in Eq. (70) can be derived from the force-free condition in Eq. (48) for non-zero

jμ (see, e.g., Ref. [28]). We also note that Eq. (70) is compatible with the ideal magnetohydrodynamic condition
[20].
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4. The backreaction of the Blandford–Znajek process
4.1. Perturbation scheme

The discussions in Sect. 3 are based on the test field approximation around the Kerr black holes.
When we consider the backreaction of the Blandford–Znajek process on the spacetime, we regard
the parameter C2 as a small parameter so that the effect of the energy–momentum tensor T BZ

μν (∝ C2)

on the spacetime is weak. Introducing dimensionless small parameters α, β as8

α := a

M
, β := C2

M 2 , (73)

the energy–momentum tensor T BZ
μν can be written by the Taylor series around (α, β) = (0, 0) as

T BZ
μν = βT (0,1)

μν + αβT (1,1)
μν + α2βT (2,1)

μν + O(α3β). (74)

To discuss the backreaction of the Blandford–Znajek process, we need to solve the Einstein equations

Gμν = 8πT BZ
μν = 8πβT (0,1)

μν + 8παβT (1,1)
μν + 8πα2βT (2,1)

μν + O(α3β). (75)

We expand the metric tensor as

gμν = gKerr
μν + gBZ

μν , (76)

with

gKerr
μν = gSch

μν + αh(1,0)
μν + α2h(2,0)

μν + O(α3), (77)

gBZ
μν = βh(0,1)

μν + αβh(1,1)
μν + α2βh(2,1)

μν + O(α3β). (78)

The Einstein tensor becomes

Gμν = βG(0,1)
μν + αβG(1,1)

μν + α2βG(2,1)
μν + O(α3β) + O(β2). (79)

We note that the Einstein tensor at O(β0) vanishes because the O(β0) metric is the Kerr metric. At
each order, we need to solve the following equations:

βG(0,1)
μν = 8πβT (0,1)

μν , (80)

αβG(1,1)
μν = 8παβT (1,1)

μν , (81)

α2βG(2,1)
μν = 8πα2βT (2,1)

μν . (82)

Schematically, we can write G(0,1)
μν , G(1,1)

μν , and G(2,1)
μν as

βG(0,1)
μν = βLSch[h(0,1)

αβ ]μν , (83)

αβG(1,1)
μν = αβLSch[h(1,1)

αβ ]μν − 8παβT̃ (1,1)
μν , (84)

α2βG(2,1)
μν = α2βLSch[h(2,1)

αβ ]μν − 8πα2βT̃ (2,1)
μν , (85)

8 The shape of the letter α is similar to a, and β reminds us of the magnetic fields B.
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where T̃ (1,1)
μν and T̃ (2,1)

μν denote the effects of the non-linear perturbation, e.g. T̃ (1,1)
μν is constructed from

h(1,0)
μν and h(0,1)

μν . Thus, at each order we solve the following equations, which can be seen as linear
perturbation around the Schwarzschild spacetime with the effective energy–momentum tensors:

βLSch[h(0,1)
αβ ]μν = 8πβT (0,1)

μν , (86)

αβLSch[h(1,1)
αβ ]μν = 8παβT (1,1)

μν + 8παβT̃ (1,1)
μν =: 8παβT eff (1,1)

μν , (87)

α2βLSch[h(2,1)
αβ ]μν = 8πα2βT (2,1)

μν + 8πα2βT̃ (2,1)
μν =: 8πα2βT eff (2,1)

μν . (88)

If we regard αnβ (n = 0, 1, 2) as small parameters, we can apply the formalism in Sect. 2 to these
equations at each order.

4.2. Eddington–Finkelstein-like coordinates

We discuss the backreaction of the Blandford–Znajek process using the formalism developed in
Sect. 2, which is written in Eddington–Finkelstein coordinates. It is convenient to introduce the
Eddington–Finkelstein-like coordinates (V , r, θ , �) by dV = dT + dr. In this coordinate system,
the Kerr metric becomes

gEF
μνdxμdxν = −

(
1 − 2Mr

�

)
dV 2 + 2dVdr + �dθ2 + (r2 + a2)2 − a2� sin2 θ

�
sin2 θd�2

− 2a sin2 θdrd� − 4aMr

�
sin2 θdVd�. (89)

Then, h(n,0)
μν (n = 0, 1, 2, . . .) in Eq. (77) can be obtained by taking a Taylor series around a = 0 for

the metric in Eq. (89), i.e.

gEF
μνdxμdxν = (

gSch
μν + αh(1,0)

μν + α2h(2,0)
μν + O(α3)

)
dxμdxν , (90)

with

gSch
μν dxμdxν = −fdV 2 + 2dVdr + r2(dθ2 + sin2 θd�2), (91)

αh(1,0)
μν dxμdxν = −2αM sin2 θd�

(
2M

r
dV + dr

)
, (92)

α2h(2,0)
μν dxμdxν = α2M 2

[
− 2M

r3 cos2 θdV 2 + cos2 θdθ2 + (r + M − M cos(2θ)) sin2 θ

r
d�2

]
.

(93)

In the Eddington–Finkelstein-like coordinates (V , r, θ , �), we obtain the following equations for
the energy–momentum tensors of the Blandford–Znajek process discussed in Sect. 3:

βT (0,1)
μν dxμdxν = M 2β

2r4

[(
1 − 2M

r

)
dV 2 − 2dVdr + r2(dθ2 + sin2 θd�2)

]
, (94)

αβT (1,1)
μν dxμdxν = −2αβM sin2 θd�

[
r3 − 8M 3

8r5 dV − 2M 2 + r(r + 2M )

4r4 dr

]
, (95)

α2βT (2,1)
μν dxμdxν = α2βT (2,1)

μν

∣∣

=0dxμdxν + α2βT (2,1)

μν

∣∣

=2dxμdxν , (96)

with

α2βT (2,1)
μν

∣∣

=0dxμdxν
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= α2β

96r7

[
(96M 5 − 64M 4r + 16M 3r2 + r5)dV 2

− 4r(4M 2 + r2)(−4M 2 + 2Mr + r2)dVdr

+ 4r3(r + 2M )2dr2 − 32M 4(M + r)r2(dθ2 + sin2 θd�2)

]
, (97)

α2βT (2,1)
μν

∣∣

=2dxμdxν

= α2β

48r7

√
π

5
Y2,0

[(
192M 5 − r(32M 4 + 16M 3r + r4) + 192M 2(−2M + r)r2F

)
dV 2

+ 4r(32M 4 + 8M 3r + 2Mr3 + r4 − 96M 2r2F)dVdr − 4r3(r + 2M )2dr2

+ 16(2M 3 − rM 2 + 12r3F)r2(dθ2 + sin2 θd�2)

]
−
√

π

5

4α2βM 2∂rF
3r2 (∂θY2,0)drdθ

+
√

π

5

α2βM 3(r2 + rM + 2M 2)

3r5

∑
i,j=θ ,�

(
∇̂i∇̂jY2,0 − 1

2
γij�̂Y2,0

)
dxidxj, (98)

where Y2,0 = 4−1√5/π(−1+3 cos2 θ), γij is the metric of the unit sphere, i.e.
∑

i,j=θ ,� γijdxidxj =
dθ2 + sin2 θd�2, and the operators ∇̂i and �̂ denote the covariant derivative and the Laplacian on
γij, respectively.

4.3. O(β) corrections

We can read A(0,1), T (0,1)
Vr , and T (0,1)

rr from the O(β2) energy–momentum tensor in Eq. (94) as

A(0,1) = 0, βT (0,1)
Vr = −βM 2

2r4 , T (0,1)
rr = 0. (99)

From Eqs. (16), (18), and (19), we obtain the perturbed metric as

βh(0,1)
μν dxμdxν = β

[
2δm(0,1)

r
+ 2πM (r − 2M )

r2

]
dV 2, (100)

where we set the residual gauge mode as χ(0,1)(V ) = 0. For later convenience we choose δm(0,1) =
−πM ; then, the total metric at this order is

(
gSch
μν + βh(0,1)

μν

)
dxμdxν = −

(
1 − 2M

r
+ 4πM 2β

r2

)
dV 2 + 2dVdr + r2(dθ2 + sin2 θd�2). (101)

This is the Reissner–Nordström metric with a magnetic charge parameter Q = 2
√

πβM = 2
√

πC.
We can see that the mass of the spacetime is M and the location of the event horizon is r = rH , with

rH = M +
√

M 2 − 4πM 2β2 = 2M − 2πMβ + O(β2). (102)

One may think it strange for the spacetime to be the magnetic Reissner–Nordström metric, because
the Blandford–Znajek solution is globally different from the magnetic monopole, but it describes the
split monopole [19]. The reason is because Birkhoff’s theorem for a specially symmetric spacetime
holds locally, and the energy–momentum tensor of the Blandford–Znajek solution at O(β) is locally
the same as that for the global magnetic monopole.
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4.4. O(αβ) corrections: time dependence of the angular momentum

After some calculations, we obtain

8παβT̃ (1,1)
μν dxμdxν = 16παβ sin2 θd�

(
M 4

r5 dV + M 3

2r4 dr

)
. (103)

Thus, the effective energy–momentum tensor becomes

8παβT eff (1,1)
μν dxμdxν = 8παβT (1,1)

μν dxμdxν + 8παβT̃ (1,1)
μν dxμdxν

= −16παβ sin2 θd�

[
M (r3 − 16M 3)

8r5 dV − M (4M 2 + 2Mr + r2)

4r4 dr

]
.

(104)

We can read

teff (1,1)
V� = M (r3 − 16M 3)

8r5 , teff (1,1)
r� = −M (4M 2 + 2Mr + r2)

4r4 , (105)

so Beff (1,1) in Eq. (25) and hIH(1,1)
0 in Eq. (32) become

Beff (1,1) = −π

3
, (106)

hIH(1,1)
0 = πr2

36M

[
−13 + 8M 2

(−18M 2 + 4Mr + 9r2 − 12Mr ln(2M/r)
)

r4

]
. (107)

We note that Beff (1,1) is constant because T eff (1,1)
μν is not time dependent (see Eq. (26)). From Eq. (35),

the perturbed metric becomes

αβh(1,1)
μν dxμdxν =

− 4Mαβ sin2 θ

r
d�dV

[
δa(1,1) + Beff (1,1)(V − V0) + r

2M

(
hIH(1,1)

0 + r2C(1,1)
2 (V )

)]
. (108)

At this order, the Komar angular momentum at the radius r is

JKomar = αM 2 + αβM
[
δa(1,1) + Beff (1,1)(V − V0) + r

6M

(
2hIH(1,1)

0 − r∂rhIH(1,1)
0

)]
. (109)

We find that the time dependence of JKomar coincides with the prediction from the angular momentum
extraction rate of the Blandford–Znajek process in Eq. (72),

∂V JKomar = αβMBeff (1,1) = −αβπM

3
. (110)

We set δa(1,1) = 0; then, JKomar = αM 2 at V = V0 and r = r0. We also choose the gauge mode as
C(1,1)

2 (V ) = 13π/(36M ) so that the divergent behavior hIH(1,1)
0 at r → ∞ is canceled in Eq. (108).

4.5. O(α2β) corrections: time dependence of the mass

In a similar way, we obtain T̃ (2,1)
μν as

8πα2βT̃ (2,1)
μν = 8πα2βT̃ (2,1)

μν

∣∣

=0 + 8πα2βT̃ (2,1)

μν

∣∣

=2, (111)
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with

8πα2βT̃ (2,1)
μν

∣∣

=0dxμdxν

= α2β

27r8

[(
− π(288M 6 − 936M 5r + 288M 4r2 + 144M 3r3 + 26Mr5 − 13r6)

+ Beff (1,1)(72M 2r3(−3M + r) − 36M 2(9M − 4r)(2M − r)r(V − V0))

+ 18M (2M − r)r2(2(−3M + r)hIH(1,1)
0 + (3M − 2r)r∂rhIH(1,1)

0 )
)

dV 2

+ 2r
(
π(−144M 5 + 432M 4r + 72M 3r2 − 36M 2r3 − 13r5)

+ Beff (1,1)(−54M 2r3 + 36M 2r(−9M + 4r)(V − V0))

+ 18Mr2(2(−3M + r)hIH(1,1)
0 + (3M − 2r)r∂rhIH(1,1)

0 )
)

dVdr

+ 36r2
(
−6Beff (1,1)M 2r(V − V0) + M (2Mπ(−2M 2 + 2Mr + r2)

− 2r2hIH(1,1)
0 + r3∂rhIH(1,1)

0 )
)

dr2

+ 18Mr3
(

4M 2π(−3M 2 + Mr + 2r2) + Beff (1,1)(−6Mr3 + 6Mr(−3M + r)(V − V0))

+ (3M − r)r2(−2hIH(1,1)
0 + r∂rhIH(1,1)

0 )
)
(dθ2 + sin2 θd�2)

]
, (112)

and

8πa2C2T̃ (2,1)
μν

∣∣

=2dxμdxν

= 4α2β

27r8

√
π

5
Y2,0

[(
π(144M 6 − 792M 5r + 144M 4r2 + 72M 3r3 + 13Mr5 − 26r6)

+ Beff (1,1)(36M 2(3M − r)r3 + 18M 2r(18M 2 − 17Mr − 2r2)(V − V0))

+ 9Mr2(2(6M 2 − 5Mr − 2r2)hIH(1,1)
0 − r(−2M + r)(−3M + 2r)∂rhIH(1,1)

0 )
)

dV 2

+ r

2

(
π(288M 5 − 864M 4r − 144M 3r2 + 72M 2r3 + 65r5)

+ Beff (1,1)(108M 2r3 + 72M 2(9M − r)r(V − V0))

+ 36Mr2((6M + r)hIH(1,1)
0 + r(−3M + 2r)∂rhIH(1,1)

0 )
)

dVdr

+ 18Mr2
(

2Mπ(2M 2 − 2Mr − r2) + 6Beff (1,1)Mr(V − V0)

+ 2r2hIH(1,1)
0 − r3∂rhIH(1,1)

0

)
dr2

+ 3r3

4

(
π(144M 5 − 264M 4r − 96M 3r2 + 13r5) + Beff (1,1)(72M 2r3 + 216M 3r(V − V0))

+ 12Mr2((6M + r)hIH(1,1)
0 + r(−3M + r)∂rhIH(1,1)

0 )
)
(dθ2 + sin2 θd�2)

]

+ 2

√
π

5

α2βM

27r6

(
720M 4π + 13πr4 + Beff (1,1)(36Mr3 + 36Mr(8M + 3r)(V − V0))
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+ 36r2(3M + r)hIH(1,1)
0 − 18r3(2M + r)∂rhIH(1,1)

0

)
(∂θY2,0)dVdθ

+ 2

√
π

5

α2β

27r4

(
− 180Beff (1,1)M 2(V − V0)

+ r(−72MhIH(1,1)
0 + r(−13πr + 18M∂rhIH(1,1)

0 ))
)
(∂θY2,0)drdθ

+
√

π

5

α2β

27r5

(
π(−720M 5 − 72M 4r + 13r5) + 72Beff (1,1)M 2r(−9M + r)(V − V0)

+ 36Mr2((−6M + r)hIH(1,1)
0 + 3Mr∂rhIH(1,1)

0 )
) ∑

i,j=θ ,�

(
∇̂i∇̂jY2,0 − 1

2
γij�̂Y2,0

)
dxidxj. (113)

The effective energy–momentum tensor T eff (2,1)
μν is given by

8πα2βT eff (2,1)
μν = 8πα2βT (2,1)

μν + 8πα2βT̃ (2,1)
μν . (114)

From the expression for T eff (2,1)
μν

∣∣

=0 we can read Aeff (2,1), T eff (2,1)

Vr , and T eff (2,1)
rr as

Aeff (2,1) = 1

24r3

[
8M 2Beff (1,1)(r − 6M ) − πr(8M 2 + r2)

]
, (115)

α2βT eff (2,1)
Vr = α2β

432πr7

[
−π(288M 5 − 1008M 4r − 72M 3r2 + 72M 2r3 + 18Mr4 + 35r5)

+ Beff (1,1)(−108M 2r3 + 72M 2r(−9M + 4r)(V − V0))

+ 36Mr2(2(−3M + r)hIH(1,1)
0 + (3M − 2r)r∂rhIH(1,1)

0 )
]
, (116)

α2βT eff (2,1)
rr = α2β

24πr6

[
π(−16M 4 + 16M 3r + 12M 2r2 + 4Mr3 + r4)

− 24Beff (1,1)M 2r(V − V0) + 4Mr2(−2hIH(1,1)
0 + r∂rhIH(1,1)

0 )
]
. (117)

We can see that Aeff (2,1) is not a constant but does not depend on V . The value of Aeff (2,1) at
r = r0 is

Aeff (2,1)
∣∣
r=r0

= −5π

72
. (118)

From Eqs. (16), (18), and (19), we obtain the perturbed metric as

α2βh(2,1)
μν

∣∣

=0dxμdxν = α2β

[(
2δM (2,1)

r
+ 2f λ(2,1)

)
dV 2 − 2λ(2,1)dVdr

]
, (119)

with

δM (2,1) = δm(2,1) + Aeff (2,1)(V − V0) − 4π

∫ r

r0

r̄2T eff (2,1)
Vr (V0, r̄)dr̄, (120)

λ(2,1) = −4π

∫ r

r0

r̄T eff (2,1)
rr (V , r̄)dr̄ + χ(2,1)(V ), (121)

where δm(2,1) is a constant and the function χ(2,1)(V ) corresponds to the residual gauge mode. We can
see that the “mass term” δM (2,1) depends on time. However, because the spacetime is not spherically
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symmetric at this order, the appropriate definition of the mass is not clear. We discuss this topic in
the next section.

We should note that 
 = 2 even-parity metric perturbations also exist at O(α2β):

α2βh(+)(2,1)
μν

∣∣

=2dxμdxν = 4α2β

√
π

5
Y2,0

[
H (2,1)

0,
=2dV 2 + 2H (2,1)
1,
=2dVdr + H (2,1)

2,
=2dr2

+ 2K (2,1)

=2 r2(dθ2 + sin2 θd�2)

]
. (122)

The perturbed metric can be obtained by solving the Zerilli equation [5–7]. As shown in the next
section, 
 = 2 metric perturbations do not affect the area of the apparent horizon, and thus these
modes are not relevant for the discussion of black hole mechanics.

5. Black hole mechanics

In this section we discuss the relations among the area, mass, and angular momentum of a black hole.
In the standard derivation of black hole mechanics [36,37], assuming time-translational and rotational
Killing vectors in a vacuum spacetime before and after the dynamical process, the differences in
the Bondi–Sachs energy and angular momentum, and therefore the energy and angular momentum
of the whole system, are discussed. In the present case, however, we would like to determine the
energy and angular momentum extraction in the presence of force-free electromagnetic fields without
a time-translational Killing vector. We do not assume the stationary stages before and after the
energy extraction. Moreover, to isolate the energy and angular momentum of the black hole from
the ambient electromagnetic fields, we need to discuss them in terms of quasi-local quantities. In the
present situation we show that the apparent horizon is a good candidate for the black hole horizon
for this purpose, and that the first law of black hole mechanics holds if we take the appropriate
time-dependent mass parameter of the apparent horizon.

5.1. Apparent horizon

In this subsection we discuss the apparent horizon for the metric gμν = gKerr
μν + gBZ

μν . Because the
V = const. surface of this spacetime is timelike at O(α2β), we work in the Kerr–Schild coordinates
(T , r, θ , �). We set the relation between T and V as V = T + r − 2M . The unit normal to the
T = const. surface is given by

nμdxμ = FndT , (123)

where the function Fn is chosen so that gμνnμnν = −1 and nμ is future directed. The induced metric
on the T = const. surface is given by

γμν = gμν + nμnν , (124)

and the projection operator γμ
ν becomes

γμ
ν = γμαgαν . (125)

Because

◦ Y0,0 perturbations come from O(β) and O(α2β),
◦ Y1,0 perturbations come from O(α) and O(αβ),
◦ Y2,0 perturbations come from O(α2) and O(α2β)
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in the metric gμν = gKerr
μν + gBZ

μν , we can assume that the location of the apparent horizon at each
hypersurface T = const. is

r = R(θ ; T )

= (R(0,0) + βR(0,1) + α2R(2,0)

=0 + α2βR(2,1)


=0 )

+ α(R(1,0) + βR(1,1))2

√
π

3
Y1,0 + α2(R(2,0)


=2 + βR(2,1)

=2 )4

√
π

5
Y2,0, (126)

where the coefficients only depend on T [38]. From the results for the Kerr metric and O(β) pertur-
bations, where the location of the apparent horizon coincides with that of the event horizon at this
order, discussed in Sect. 4.3, we obtain

R(0,0) = 2M , (127)

αR(1,0) = 0, (128)

α2R(2,0)

=0 = −α2M

2
, (129)

α2R(2,0)

=2 = 0, (130)

βR(0,1) = −2πβM . (131)

Thus, we need to fix R(2,1)

=0 , R(1,1), and R(2,1)


=2 . The unit normal to r = R(θ ; T ) at each T = const.
surface is

sμ = Fsγμ
ν s̄ν , (132)

with s̄μdxμ = dr − (∂θR)dθ , where the function Fs is chosen so that gμνsμsν = 1 and sμ is an
outward vector. The induced metric on the T = const. and r = R(θ ; T ) surface is

qμν = γμν − sμsν = gμν + nμnν − sμsν . (133)

The location of the apparent horizon is determined by

θ+ = qμν∇μ(nν + sν) = 0. (134)

After some calculations, we obtain

R(1,1) = 0, (135)

R(2,1)

=0 =

(
2Aeff (2,1)

∣∣
r=r0

− 2

3
Beff (1,1)

)
(T − T0) − 151Mπ

54
+ 2δm(2,1), (136)

R(2,1)

=2 = Beff (1,1)

21
(T − T0) + 5πM

54
+ 2M

7
H (2,1)

0,
=2

∣∣
r=r0

− 8M 2

7
∂T K (2,1)


=2

∣∣
r=r0

(137)

as solutions of Eq. (134), where T0 = V0. Using our results in the previous section, we have the
relation

2Aeff (2,1)
∣∣
r=r0

− 2

3
Beff (1,1) = π

12
. (138)
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The area of the apparent horizon is given by

AAH = 16πM 2 − 32πM 2β − 4πM 2α2 + 4πMα2β

3

[
7πM + 12R(2,1)


=0

]
+ O(α3) + O(β2).

(139)

We should note that 
 = 2 terms in Eq. (126) do not affect the area because of the orthogonality of
the spherical harmonics. Thus, the time dependence of the apparent horizon area is

∂T AAH = 16πMα2β∂T R(2,1)

=0 = 4π2Mα2β

3
. (140)

5.2. Angular momentum

The Komar angular momentum at the apparent horizon is

JKomar|AH = αM 2 + αβMBeff (1,1)(T − T0). (141)

The time dependence of JKomar|AH is

∂T JKomar|AH = αβMBeff (1,1)

= −αβπM

3

= −J̇BZ, (142)

where J̇BZ is given by Eq. (72). Thus, this reproduces the angular momentum extraction rate of
the Blandford–Znajek process in Eq. (72). This explicitly shows that the total angular momentum
conservation law holds, i.e. the decreasing rate of the angular momentum of the black hole is balanced
with the angular momentum extraction rate of the Blandford–Znajek process.

5.3. Implications of the black hole mechanics

If we assume the relation of the first law of black hole mechanics [36],

dM = κ

8π
dA + H dJ , (143)

we can obtain the implication of the time dependence of the black hole mass. Setting dA and dJ as
∂T AAH and ∂T JKomar|AH in Eqs. (140) and (142), the time dependence of the mass is suggested by

∂T M = κ

8π

4π2Mα2β

3
+ H

(
−αβπM

3

)
. (144)

If we assume

κ = 1

4M
+ O(α) + O(β), H = α

4M
+ O(αβ) + O(α2) + O(β), (145)

we obtain

∂T M = −α2βπ

24
= −ĖBZ, (146)

where ĖBZ is given by Eq. (71). This reproduces the energy extraction rate of the Blandford–Znajek
process in Eq. (72), although the quantity M in the first law is as yet undefined as a quasi-local
quantity of the apparent horizon.
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5.4. The Hawking mass

Because the spacetime at O(α2β) is neither stationary nor spherically symmetric, it is not obvious
how to define the mass of the black hole. In that case, a possible choice of quasi-local mass is the
Hawking mass. The Hawking mass at the apparent horizon is given by [39,41]

MHawking|AH =
√

AAH

16π

= M − πβM − α2M

8
+ α2β

6

(
πM + 3R(2,1)


=0

)+ O(α3) + O(β2). (147)

The time dependence of MHawking|AH is

∂T MHawking|AH = α2β

2
∂T R(2,1)


=0 = πα2β

24
> 0. (148)

While the absolute value is the desired value, this is positive. This is because the Hawking mass at
the apparent horizon is the square root of the apparent horizon area, which is increasing in time.
Thus, we consider that the Hawking mass is not suitable for the description of energy extraction by
the Blandford–Znajek process. We note that even if we use the Hayward mass [40,41], the mass is
increasing in time.

5.5. Comparison with the Kerr metric with time-dependent parameters

As shown in Appendix B, the Kerr metric with small parameter shifts of the mass and angular
momentum takes the form of Eq. (B.12). In this subsection we show that the time dependence of gμν =
gKerr
μν + gBZ

μν can be understood in terms of the Kerr metric of Eq. (B.12) but with time-decreasing
mass and angular momentum.

Let us consider the Kerr metric in the form of Eq. (B.12), but we replace the constants δM (phys)

and δJ (phys) by δM̄ (V ) and δJ̄ (V ), which are functions of V . We denote this metric by gKerr+(δM̄ ,δJ̄ )
μν .

We would like to compare gμν = gKerr
μν + gBZ

μν with gKerr+(δM̄ ,δJ̄ )
μν . We set δM̄ and δJ̄ as

α2βδM̄ = −α2βπ

24
(V − V0) = −ĖBZ(V − V0), (149)

αβδJ̄ = −αβπM

3
(V − V0) = −J̇BZ(V − V0). (150)

We also choose χ(V ) in gKerr+(δM̄ ,δJ̄ )
μν as (see Eq. (B.14))

χ = χ(2,1) + 1

6M
Beff (1,1)(V − V0). (151)

Then, after some calculations, we obtain

gKerr
μν + gBZ

μν = gKerr+(δM̄ ,δJ̄ )
μν + gother

μν + [
 = 2 terms] + O(α3) + O(β2), (152)

where gother
μν does not depend on time.We note that gother

μν contains the O(β) effect, i.e. the perturbation
corresponding to the magnetic Reissner–Nordström metric discussed in Sect. 4.3. Equation (152)
shows that the 
 = 0, 1 time-dependent terms of gμν = gKerr

μν + gBZ
μν can be expressed as the Kerr

metric with time-dependent parameters, gKerr+(δM̄ ,δJ̄ )
μν , whose time dependence is determined from

the energy and angular momentum extraction rates of the Blandford–Znajek process. If we regard
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M + δM̄ as a black hole mass, its time dependence coincides with Eq. (146). Therefore, this gives
an appropriate time-dependent mass for the energy extraction in the present setting.

We have seen that the 
 = 0, 1 time-dependent terms of our results can be fitted by the Kerr metric
with time-dependent parameters in Eddington–Finkelstein-like coordinates. We should note that it is
essential which time coordinate we let the mass and angular momentum parameters depend on. For
example, if we let them depend on time in the Boyer–Lindquist coordinates, our results cannot be
fitted by the corresponding spacetime. Finding an appropriate coordinate system is not such a trivial
problem, and what we have shown is that Eddington–Finkelstein-like coordinates are the appropriate
choice.9

Finally, we comment on Aeff (2,1) in Eq. (115). While Aeff (2,1) is related to the flux associated with
∇μ(T eff

μν (∂V )ν) = 0 (see Sect. 2.3.3), at this stage the physical meaning of Aeff (2,1) is not clear.
Because δM (2,1) in Eq. (120) is written by Aeff (2,1), it is useful to consider the meaning of the “mass
term” δM (2,1). If we compare the situation with the Kerr black hole case, δM (2,1) corresponds to
δM (2,1)

Kerr in Eq. (B.13). As shown in Eq. (B.20), the “mass term” δM (2,1)
Kerr in the Kerr black hole case

does not directly denote the variation of the mass of the black hole, and the variation of the physical
mass is obtained by subtracting the effect of the spin from δM (2,1)

Kerr , the second term on the right-hand
side of Eq. (B.20). This suggests that δM (2,1) also contains information on both the mass and the
angular momentum of a black hole, and this is why Aeff (2,1)

∣∣
r=r0

in Eq. (118) does not coincide with

−ĖBZ. In fact, Aeff (2,1) can be written in terms of ĖBZ and J̇BZ as

α2βAeff (2,1) = −ĖBZ − 4Mr − 6M 2

3r3 αJ̇BZ. (153)

6. Summary and discussion

We have developed the formalism of monopole and dipole linear gravitational perturbations around
Schwarzschild black holes in Eddington–Finkelstein coordinates against generic time-dependent
accreting matter. We derived the mass and angular momentum of black holes in terms of the energy–
momentum tensor of accreting matter at the linear order. The time dependence of the mass and
angular momentum are determined by the the accretion rates of the energy and angular momentum.
In particular, after the accreting matter completely falls into the black hole at some finite time, 
 = 0
and 
 = 1 perturbations represent slowly rotating Kerr black holes, and the final mass and angular
momentum are expressed by the total time integral of the accretion rates at r = 2M . We also showed
that our formalism can reproduce the exact Vaidya solution [31].

Applying our formalism to the Blandford–Znajek process [19], we studied the metric backreaction.
While we need to study the non-linear gravitational perturbations to discuss the backreaction of the
Blandford–Znajek process, our formalism can be applied to this problem because the forms of
equations at each order are the same as those of linear order with the source terms which contain the
non-linear effects. We calculated the time-dependent Komar angular momentum and the area of the
apparent horizon. The decreasing rate of the former coincides with the angular momentum loss rate
estimated in terms of the stress–energy tensor of the force-free electromagnetic fields at infinity.

According to the test-field calculation of the energy and angular momentum extraction rates of the
Blandford–Znajek process [19], there is no doubt that energy and angular momentum are transfered

9 In Ref. [42], as an extension of the Vaidya metric [31], the Kerr metric but with time-dependent mass
and angular momentum parameters are discussed in a different coordinate system from this paper. It will be
interesting to discuss the relation with our perturbative solution, but we leave this problem for future work.
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to asymptotic regions. However, it is not clear how to describe the local metric behavior of the
backreaction. We showed that the time dependence of 
 = 0, 1 modes are expressed by the Kerr
metric but with time-decreasing mass and angular momentum parameters, which depend only on the
ingoing null coordinate V . This suggests that the corresponding outgoing fluxes come directly from
the vicinity of the event horizon. If we regard the corresponding mass parameter as the black hole
mass, we saw that its decreasing rate coincides with the energy extraction rate of the Blandford–
Znajek process, and that the first law of black hole mechanics holds for the apparent horizon in terms
of this mass parameter but not the Hawking mass.

Finally, we comment on future work. It will be interesting to extend our analysis to higher-order
solutions of the Blandford–Znajek process [21–23]. Applications to other situations, e.g. the Pen-
rose process or the superradiance phenomenon, is possible. It will also be interesting to consider
applications to modified gravity theories. If we consider some modified gravity theories and they
admit solutions close to the Schwarzschild black holes, we expect that the field equations for the
monopole and dipole gravitational perturbations take the same form as Eq. (5); then, our formalism
can be applied.
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Appendix A. The gauge transformation of monopole and odd-parity dipole
perturbations
A.1. 
 = 0 perturbations

The general perturbed metric for 
 = 0 linear perturbations in Eddington–Finkelstein coordinates is
given by

h(+)
μν dxμdxν = H0(V , r)dV 2 + 2H1(V , r)dVdr + H2(V , r)dr2 + 2K(V , r)r2(dθ2 + sin2 θd�2).

(A.1)

The general gauge transformation for this perturbed metric becomes

h(+)
μν → h(+)

μν + ∇μξν + ∇νξμ, (A.2)

with

ξνdxμ = ξV (V , r)dV + ξr(V , r)dr. (A.3)

Under this gauge transformation, the components of the perturbed metric change as

H0 → H0 − r0

r2 (ξV + f ξr) + 2∂V ξV , (A.4)

H1 → H1 + ∂rξV + r0

r2 ξr + ∂V ξr , (A.5)

H2 → H2 + 2∂rξr , (A.6)

K → K + 1

r
(ξV + f ξr). (A.7)
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If we choose the gauge with H2 = K = 0, the residual gauge modes become ξV = −f η̃(V ),
ξr = η̃(V ), where η̃(V ) is an arbitrary function of V , and the components of the perturbed metric
transform as H0 → H0 − 2f ∂V η̃ and H1 → H1 + ∂V η̃.

A.2. 
 = 1 odd-parity perturbations

The general perturbed metric for the 
 = 1, m = 0 odd-parity linear perturbations in Eddington–
Finkelstein coordinates is given by

h(−)
μν dxμdxν = 4

√
π/3 sin θ(∂θY1,0)d�(h0(V , r)dV + h1(V , r)dr)

= −2 sin2 θd�(h0(V , r)dV + h1(V , r)dr). (A.8)

The general gauge transformation for this perturbed metric becomes

h(−)
μν → h(−)

μν + ∇μξν + ∇νξμ, (A.9)

with

ξνdxμ = − sin2 θξ (−)(V , r)d�. (A.10)

Under this gauge transformation, the components of the perturbed metric change as

h0 → h0 + ∂V ξ (−), h1 → h1 − 2

r
ξ (−) + ∂rξ

(−). (A.11)

If we choose the gauge with h1 = 0, the residual gauge modes become ξ (−) = r2ζ̃ (V ), where ζ̃ (V )

is an arbitrary function of V , and h0 transforms as h0 → h0 + r2∂V ζ̃ .

Appendix B. The Kerr metric with small parameter shifts

The Kerr metric has two parameters: the mass M and the spin a. Let us consider shifts of those
parameters in Eq. (89) as

M → M + α2βδM (phys), a → a + αβ
δJ (phys)

M
, (B.1)

where α := a/M and β are small parameters, and δM (phys) and δJ (phys) are constants. Introducing
the coordinate transformation

d� → d� − αβ
δJ (phys)

M

dr

r2 (B.2)

and the gauge transformation at O(α2β) as

gEF
μν [M + α2βδM (phys), a + αβδJ (phys)/M ]

→ gEF
μν [M + α2βδM (phys), a + αβδJ (phys)/M ] + α2β(∇μξν + ∇νξμ), (B.3)

with

ξμ = ξμ|
=0 + ξμ|
=2, (B.4)

ξμ|
=0dxμ = ξ
=0
V dV + ξ
=0

r dr, (B.5)
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ξμ|
=2dxμ = ξ
=2
V Y2,0dV + ξ
=2

r Y2,0dr − ξ
=2
S√

6
(∂θY2,0)dθ , (B.6)

and

ξ
=0
V = −2MδJ (phys)

r2 +
(

1 − 2M

r

)
χ̃(V ), (B.7)

ξ
=0
r = −2δJ (phys)

3r
− χ̃(V ), (B.8)

ξ
=2
V = 0, (B.9)

ξ
=2
r =

√
π

5

4(3M + r)

3r2 δJ (phys), (B.10)

ξ
=2
S = −

√
2π

15

2(2M + r)

r
δJ (phys), (B.11)

the metric becomes gKerr+(δM ,δJ )
μν with

gKerr+(δM ,δJ )
μν dxμdxν = (

gSch
μν + αh(1,0)

μν + α2h(2,0)
μν

)
dxμdxν − 4αβδJ (phys) sin2 θ

r
dVd�

+ α2β

[
2δM (2,1)

Kerr

r
+ 2

(
1 − 2M

r

)
λ

(2,1)
Kerr

]
dV 2 − 2α2βλ

(2,1)
Kerr dVdr

+ α2β

√
π

5
Y2,0

[
H Kerr

0,
=2dV 2 + 2H Kerr
1,
=2dVdr + H Kerr

2,
=2dr2

+ 2KKerr

=2 r2(dθ2 + sin2 θd�2)

]
+ O(α3) + O(β2), (B.12)

where

δM (2,1)
Kerr = δM (phys) + 4Mr − 6M 2

3r3 δJ (phys), (B.13)

λ
(2,1)
Kerr = −4MδJ (phys)

3r3 + χ(V ), (B.14)

χ(V ) := ∂V χ̃(V ), (B.15)

and

H Kerr
0,
=2 = 8M (6M 2 − Mr − 3r2)J (phys)

3r5 , (B.16)

H Kerr
1,
=2 = 8M (3M + 2r)δJ (phys)

3r4 , (B.17)

H Kerr
2,
=2 = −16MδJ (phys)

r3 , (B.18)

KKerr

=2 = −4M (2M + r)δJ (phys)

r4 . (B.19)
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Here, we choose the coordinate system and the gauge so that O(αβ) and O(α2β) terms take a similar
form to Sect. 2 for 
 = 0, 1, and the Regge–Wheeler gauge for 
 = 2. We obtain the relation

δM (phys) = δM (2,1)
Kerr − 4Mr − 6M 2

3r3 δJ (phys). (B.20)

This implies that the “mass term” δM (2,1)
Kerr in the O(α2β) perturbations does not directly denote the

variation of the mass of the black hole, and the variation of the physical mass δM (phys) is obtained
by subtracting the effect of the spin from δM (2,1)

Kerr .
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