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A few 9D interpolating models with two parameters are constructed and the massless spectra
are studied by considering compactification of heterotic strings on a twisted circle with a Wilson
line. It is found that there are some conditions between radius R and Wilson line A under
which the gauge symmetry is enhanced. In particular, when the gauge symmetry is enhanced to
SO(18) × SO(14), the cosmological constant is exponentially suppressed. We also construct a
non-supersymmetric string model that is tachyon-free in all regions of moduli space and whose
gauge symmetry involves E8.
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1. Introduction

LHC experiments suggest that supersymmetry (SUSY) does not exist at low-energy scales. It is,
therefore, natural to consider the possibility that SUSY is broken at the string/Planck scale. For
this reason, non-supersymmetric string models [1–3], in particular, the SO(16)× SO(16) heterotic
string model, which is the unique tachyon-free 10D non-supersymmetric model, have been receiving
more and more attention. Non-supersymmetric string models, however, always have a problem of
stability. Unlike supersymmetric ones, the cosmological constant is non-vanishing. There are non-
vanishing dilaton tadpoles that lead to vacuum instability. Thus, the desired model must be both non-
supersymmetric and carry a very small cosmological constant. While several methods to construct
such models have been proposed [4–11], in this paper, we try to construct non-supersymmetric
heterotic models with a small cosmological constant by focusing on so-called interpolating models
[12–15].

An interpolating model is a (D−d)-dimensional model that continuously relates two D-dimensional
models. In this work, we restrict our attention to the case with D = 10 and d = 1 for simplicity. The
method of constructing such models is as follows: We start from a 10D closed string model (called
model M1) and compactify this on a circle with a Z2 twist, which is nothing but the Scherk–Schwarz
compactification [16,17]. The resulting 9D model should have a circle radius R as a parameter,
which can be adjusted freely. Because we are considering closed string models, this 9D model
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should produce a 10D model (called model M2) in the R → 0 limit as well due to T-duality [18,19].
In particular, if model M1 is supersymmetric and the Z2 action contains (−1)F where F is the
spacetime fermion number, the compactification causes SUSY breaking and the 9D interpolating
model and model M2 become non-supersymmetric.

In Refs. [12,20–22], it is shown that in the near-supersymmetric region of moduli space, the
cosmological constant �10 is written as follows:

�10 � (NF − NB)ξ ã8 + O(e−ã2
), (1)

where ξ is a positive constant and ã = a−1 = R/
√
α′, and NF (NB) is the number of massless

fermionic (bosonic) degrees of freedom. Therefore, the cosmological constant is exponentially sup-
pressed when NF = NB. We would like to have non-supersymmetric models with NF = NB, but the
9D interpolating models with one parameter R, which we will review in Sect. 2, do not have such a
property no matter how one adjusts the parameter R. In order to generate cases with NF − NB = 0,
we need to increase the number of adjustable parameters. One such possibility is to compactify more
dimensions. In this work, we instead consider 9D interpolating models with one more parameter by
introducing a constant Wilson line background.

2. Interpolating models with no Wilson line

In this section, we review the construction of an interpolating model that was originally proposed
in Ref. [12], and provide two concrete examples. In these examples, we provide the interpolations
between the 10D non-supersymmetric SO(16) × SO(16) heterotic string model and one of the
10D supersymmetric heterotic strings [23] as model M2. The presentation below is based on Refs.
[13,14].1

2.1. The construction of interpolating models

Let us start from a flat 10D closed string model M1 whose partition function is

ZM1 = Z (8)B Z++ , (2)

where Z++ represents the contribution from the fermionic and the internal parts of the string and Z (n)B
that from the bosonic parts of the string:

Z (n)B = τ
−n/2
2 (ηη̄)−n . (3)

Let us first consider the circle compactification:

X 9 ∼ X 9 + 2πR. (4)

The left- and right-moving momenta along the compactified dimension are respectively

pL = 1√
2α′

(
na + w

a

)
, pR = 1√

2α′
(

na − w

a

)
, (5)

for n, w ∈ Z . After the circle compactification, the partition function of model M1 becomes

Z (9)++ =
⎛
⎝(ηη̄)−1

∑
n,w∈Z

q
α′
2 p2

L q̄
α′
2 p2

R

⎞
⎠Z (7)B Z++ . (6)

1 We can also construct these 9D string models by using free-fermionic construction [24–26].
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In order to obtain two different 10D models at R → ∞ and R → 0 limits, we have to consider the
compactification on a twisted circle. We choose T Q as the Z2 twist where T acts on the compactified
circle as a half translation:

T : X̃ 9 → X̃ 9 + π R̃. (7)

Here, X̃ 9 is the T-dualized coordinate for the compactified dimension and R̃ = α′/R is the T-dualized
radius.2 We denote by Q a Z2 action that acts on the internal part of the string and that determines
the two 10D models at the limits.

Because the Z2 twist contains T , the partition function of the interpolating model contains a set
of four momentum lattices:

�α,β ≡ (ηη̄)−1
∑

n∈Z+α, w∈2(Z+β)
q
α′
2 p2

L q̄
α′
2 p2

R

= (ηη̄)−1
∑

n,w∈Z

exp
[−π {τ2

(
a2(n + α)2 + 4a−2(w + β)2

)− 4iτ1(n + α)(w + β)
}]

, (8)

whereα andβ are 0 or 1/2, andα = 0 (1/2) andβ = 0 (1/2) imply the integer (half-integer) momenta
and the even (odd) winding numbers respectively. It is easy to show that under T : τ → τ +1,�α,β

transforms as

T : �α,β → e4π iαβ�α,β . (9)

Under S : τ → −1/τ , by using the Poisson resummation formula, we obtain

S : �α,β → 1

2

∑
α′,β ′=0,1/2

e4π i(αβ ′+βα′)�α′,β ′ . (10)

Note that, under S transformation, the combinations�0,0 +�0,1/2 and�1/2,0 −�1/2,1/2 are invariant
and �0,0 −�0,1/2 and �1/2,0 +�1/2,1/2 are exchanged with each other.

Next, let us check the behaviors of �α,β as a → 0 (R → ∞) and as a → ∞ (R → 0). For
the a → 0 limit, it is the part with zero coefficients of a−2 in the exponential in Eq. (8) that gives
non-vanishing contributions. So only the lattices containing zero winding number are non-vanishing
in the large-R limit:

(ηη̄)−1
∑
n∈Z

exp
[−π (a(n + α))2

]→ (ηη̄)−1
∫ ∞

−∞
dx

a
e−πτ2x2 = (a√

τ2ηη̄
)−1, (11)

where x = a(n + α). Consequently, we see as a → 0

�α,0 → (
a
√
τ2ηη̄

)−1 , �α,1/2 → 0. (12)

On the other hand, in the a → ∞ limit, the non-vanishing contributions come from the lattices with
zero momentum in Eq. (8):

(ηη̄)−1
∑
w∈Z

exp

[
−4π

(
w + β

a

)2
]

→ (ηη̄)−1
∫ ∞

−∞
dy

a
e−4πτ2y2 = a

(
2
√
τ2ηη̄

)−1 , (13)

2 It is not essential that a half translation T is accompanied with the T-dualized coordinate X̃ 9. If we adopted
the ordinary coordinate X 9, the sum in Eq. (8) would be over n ∈ 2(Z + α) and w ∈ Z + β.
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where y = (w + β)/a. Consequently, we see as a → ∞

�0,β → a
(
2
√
τ2ηη̄

)−1 , �1/2,β → 0. (14)

Coming back to Eq. (6), we can rewrite it as

Z (9)++ = (�0,0 +�0,1/2
)

Z (7)B Z++ , (15)

using �α,β . An interpolating model is obtained from Z (9)++ by orbifolding with the Z2 action T Q.
A half translation T affects the lattices �α,β and acts such that only the states with even winding
numbers survive:

T Q : Z (9)++ → Z (9)+− = (�0,0 −�0,1/2
)

Z (7)B Z+− , (16)

where Z+− is defined as the Q action of Z++ . The modular invariance requires the twisted sector
[27,28]. By using Eq. (10), we see that under S transformation, Z (9)+− transforms as

S : Z (9)+− → Z (9)−+ = (�1/2,0 +�1/2,1/2
)

Z (7)B Z−+ , (17)

where Z+− (−1/τ) ≡ Z−+ (τ ). Furthermore, when T Q acts on Z (9)−+ , we obtain

T Q : Z (9)+− → Z (9)−− = (�1/2,0 −�1/2,1/2
)

Z (7)B Z−− , (18)

where Z−− is defined as the Q action of Z−+ . As a result, the total partition function, which is modular
invariant, is

Z (9)int = 1

2

(
Z (9)++ + Z (9)+− + Z (9)−+ + Z (9)−−

)

= 1

2
Z (7)B

{
�0,0

(
Z++ + Z+−

)+�0,1/2
(
Z++ − Z+−

)
+�1/2,0

(
Z−+ + Z−−

)+�1/2,1/2
(
Z−+ − Z−−

)}
. (19)

In accordance with Eq. (14), we see that Z (9)int reproduces model M1 in the a → ∞ limit. Note that
the original model is reproduced as R → 0 as we have adopted the convention that a half translation
T is introduced with regard to the T-dualized coordinate. If T were introduced with regard to the
ordinary coordinate, the interpolating model would reproduce the original model M1 in the R → ∞
limit. On the other hand, in the a → 0 limit, Z (9)int produces model M2 whose partition function is

ZM2 = Z (8)B

(
Z++ + Z+− + Z−+ + Z−−

)
. (20)

That is, model M2 is obtained by Q-twisting model M1, which means that model M2 is related to
model M1 by the Z2 action Q.

2.2. Two examples

In this subsection, we review two examples of 9D interpolating models that are tachyon-free for all
radii.
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As the first example, let us choose the 10D SO(16) × SO(16) heterotic model as model M1 and
the 10D supersymmetric SO(32) heterotic model as model M2:

ZM1 = Z (8)B

{
Ō8 (V16C16 + C16V16)+ V̄8 (O16O16 + S16S16)

−S̄8 (V16V16 + C16C16)− C̄8 (O16S16 + S16O16)
}
, (21)

ZM2 = Z (8)B

(
V̄8 − S̄8

)
(O16O16 + V16V16 + S16S16 + C16C16). (22)

In this case, in the language of Sect. 2.1,

Z++ = Ō8 (V16C16 + C16V16)+ V̄8 (O16O16 + S16S16)

− S̄8 (V16V16 + C16C16)− C̄8 (O16S16 + S16O16). (23)

The Z2 action Q that relates the SO(16) × SO(16) model to the supersymmetric SO(32) model is
R̄OC , which is defined as the reflection of the right-moving SO(8) characters:

R̄OC :
(
Ō8, V̄8, S̄8, C̄8

)→ (−Ō8, V̄8, S̄8, −C̄8
)
. (24)

Using this Z2 action Q and the modular transformation of SO(2n) characters

S :

⎛
⎜⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎟⎠→

⎛
⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 in −in

1 −1 −in in

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

O2n

V2n

S2n

C2n

⎞
⎟⎟⎟⎠, (25)

we have

Z+− = −Ō8 (V16C16 + C16V16)+ V̄8 (O16O16 + S16S16)

− S̄8 (V16V16 + C16C16)+ C̄8 (O16S16 + S16O16),

Z−+ = Ō8 (O16S16 + S16O16)+ V̄8 (V16V16 + C16C16)

− S̄8 (O16O16 + S16S16)− C̄8 (V16C16 + C16V16),

Z−− = −Ō8 (O16S16 + S16O16)+ V̄8 (V16V16 + C16C16)

− S̄8 (O16O16 + S16S16)+ C̄8 (V16C16 + C16V16). (26)

Thus, from Eq. (19), we obtain the partition function of the interpolating model:

Z (9)int = Z (7)B

{
�0,0

(
V̄8 (O16O16 + S16S16)− S̄8 (V16V16 + C16C16)

)
+�0,1/2

(
Ō8 (V16C16 + C16V16)− C̄8 (O16S16 + S16O16)

)
+�1/2,0

(
V̄8 (V16V16 + C16C16)− S̄8 (O16O16 + S16S16)

)
+�1/2,1/2

(
Ō8 (O16S16 + S16O16)− C̄8 (V16C16 + C16V16)

)}
. (27)

We can see that the first and third lines of Eq. (27) reproduce the non-supersymmetric SO(16) ×
SO(16) model (21) while the first and second lines reproduce the supersymmetric SO(32) model
(22). Note that this interpolating model is tachyon-free for a generic radius because there are no such
terms as Ō8O16V16 or Ō8V16O16 in the partition function (27).

Let us see the massless spectrum of this model from the partition function (27). For a generic
radius 0 < R < ∞, massless states can appear only when n = w = 0, so we can find the massless
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states by expanding the first line of Eq. (27) in q. We list the expansion of each character in Appendix
B.1. Then, for a generic radius, the massless spectrum of the model is

◦ the 9D gravity multiplet: graviton Gμν , anti-symmetric tensor Bμν , and dilaton φ;
◦ the gauge bosons transforming in the adjoint representation of SO(16)× SO(16)× U (1)2G,B;
◦ a spinor transforming in the (16, 16) of SO(16)× SO(16),

where U (1)G,B implies the Abelian factors generated by Gμ9 and Bμ9. Note that this model has no
points at which the gauge symmetry is enhanced in the region 0 < R < ∞. Also, there are no points
at which the cosmological constant is exponentially suppressed, i.e., NF = NB, in all regions except
R → ∞. In the R → ∞ limit, the number of fermions is equal to that of bosons at each mass level
including the massless level, which means that SUSY is restored in the limit.

In the second example, let us choose the SO(16)× SO(16) heterotic model as model M1 and the
supersymmetric E8 × E8 heterotic model as model M2; ZM1 is the same as in the first example and

ZM2 = Z (8)B Z++ = Z (8)B

(
V̄8 − S̄8

)
(O16 + S16) (O16 + S16). (28)

In this case, the Z2 action Q is RVC , which is defined as the reflection of one of the two left-moving
SO(16) characters:

RVC : (O16, V16, S16, C16) → (O16, −V16, S16, −C16). (29)

The partition function of this interpolating model is obtained in a similar way to the first example:

Z (9)int = Z (7)B

{
�0,0

(
V̄8 (O16O16 + S16S16)− S̄8 (O16S16 + S16O16)

)
+�1/2,0

(
V̄8 (O16S16 + S16O16)− S̄8 (O16O16 + S16S16)

)
+�0,1/2

(
Ō8 (V16C16 + C16V16)− C̄8 (V16V16 + C16C16)

)
+�1/2,1/2

(
Ō8 (V16V16 + C16C16)− C̄8 (V16C16 + C16V16)

)}
. (30)

For a generic radius 0 < R < ∞, the massless spectrum of this model is

◦ the 9D gravity multiplet: graviton Gμν , anti-symmetric tensor Bμν , and dilaton φ;
◦ the gauge bosons transforming in the adjoint representation of SO(16)× SO(16)× U (1)2G,B;
◦ a spinor transforming in the (128, 1)⊕ (1, 128) of SO(16)× SO(16).

In this case, there are no points either where the gauge symmetry is enhanced or the cosmological
constant is exponentially suppressed.

3. Interpolating models with a Wilson line

The 9D interpolating models with the radius parameter R in Sect. 2 do not give us a model with
NF = NB no matter how we adjust R. We need to increase the number of parameters in order to
search for such a model. We can realize NF − NB = 0 by compactifying more dimensions and
adjusting the parameters of the compact manifold. For example, if the 9D model constructed in the
previous example, in which NF − NB = 64, is compactified on a (d − 1)-dimensional torus and
the parameters of the torus are adjusted such that U (1)2d

G,B is enhanced to U (1)2d−r
G,B × G, where

G is a rank-r group, which has eight non-zero roots, then we obtain interpolating models in which
NF − NB = 0. However, in this work, we will add one parameter by turning on a Wilson line. In
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other words, we will generalize interpolating models by considering a twisted circle with a constant
background. We expect that there are some conditions between parameters under which the gauge
symmetry is enhanced as in Refs. [29–32]. In this section, we construct 9D interpolating models
with two parameters by considering the compactification on a twisted circle with a Wilson line.

Let us write the uncompactified dimensions as X μ (μ = 0, . . . , 9) and the internal ones as X I
L (I =

1, . . . , 16) for a 10D heterotic string model, and compactify the X 9-direction on a twisted circle.
Furthermore, we switch on a constant Wilson line background with the components of μ = 9 and
I = 1 by adding to the worldsheet action

A
∫

d2z∂̄X μ=9∂X I=1
L . (31)

It is only the momentum lattice of the center-of-mass mode that is affected by turning on the Wilson
line A. The addition of the constant Wilson line background corresponds to a boost on the momentum
lattice [29,30,33]:

⎛
⎜⎝ �L

pL

pR

⎞
⎟⎠→

⎛
⎜⎝ �′L

p′
L

p′
R

⎞
⎟⎠ = R�L–pLM�L–pR

⎛
⎜⎝ �L

pL

pR

⎞
⎟⎠, (32)

where

�L = 1√
α′ m (33)

is the left-moving momentum of the X I=1
L -direction and m ∈ Z for the NS (Neveu–Schwarz, anti-

periodic) boundary condition and m ∈ Z + 1/2 for R (Ramond, periodic). Here, M�L–pR and R�L–pL

represent the boost on the �L–pR plane and the rotation on the �L–pL plane respectively. The boost
M�L–pR is written in terms of A as follows:

M�L–pR =
⎛
⎜⎝

√
1 + A2 0 A

0 1 0
A 0

√
1 + A2

⎞
⎟⎠. (34)

We use A to write R�L–pL as follows:

R�L–pL =
⎛
⎜⎝

1√
1+A2 − A√

1+A2 0
A√

1+A2
1√

1+A2 0

0 0 1

⎞
⎟⎠. (35)

Therefore, after turning on the Wilson line, we have

�′L = 1√
2α′

(√
2m − 2

A√
1 + A2

w

a

)
,

p′
L = 1√

2α′

(√
2Am +

√
1 + A2an + 1 − A2

√
1 + A2

w

a

)
,

p′
L = 1√

2α′
(√

2Am +
√

1 + A2an −
√

1 + A2 w

a

)
. (36)
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The above equations mean that the left- and right-moving momenta of X μ=9 in Eq. (5) and the
left-moving momentum of X I=1

L in Eq. (33) are mixed with each other by the Wilson line. In terms
of the functions in the partition function, the momentum lattice and a theta function in one of the
two left-moving SO(16) characters are convoluted as follows:

�α,β

⎛
⎜⎜⎜⎜⎝
ϑ

[
γ

δ

]

η

⎞
⎟⎟⎟⎟⎠

8

→ �
(α,β)
(γ ,δ) (a, A)

⎛
⎜⎜⎜⎜⎝
ϑ

[
γ

δ

]

η

⎞
⎟⎟⎟⎟⎠

7

. (37)

Here, we define �(α,β)
(γ ,δ) by

�
(α,β)
(γ ,δ) (a, A) ≡ (ηη̄)−1 η−1

∑
n,w,m

(−1)2mδq
α′
2

(
p′2

L +�′2L
)
q̄
α′
2 p′2

R , (38)

where the sum is taken over n ∈ Z + α, w ∈ 2(Z + β), m ∈ Z + γ . Substituting Eq. (36) into Eq.
(38), we obtain

�
(α,β)
(γ ,δ) (a, A) = (ηη̄)−1 η−1

∑
n∈Z3

exp
[−π (n + x)T M (τ1, τ2; a, A) (n + x)+ 2π iy · n

]
, (39)

where nT = (n, w, m), xT = (α,β, γ ), yT = (0, 0, δ), and M (τ1, τ2; a, A) is a 3×3 symmetric matrix
of the following form:

M (τ1, τ2; a, A) =
⎛
⎜⎝ a2

√
1 + A2τ2 −2

(
A2τ2 + iτ1

) √
2aA

√
1 + A2τ2

−2
(
A2τ2 + iτ1

)
4a−2

√
1 + A2τ2 −2

√
2a−1A

√
1 + A2τ2√

2aA
√

1 + A2τ2 −2
√

2a−1A
√

1 + A2τ2 (1 + 2A2)τ2 − iτ1

⎞
⎟⎠.

(40)
It is easy to see that, under T : τ → τ + 1,

�
(α,β)
(0,δ) → e4π iαβ�

(α,β)
(0,δ+1/2),

�
(α,β)
(1/2,δ) → e4π iαβeπ i/4�

(α,β)
(1/2,δ+1/2). (41)

Under S : τ → −1/τ , by using the Poisson resummation formula, we obtain

�
(α,β)
(γ ,δ) → 1

2
e2π iγ δ

∑
α′,β ′=0,1/2

e4π i(αβ ′+βα′)�(α
′,β ′)

(δ,γ ) . (42)

Before introducing some examples, let us discuss the symmetry of the interpolating model. It is
convenient to introduce a modular parameter τ̃ in terms of the parameter of the twisted circle and
Wilson line as

τ̃ = τ̃1 + iτ̃2 = A√
1 + A2

1

a
+ i

1√
1 + A2

1

a
. (43)
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Note that |τ̃ |2 = 1/a2, which means that the radial coordinate corresponds to radius R and the
angular coordinate to Wilson line A. Using τ̃ , the momenta (36) are rewritten as

�′L = 1√
2α′

(√
2m − 2τ̃1w

)
,

p′
L = 1√

2α′
1

τ̃ 2

(√
2τ̃1m + n − (τ̃ 2

1 − τ̃ 2
2 )w

)
,

p′
L = 1√

2α′
1

τ̃2

(√
2τ̃1m + n − (τ̃ 2

1 + τ̃ 2
2 )w

)
, (44)

for m ∈ Z + γ , n ∈ Z + α, w ∈ 2(Z + β). From these momenta (44), we can see that the lattice
�
(α,β)
(γ ,δ) is invariant under the shift

τ̃ → τ̃ + √
2 (45)

with the redefinitions

m → m′ = m − 2w, n → n′ = n + 2m − 2w, w → w′ = w. (46)

Therefore the fundamental region of moduli space is3

−
√

2

2
≤ τ̃1 ≤

√
2

2
. (47)

3.1. The interpolation between SUSY SO(32) and SO(16)× SO(16)

As an example, let us include the Wilson line in the first example of Sect. 2.2. According to Eq. (37),
the circle compactification of the SO(16)× SO(16) heterotic model with the Wilson line is

Z (9)SO(16)×SO(16)(a, A) = Z (9)++ (a, A)

= Z (7)B

∑
β=0,1/2

{
Ō8

(
V (0,β)

16 (a, A)C16 + C(0,β)
16 (a, A)V16

)

+V̄8

(
O(0,β)

16 (a, A)O16 + S(0,β)
16 (a, A)S16

)
−S̄8

(
V (0,β)

16 (a, A)V16 + C(0,β)
16 (a, A)C16

)
−C̄8

(
O(0,β)

16 (a, A)S16 + S(0,β)
16 (a, A)O16

)}
, (48)

where O(α,β)
2n , V (α,β)

2n , S(α,β)
2n , C(α,β)

2n are defined by

O(α,β)
2n (a, A) ≡ 1

2ηn−1

(
�
(α,β)
(0,0) (a, A)ϑn−1

3 +�
(α,β)
(0,1/2)(a, A)ϑn−1

4

)
,

V (α,β)
2n (a, A) ≡ 1

2ηn−1

(
�
(α,β)
(0,0) (a, A)ϑn−1

3 −�
(α,β)
(0,1/2)(a, A)ϑn−1

4

)
,

3 If the Z2 twist T Q acted trivially, then n and w would both be integers. Then, in addition to the shift (45),
the momentum lattices would be invariant under τ̃ → −1/τ̃ with the replacement n ↔ w. This transformation
would correspond to a T-dual transformation, so the two limiting 10D models would be the same and the
fundamental region would become −√

2/2 ≤ τ̃1 ≤ √
2/2 and |τ̃ | ≥ 1.
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S(α,β)
2n (a, A) ≡ 1

2ηn−1

(
�
(α,β)
(1/2,0)(a, A)ϑn−1

2 +�
(α,β)
(1/2,1/2)(a, A)ϑn−1

1

)
,

C(α,β)
2n (a, A) ≡ 1

2ηn−1

(
�
(α,β)
(1/2,0)(a, A)ϑn−1

2 −�
(α,β)
(1/2,1/2)(a, A)ϑn−1

1

)
. (49)

We will refer to O(α,β)
n , V (α,β)

n , S(α,β)
n , C(α,β)

n as boosted characters. In analogy with Sect. 2, the
interpolating model can be constructed from Eq. (48) by orbifolding with the Z2 twist T Q. In this
case, Q = R̄OC and the T action on the boosted characters changes the overall sign for β = 1/2.
Using Eq. (42), we find that under an S transformation, the boosted characters transform as

⎛
⎜⎜⎜⎝

O(α,β)
2n

V (α,β)
2n

S(α,β)
2n

C(α,β)
2n

⎞
⎟⎟⎟⎠→ 1

2

∑
α′,β ′=0,1/2

e4π i(αβ ′+βα′)

⎛
⎜⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 in −in

1 −1 −in in

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

O(α′,β ′)
2n

V (α′,β ′)
2n

S(α
′,β ′)

2n

C(α′,β ′)
2n

⎞
⎟⎟⎟⎟⎠. (50)

We obtain

Z (9)+− = Z (7)B

∑
β=0,1/2

e2π iβ
{
−Ō8

(
V (0,β)

16 C16 + C(0,β)
16 V16

)
+ V̄8

(
O(0,β)

16 O16 + S(0,β)
16 S16

)

−S̄8

(
V (0,β)

16 V16 + C(0,β)
16 C16

)
+ C̄8

(
O(0,β)

16 S16 + S(0,β)
16 O16

)}
,

Z (9)−+ = Z (7)B

∑
β=0,1/2

{
Ō8

(
O(1/2,β)

16 S16 + S(1/2,β)
16 O16

)
+ V̄8

(
V (1/2,β)

16 V16 + C(1/2,β)
16 C16

)

−S̄8

(
O(1/2,β)

16 O16 + S(1/2,β)
16 S16

)
− C̄8

(
V (1/2,β)

16 C16 + C(1/2,β)
16 V16

)}
,

Z (9)−− = Z (7)B

∑
β=0,1/2

e2π iβ
{
−Ō8

(
O(1/2,β)

16 S16 + S(1/2,β)
16 O16

)
+ V̄8

(
V (1/2,β)

16 V16 + C(1/2,β)
16 C16

)

−S̄8

(
O(1/2,β)

16 O16 + S(1/2,β)
16 S16

)
+ C̄8

(
V (1/2,β)

16 C16 + C(1/2,β)
16 V16

)}
.

(51)

As a result of these equations, we find the total partition function of the interpolating model:

Z (9)int (a, A) = 1

2
Z (7)B

(
Z (9)++ + Z (9)+− + Z (9)−+ + Z (9)−−

)
= Z (7)B

{
V̄8

(
O(0,0)

16 O16 + S(0,0)
16 S16

)
− S̄8

(
V (0,0)

16 V16 + C(0,0)
16 C16

)
+ Ō8

(
V (0,1/2)

16 C16 + C(0,1/2)
16 V16

)
− C̄8

(
O(0,1/2)

16 S16 + S(0,1/2)
16 O16

)
+ V̄8

(
V (1/2,0)

16 V16 + C(1/2,0)
16 C16

)
− S̄8

(
O(1/2,0)

16 O16 + S(1/2,0)
16 S16

)
+ Ō8

(
O(1/2,1/2)

16 S16 + S(1/2,1/2)
16 O16

)
− C̄8

(
V (1/2,1/2)

16 C16 + C(1/2,1/2)
16 V16

)}
.

(52)

Note that the only difference between Eq. (27) and Eq. (52) is that the momentum lattices are mixed
with one of the two left-moving SO(16) characters. Of course, it is easy to check that Eq. (52) is
equal to Eq. (27) when A = 0.
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3.1.1. The limiting cases
Next, let us see the limiting cases a → 0 and a → ∞ of the interpolating model (52). In the partition
function (52), only the momentum lattices (38) depend on a, so we need to see the behavior of�(α,β)

(γ ,δ)
in these limiting cases. As in the cases without a Wilson line, the non-vanishing contributions come
from the parts with zero winding number (momentum) in the a → 0 (a → ∞) limit, and �(α,1/2)

(γ ,δ)

(�(1/2,β)
(γ ,δ) ) vanishes as a → 0 (a → ∞). As a → 0, we find

�
(α,0)
(γ ,δ)(a, A) �

w=0
(ηη̄)−1η−1

∑
n,m∈Z

q(m+γ )2/2e2π imδ

× exp

[
−πτ2(1 + A2)

(
a(n + α)+ √

2
A√

1 + A2
(m + γ )

)2
]

→ (ηη̄)−1η−1
∑
m∈Z

q(m+γ )2/2e2π imδ
∫ ∞

−∞
dx

a
e−πτ2(1+A2)x2

= R∞√
α′τ2

(ηη̄)−1η−1ϑ

[
γ

δ

]
, (53)

where x ≡ a(n + α) + √
2A(m + γ )/

√
1 + A2 and R∞ ≡ R/

√
1 + A2. Similarly as a → ∞, we

find

�
(0,β)
(γ ,δ)(a, A) �

n=0
(ηη̄)−1η−1

∑
w,m∈Z

q(m+γ )2/2e2π imδ

× exp

[
−4πτ2(1 + A2)

(
w + α

a
− 1√

2

A√
1 + A2

(m + γ )

)2
]

→ (ηη̄)−1η−1
∑
m∈Z

q(m+γ )2/2e2π imδa
∫ ∞

−∞
dye−4πτ2(1+A2)y2

=
√
α′

2
√
τ2R0

(ηη̄)−1η−1ϑ

[
γ

δ

]
, (54)

where y ≡ (w + α)/a − A(m + γ )/
√

2(1 + A2) and R0 ≡ √
1 + A2R. Note that R∞ (R0) is the

physical radius at the large- (small-) R region. In fact, from Eq. (36) we see

(
�′2L + p′2

L

)∣∣
m=w=0 = p′2

R

∣∣
m=w=0 = 1

2

(
n

R∞

)2

,

(
�′2L + p′2

L

)∣∣
m=n=0 = p′2

R

∣∣
m=n=0 = 1

2

(
wR0

α′

)2

. (55)

Note that the effect of the Wilson line is found only with the physical radii in the limiting cases. In
terms of the boosted characters, Eq. (53) and Eq. (54) respectively imply

(On, Vn, Sn, Cn)
(α,β) → R∞√

α′τ2
(ηη̄)−1η−1 (On, Vn, Sn, Cn) δβ,0 (a → 0),

(On, Vn, Sn, Cn)
(α,β) →

√
α′

2
√
τ2R0

(ηη̄)−1η−1 (On, Vn, Sn, Cn) δα,0 (a → ∞). (56)
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Thus, Eq. (56) shows that the interpolating model (52) provides the SO(16) × SO(16) model at
a → 0 and the supersymmetric SO(32) model at a → ∞ for any value of the Wilson line A.

3.1.2. The massless spectrum
Let us see the massless spectrum of this interpolating model for a generic set of values of a and
A. As is done in Sect. 2, we can identify massless states from the parts with zero momentum and
zero winding number of the partition function (52). By expanding the characters in q,4 we find the
following massless states for a generic set of values of a and A:

◦ the 9D gravity multiplet: graviton Gμν , anti-symmetric tensor Bμν , and dilaton φ;
◦ the gauge bosons transforming in the adjoint representation of SO(16) × SO(14) × U (1) ×

U (1)2G,B;
◦ a spinor transforming in the (16, 14) of SO(16)× SO(14).

Note that, compared to the first example in Sect. 2.2, the gauge symmetry is broken to SO(16) ×
SO(14)× U (1) because of the Wilson line, and NF − NB = 32.

There are some conditions under which the additional massless states appear:

(I) τ̃1 = n1/
√

2 (n1 ∈ Z)
Using a and A, this condition is rewritten as

√
2A +

√
1 + A2an1 = 0, (57)

for any integer n1. Under this condition, we find that the following additional massless states
appear:
◦ two vectors transforming in the (1, 14) of SO(16)× SO(14);
◦ two spinors transforming in the (16, 1) of SO(16)× SO(14).

These massless vectors and spinors come from V̄8O(0,0)
16 O16 and S̄8V (0,0)

16 V16 respectively when
(m, n) = (±1, ±n1) and w = 0. This condition 4 thus enhances the gauge symmetry to SO(16)×
SO(16) × U (1)2G,B, and at the same time, the massless spinor is promoted to transform in the
(16, 16) of SO(16)×SO(16) as well. In this case, the additional massless fermionic and bosonic
degrees of freedom are 256 and 224 respectively, and NF − NB = 64.
Note that condition 4 does not mean an infinite number of gauge-enhanced orbits on the τ̃ plane.
Recalling the fundamental region (47) of the interpolating model, condition 4 implies that there
are only two inequivalent SO(16) × SO(16) orbits. One of them is the n1 = 0 orbit, which
corresponds to the case A = 0. Thus, this orbit reproduces the first example in Sect. 2.2. The
other is the n1 = 1 (n1 = −1) orbit, which is the new one that does not appear before considering
the constant Wilson line background.

(II) τ̃1 = n2/
√

2 (n2 ∈ Z + 1/2)
Under this condition, we find that the following additional massless states appear:
◦ two vectors transforming in the (16, 1) of SO(16)× SO(14);
◦ two spinors transforming in the (1, 14) of SO(16)× SO(14).

These massless vectors and spinors come from V̄8V (1/2,0)
16 V16 and S̄8O(1/2,0)

16 O16 respectively
when (m, n) = (±1, ±n2) and w = 0. This condition 4 thus enhances the gauge symmetry to

4 We list the expansion of the boosted characters (49) in q in Appendix B.2.
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Table 1. We summarize the conditions under which the additional massless states appear.
The cosmological constant is exponentially suppressed when the gauge group is enhanced to
SO(14)× SO(18).

Conditions τ̃1 = n1/
√

2 (n1 ∈ Z) τ̃1 = n2/
√

2 (n2 ∈ Z + 1/2)

Gauge group SO(16)× SO(16) SO(14)× SO(18)
NF − NB positive zero

SO(18)×SO(14)×U (1)2G,B, and at the same time, the massless spinor is promoted to transform
in the (18, 14) of SO(18)× SO(14) as well. In this case, the additional massless fermionic and
bosonic degrees of freedom are 224 and 256 respectively, which means that NF − NB = 0. The
cosmological constant is exponentially suppressed on these orbits.
Note that there are only two inequivalent orbits on which condition 4 is satisfied. For any half-
integer n2, all orbits are related either to the one with n2 = 1/2 or the one with n2 = −1/2 by
the shift (45).

(III) 1√
2
τ̃1 − (τ̃ 2

1 + τ̃ 2
2

)
w3 = 0 (w2 ∈ 2Z + 1)

Using a and A, this condition is rewritten as

1√
2

A −
√

1 + A2 w3

a
= 0, (58)

for any odd integer w3. The additional massless states are
◦ two conjugate spinors transforming in the (1, 64) of SO(16)× SO(14).

These massless conjugate spinors come from C̄8S(0,0)
16 O16 when (m, w) = (±1/2, ±w3) and

n = 0. Note that these conjugate spinors are the remnants of the 8C ⊗ (1, 128) in the 10D
SO(16)× SO(16) model.

We plot these conditions in the fundamental region (47) of τ̃ plane in Fig. 1. Table 1 summarizes
the conditions under which the additional massless states appear in this model. The table shows only
the conditions with w = 0 because we are interested in the large-R region where Eq. (1) is valid.

3.2. The interpolation between E8 × E8 and SO(16)× SO(16)

Next, let us include the Wilson line in the second example of Sect. 2.2. The starting point is the same
as in Sect. 3.1 but the Q action is RVC in this case. According to the construction in Sect. 2.1, we
find that the total partition function is

Z (9)int (a, A) = 1

2
Z (7)B

(
Z (9)++ + Z (9)+− + Z (9)−+ + Z (9)−−

)
= Z (7)B

{
V̄8

(
O(0,0)

16 O16 + S(0,0)
16 S16

)
− S̄8

(
O(0,0)

16 S16 + S(0,0)
16 O16

)
+ Ō8

(
V (0,1/2)

16 C16 + C(0,1/2)
16 V16

)
− C̄8

(
V (0,1/2)

16 V16 + C(0,1/2)
16 C16

)
+ V̄8

(
O(1/2,0)

16 S16 + S(1/2,0)
16 O16

)
− S̄8

(
O(1/2,0)

16 O16 + S(1/2,0)
16 S16

)
+ Ō8

(
V (1/2,1/2)

16 V16 + C(1/2,1/2)
16 C16

)
− C̄8

(
V (1/2,1/2)

16 C16 + C(1/2,1/2)
16 V16

)}
.

(59)

Using the limiting behaviors of the boosted characters (56), we can see that this interpolating model
(59) reproduces the supersymmetric E8 × E8 model and the SO(16)× SO(16) model as a → 0 and
a → ∞ respectively, for any value of A.
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Fig. 1. The shaded region is the fundamental region (47) and we plot the orbits on which the additional
massless states appear in the first example. The three red lines correspond to condition 4 under which the
gauge symmetry is enhanced to SO(16) × SO(16), and the one in the center implies the case of A = 0. The
two blue lines correspond to condition 4 under which the gauge symmetry is enhanced to SO(18)× SO(14).
The green semicircles correspond to condition 4 and we plot four orbits with w3 = ±1, ±3.

3.2.1. The massless spectrum
Let us see the massless spectrum of this interpolating model for a generic set of values of a and A.
By expanding the partition function (59) in q, we find

◦ the 9D gravity multiplet: graviton Gμν , anti-symmetric tensor Bμν , and dilaton φ;
◦ the gauge bosons transforming in the adjoint representation of SO(16) × SO(14) × U (1) ×

U (1)2G,B;
◦ a spinor transforming in the (128, 1) of SO(16)× SO(14).

These massless states come from V̄8O(0,0)
16 O16 or S̄8O(0,0)

16 S16. For a generic set of values of a and
A, NF − NB = −736, and the cosmological constant becomes negative. We find that there are some
conditions between a and A under which the additional massless states appear:

(I) τ̃1 = n1/
√

2 (n1 ∈ Z)
Under this condition, we find that the following additional massless states appear:

◦ two vectors transforming in the (1, 14) of SO(16)× SO(14).
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Fig. 2. The shaded region is the fundamental region (47) and we plot the orbits on which additional massless
states appear in the second example. The red line corresponds to condition (I) under which the gauge symmetry
is enhanced to SO(16) × SO(16). The two orange lines correspond to condition (I) under which the gauge
symmetry is enhanced to SO(16)× E8. The two blue lines correspond to condition (I). The green semicircles
correspond to condition (I) and we plot four orbits with w3 = ±1, ±3.

These massless vectors come from V̄8O(0,0)
16 O16 when (m, n) = (±1, ±n1) and w = 0. This

condition (I) thus enhances the gauge symmetry to SO(16)× SO(16)× U (1)2G,B. Furthermore,
different additional massless states appear depending on whether n1 is even or odd:

(I-a) n1 ∈ 2Z
◦ two spinors transforming in the (1, 64) of SO(16)× SO(14).
These states come from S̄8S(0,0)

16 O16 when (m, n) = (±1/2, ±n1/2) and w = 0. In the repre-
sentation of the SO(16) × SO(16), this is a spinor transforming in the (1, 128). Note that in
the fundamental region (47), this condition corresponds to the τ̃1 = 0 orbit, which means the
case A = 0. The massless spectrum under this condition is thus the same as that of the second
example in Sect. 2.2.

(I-b) n1 ∈ 2Z + 1
◦ two vectors transforming in the (1, 64) of SO(16)× SO(14).
These states come from V̄8S(1/2,0)

16 O16 when (m, n) = (±1/2, ±n1/2) and w = 0. In represen-
tation of the SO(16)× SO(16), this is a vector transforming in the (1, 128). Therefore, under
this condition, the gauge symmetry is enhanced to SO(16) × E8 beyond SO(16) × SO(16).
Note that in the fundamental region (47), this condition corresponds to the τ̃1 = √

2/2 (or
τ̃1 = −√

2/2) orbit.
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Table 2. We summarize the condition under which the additional massless states appear. In this model,
there is no condition where the cosmological constant is exponentially suppressed.

Conditions τ̃1 = n1/
√

2 (n1 ∈ 2Z) τ̃1 = n1/
√

2 (n1 ∈ 2Z + 1) τ̃1 = n2/
√

2 (n2 ∈ Z + 1/2)

Gauge group SO(16)× SO(16) SO(16)× E8 SO(16)× SO(14)× U (1)
NF − NB positive negative negative

(II) τ̃1 = n2/
√

2 (n2 ∈ Z + 1/2)
Under this condition, we find that the following additional massless states appear:

◦ two spinors transforming in the (1, 14) of SO(16)× SO(14).
These massless spinors come from S̄8O(1/2,0)

16 O16 when (m, n) = (±1, ±n2) and w = 0. Note that
in the fundamental region (47), this condition corresponds to the two orbits, which are τ̃1 = √

2/4
and τ̃1 = −√

2/4.
(III) 1√

2
τ̃1 − (τ̃ 2

1 + τ̃ 2
2

)
w3 = 0 (w3 ∈ 2Z + 1)

The additional massless states are
◦ two conjugate spinors transforming in the (16, 1) of SO(16)× SO(14).

These massless conjugate spinors come from C̄8V (0,1/2)
16 V16 when (m, w) = (±1/2, ±w3) and

n = 0. Note that these conjugate spinors are the remnants of the 8C ⊗ (16, 16) in the 10D
SO(16)× SO(16) model.

We plot these conditions in the fundamental region (47) of the τ̃ plane in Fig. 2. Table 2 summarizes
the conditions under which the additional massless states appear in this model.

Finally, let us mention that in these models considered in this section, it is straightforward to
calculate tree and one-loop scattering amplitudes of massless particles to obtain signals of broken
supersymmetry [34–37].

4. Conclusions

We have constructed 9D interpolating models with two parameters by considering the compactifica-
tion on a twisted circle with a constant Wilson line background (31), and have studied the massless
spectra of these models. Furthermore, we have found some conditions between circle radius R and
Wilson line A under which additional massless states are present. In the 9D model that interpolates
between the 10D supersymmetric SO(32) model and the 10D SO(16)× SO(16) model, we find the
conditions under which the gauge symmetry is enhanced to SO(16)× SO(16) or SO(18)× SO(14).
In particular, under the second condition, the massless fermionic and bosonic degrees of freedom
become equal, which means that the cosmological constant is exponentially suppressed. Recent ref-
erences related to this point include Refs. [38–40]. According to Ref. [41], which is carried out in the
type I dual picture [42], the brane configuration with the gauge group SO(18)× SO(14) yields a 9D
non-supersymmetric model with NF −NB = 0, although it has tachyonic directions in moduli space.
On the other hand, our interpolation between the 10D supersymmetric E8 × E8 model and the 10D
SO(16)× SO(16) model did not produce a condition with NF − NB = 0. We have, however, found
the conditions under which the gauge symmetry is enhanced to SO(16)× SO(16) or SO(16)× E8.

As part of our future work, we have to discuss the stability of the Wilson line as in Refs. [38–
41]. Even if the cosmological constant is very small on a certain point (orbit) of moduli space, it
is not clear that the Wilson line is stable on the point (orbit). Namely, we need to write down the
cosmological constant in terms of the Wilson line and find the stable points of the Wilson line.
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Appendix A. Notation for the partition functions

We summarize the notation for some functions that appear in the partition functions. The Dedekind
eta function is

η(τ) = q−1/24
∞∏

n=1

(
1 − qn) , (A.60)

where q = e2π iτ . The theta function with characteristics is defined by

ϑ

[
α

β

]
(z, τ) =

∞∑
n=−∞

exp
(
π i(n + α)2τ + 2π i(n + α)(z + β)

)
. (A.61)

In particular, when α and β are 0 or 1/2 and z = 0, we use the following shorthand notations:

ϑ1(τ ) = ϑ

[
1/2
1/2

]
(0, τ) = 0, (A.62)

ϑ2(τ ) = ϑ

[
1/2
0

]
(0, τ), (A.63)

ϑ3(τ ) = ϑ

[
0
0

]
(0, τ), (A.64)

ϑ4(τ ) = ϑ

[
0

1/2

]
(0, τ). (A.65)

These theta functions satisfy the Jacobi’s abstruse identity:

ϑ3(τ )
4 − ϑ4(τ )

4 − ϑ2(τ )
4 = 0. (A.66)

We write the SO(2n) characters in terms of the theta functions as follows:

O2n = 1

2ηn

(
ϑn

3 + ϑn
4

)
, (A.67)

V2n = 1

2ηn

(
ϑn

3 − ϑn
4

)
, (A.68)

S2n = 1

2ηn

(
ϑn

2 + ϑn
1

)
, (A.69)

C2n = 1

2ηn

(
ϑn

2 − ϑn
1

)
. (A.70)
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In terms of the characters, the Jacobi’s abstruse identity is

V8 − S8 = 0. (A.71)

Appendix B. The expansions of the characters

In string theories, we can see the spectrum of each mass level by expanding the partition function
in q. In this appendix, in order to see the massless states, which are the coefficients of q0, we shall
expand the SO(8) and SO(16) characters, which appear in the partition function of some heterotic
models5.

Appendix B.1. The case with no Wilson line

For Sect. 2, we expand η−8 (O2n, V2n, S2n, C2n)where η8 is the contribution from X m and the SO(2n)
characters are from ψm or X I

L , where m = 2, . . . , 10 and I = 1, . . . , 16:

η−8O2n = q−8/24−n/24
(

1 + 2n(2n − 1)

2
q + 8q + O(q2)

)
, (B.72)

η−8V2n = q−8/24−n/24+1/2 (2n + O(q)) , (B.73)

η−8S2n = η−8C2n = q−8/24+n/12 (2n−1 + O(q)
)
. (B.74)

Note that the lowest-order terms of Eqs. (B.72), (B.73), and (B.74) correspond to the degrees of
freedom of the identity, the vector, and the spinor (the conjugate spinor) respectively, and the second
term of Eq. (B.72) to the adjoint representation of SO(2n). The third term of η−8O2n comes from
η−8, i.e., the contributions from X m.

The right-moving parts of the partition functions are expanded as

η̄−8Ō8 = q̄−1/2
(

1 + 2n(2n − 1)

2
q̄ + 8q̄ + O(q̄2)

)
, (B.75)

η̄−8V̄8 = 8 + O(q̄), (B.76)

η̄−8S̄8 = η̄−8S̄8 = 8 + O(q̄). (B.77)

The left-moving parts of the partition functions in some heterotic models might include

η−8O16O16 = q−1
(

1 + 2 · 16 · 15

2
+ 8q + O(q2)

)
, (B.78)

η−8O16V16 = q−1/2 (2n + O(q)), (B.79)

η−8O16S16 = η−8O16C16 = 2n−1 + O(q), (B.80)

η−8V16V16 = 16 · 16 + O(q), (B.81)

η−8V16S16 = η−8V16C16 = q−1/2 (2n · 2n−1 + O(q)
)
, (B.82)

η−8S16S16 = η−8S16C16 = q
(

22(n−1) + O(q)
)

. (B.83)

Note that all states that come from η−8V16S16 or η−8S16S16 (η−8S16C16) are massive, and tachyons
can appear only from the combination (ηη̄)−8 Ō8O16V16 because of the level-matching condition.

5 There are five 10D heterotic models whose partition functions are expressed in terms of the characters SO(8)
or SO(16): the supersymmetric SO(32) model, the supersymmetric E8 × E8 model, the non-supersymmetric
SO(32) model, the SO(16)× E8 model, the SO(16)× SO(16) model.
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Appendix B.2. The case with the Wilson line

As in Sect. 3, when the Wilson line is switched on, the left-moving SO(16) characters and the
momentum lattices are mixed. So, in such a case, we need to expand the boosted characters (49) in
order to see the spectrum. The boosted characters are expanded as follows:

O(α,β)
16 = 1

2η7

(
�
(α,β)
(0,0) ϑ

7
3 +�

(α,β)
(0,1/2)ϑ

7
4

)

= (ηη̄)−1q− 8
24
∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
1 + q + 14 · 13

2
q + O(q

3
2 )

)

+
∑

m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
14q

1
2 + O(q

3
2 )
)}

,

V (α,β)
16 = 1

2η7

(
�
(α,β)
(0,0) ϑ

7
3 −�

(α,β)
(0,1/2)ϑ

7
4

)

= (ηη̄)−1q− 8
24
∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
14q

1
2 + O(q

3
2 )
)

+
∑

m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
1 + q + 14 · 13

2
q + O(q

3
2 )

)}
,

S(α,β)
16 = C(α,β)

16 = 1

2η7

(
�
(α,β)
(1/2,0)ϑ

7
2 ±�

(α,β)
(1/2,1/2)ϑ

7
1

)

= (ηη̄)−1q− 1
24 + 7

12
∑
n,w

⎧⎨
⎩

∑
m∈Z+1/2

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R
(
27−1 + O(q)

)⎫⎬⎭,

(B.84)

where the sum is taken over n ∈ Z +α and w ∈ 2(Z +β).As we are interested only in the left-moving
parts of the partition function, we expand the following products:

η̄η−7O(α,β)
16 O16 = q−1

∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
1 + 8q +

(
16 · 15

2
+ 14 · 13

2
+ 1
)

q + O(q
3
2 )

)

+
∑

m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
1 · 14q

1
2 + O(q

3
2 )
)}

,

η̄η−7O(α,β)
16 V16

= q− 1
2
∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R (16 · 1 + O(q))+
∑

m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
16 · 14q

1
2 + O(q)

)}
,

η̄η−7O(α,β)
16 S16 = η̄η−7O(α,β)

16 C16

=
∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R
(
28−1 · 1 + O(q)

)+
∑

m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
O(q

1
2 )
)}

,
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η̄η−7V (α,β)
16 O16 = q−1

∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
1 · 14q

1
2 + O(q

3
2 )
)

+
∑

m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
1 + 8q +

(
16 · 15

2
+ 14 · 13

2
+ 1
)

q + O(q
3
2 )

)}
,

η̄η−7V (α,β)
16 V16

= q− 1
2
∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
16 · 14q

1
2 + O(q)

)
+

∑
m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R (16 · 1 + O(q))
}

,

η̄η−7V (α,β)
16 S16 = η̄η−7V (α,β)

16 C16

=
∑
n,w

{∑
m∈2Z

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R

(
O(q

1
2 )
)

+
∑

m∈2Z+1

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R
(
28−1 · 1 + O(q)

)}
,

η̄η−7S(α,β)
16 O16 = η̄η−7C(α,β)

16 O16 = q− 1
8
∑
n,w

∑
m∈Z+1/2

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R
(
1 · 27−1 + O(q)

)
,

η̄η−7S(α,β)
16 V16 = η̄η−7C(α,β)

16 V16 = q
3
8
∑
n,w

∑
m∈Z+1/2

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R (O(1)),

η̄η−7S(α,β)
16 S16 = η̄η−7C(α,β)

16 S16 = η̄η−7S(α,β)
16 C16 = η̄η−7C(α,β)

16 C16

= q
7
8
∑
n,w

∑
m∈Z+1/2

q
α′
2

(
�′2L +p′2

L

)
q̄
α′
2 p′2

R (O(1)). (B.85)

Note that no states that come from S(α,β)
16 S16 (= S(α,β)

16 C16 = C(α,β)
16 S16 = C(α,β)

16 C16) or S(α,β)
16 V16

(= C(α,β)
16 V16) will ever be massless.
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