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We consider a random matrix model with both pairwise and non-pairwise contracted indices. The
partition function of the matrix model is similar to that appearing in some replicated systems with
random tensor couplings, such as the p-spin spherical model for the spin glass. We analyze the
model using Feynman diagrammatic expansions, and provide an exhaustive characterization of
the graphs that dominate when the dimensions of the pairwise and (or) non-pairwise contracted
indices are large. We apply this to investigate the properties of the wave function of a toy model
closely related to a tensor model in the Hamilton formalism, which is studied in a quantum
gravity context, and obtain a result in favor of the consistency of the quantum probabilistic
interpretation of this tensor model.
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1. Introduction

Random matrix models [1–5] were first introduced by Wigner in the context of nuclear physics, and
have since then proven to be an essential tool in modern physics and mathematics, with applica-
tions in quantum chromodynamics, disordered systems, 2D quantum gravity, quantum information,
combinatorics of discrete surfaces, free probability, and so on [6–8].

Our main interest in this paper is to study a new kind of random one-matrix model defined by the
following partition function:

ZN ,R(λ, k) :=
∫

RNR
dφ exp

(−λU (φ)− kTrφφt), (1)

where the integration is done over matrices φ with real coefficients φi
a ∈ R (a = 1, 2, . . . , N , i =

1, 2, . . . , R), dφ := ∏R
i=1

∏N
a=1 dφi

a, the Gaussian part is Trφφt = ∑R
i=1

∑N
a=1 φ

i
aφ

i
a, and the

interaction term is

U (φ) =
R∑

i,j=1

(
N∑

a=1

φi
aφ

j
a

)3

=
N∑

a,b,c=1

R∑
i,j=1

φi
aφ

i
bφ

i
cφ

j
aφ

j
bφ

j
c. (2)

The parameters k , λ can be both real or complex, depending on the specific problems considered.
Random matrix models are usually defined using trace invariants and matrix products, for which
the indices of the matrices are contracted (summed) pairwise. The archetypal example of a one-
matrix model is obtained for interactions of the form Ũ (φ) = Tr

(
(φφt)p

)
. Instead, while the lower

indices are contracted pairwise in the interaction that we consider in Eq. (2), the upper indices,
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i, j ∈ {1, 2, . . . , R}, do not appear pairwise. In our study, we will consider both square matrices
(R = N ) and rectangular matrices.

Rectangular random matrix models were considered and then systematically analyzed in Refs.
[9–11], extending the celebrated double scaling limits of matrix models [3–5]; see also Ref. [12]
and references therein. In the large matrix size limit, rectangular random matrix models interpolate
between the behavior of branched polymers (involving Feynman graphs with a tree-like filamentary
structure) and that of 2D quantum gravity (involving planar Feynman ribbon graphs). An important
step in solving these models was to diagonalize the rectangular matrix by using the Lie-group
symmetries on the matrix indices. On the other hand, the present model (1) respects only the discrete
permutation symmetry1 on the upper index, while it respects the orthogonal symmetry on the lower
indices. Moreover, the usual pairwise contraction pattern allows for the ’t Hooft expansion [2] over
ribbon graphs, discrete surfaces classified according to their genera, where the contribution in the
matrix sizes of a graph is given in terms of closed loops called faces [6,12]. With the non-pairwise
contraction pattern in Eq. (2) we lose this combinatorial structure and the expansion over random
discretized surfaces. Because of the differences in the symmetry and combinatorial structure, we
expect the present model (1) to behave differently from the usual square and rectangular random
matrix models. It is also challenging to analyze the present model with this lack of symmetry and
without the topological expansion over discrete surfaces.

Due to this lack of symmetry, the present model, Eq. (1) with Eq. (2), can be seen as a random
vector model with multiple vectors, φi ∈ R

N (i = 1, 2, . . . , R). In the usual solvable settings of
the vector models [13,14], however, there are independent Lie-group symmetries for each vector,
and the interactions are rather arbitrary among the invariants made of these vectors. On the other
hand, our present model has more restrictive characteristics: there is only a single common Lie-
group symmetry2, the vectors are equivalent with each other under the permutation symmetry, and
the interaction has the particular form with non-pairwise index contractions. Therefore, we would
expect that our model defines a specific type of vector model with some interesting characteristic
properties. In a sense, the present model is in between the matrix and vector models, and in fact, by
just changing the power of the interaction term in Eq. (2) from 3 to 2, we recover the usual Tr

(
(φφt)2

)
rectangular random matrix model.

As a matter of fact, an expression very similar to Eq. (1) has already been discussed in the context of
spin glasses in physics, for the p-spin spherical model [15,16]. The model has spherical coordinates
as degrees of freedom, and considers random couplings among them to model the spin glass. An
expression of the form (1) appears after integrating out the random couplings under the replica trick.
However, there are some differences with our case: there exists a constraint

∑N
a=1 φ

i
aφ

i
a = const,

corresponding to spherical coordinates; λ is negative, while it should be positive for the convergence
of Eq. (1) (or should have a positive real part); the limit R → 0 is taken in applying the replica trick.
Because of these rather non-trivial differences, we would expect new outcomes with respect to the
previous studies. Note that the case where R is kept finite while N is taken to be large in Eq. (1)
could have an application for systems with a finite number of “real" replicas [16,17].

One of our motivations in initiating the study of the model (1) is to investigate the properties of
the wave function [18,19] of a tensor model [20–22] in the Hamilton formalism [23,24], which is
studied in a quantum gravity context (see Appendix A for a brief review). The expression (1) can be

1 Namely, reordering of i = {1, 2, . . . , R}.
2 Such a model was written down as Eq. (2.14) in Ref. [13]. However, the model was not solved.
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obtained after integrating over the tensor argument of the wave function of the toy model introduced
in Ref. [25], which is closely related to this tensor model. The details will be explained in Sect. 3.4.
As another potential application, we can consider randomly connected tensor networks [26,27] with
random tensors. It would also be possible to obtain Eq. (1) by considering a random coupling vector
model, or a bosonic timeless analogue of the SYK model [28,29]. Indeed, introducing R replicas in
such a model, we obtain

ZN ,R(λ, k) =
∫

dPe− 1
2
∑N

abc=1 P2
abc

(∫
RN

dφe−k
∑N

a=1 φ
2
a−I

√
2λ
∑N

a,b,c=1 Pabcφaφbφc
)R

(3)

(here dφ = ∏N
a=1 dφa and I is the imaginary unit), from which we recover Eq. (1) by integrating

out the random tensors. In fact, as detailed in this paper, the Feynman diagrammatic expansions of
vector models with random couplings such as the SYK model with a finite number of replicas are
still dominated by the celebrated melonic diagrams [30–32] when the size of the system is large. We
will show that this dominance still holds when the number of replicas is large, as long as the latter
does not exceed the size of the system3.

This paper is organized as follows. In Sect. 2, we describe the Feynman graph expansion of the
partition function (1). We identify the graphs for which the dependence in N and R is the strongest
when the number of interactions is fixed in the following different regimes: N large and R finite, R
large and N finite, and R ∼ Nα with α ∈ (0, +∞). In Sect. 3, we develop a method to treat the model
in a convergent series by separating the integration variables of Eq. (1) into the angular and radial
parts. We apply the method to study the properties of the wave function of the toy model introduced
in Ref. [25], which is closely related to the tensor model mentioned above. The last section is devoted
to a summary and future prospects.

2. Graphical expansion and dominant graphs for the different regimes

We consider the normalized partition function

ZN ,R(λ, k) =
( k

π

)NR
2
∫

RNR
dφe−λU (φ)−kTr(φφt), (4)

where Tr(φφt) = ∑N
a=1

∑R
i=1 φ

i
aφ

i
a, and where the interaction U (φ) is not a usual trace invariant,

but instead has non-pairwise contracted indices:

U (φ) =
R∑

i,j=1

( N∑
a=1

φi
aφ

j
a

)3 =
N∑

a,b,c=1

R∑
i,j=1

φi
aφ

i
bφ

i
cφ

j
aφ

j
bφ

j
c. (5)

This partition function is indeed normalized, as
∫

RNR dφe−kTr(φφt) = (πk )
NR
2 .

We represent graphically the contraction pattern of the interaction (5) in Fig. 1. Each matrix φ is
associated with a vertex, with two half-edges4 attached: a dotted half-edge representing the lower
index (summed from 1 to N ), and a solid half-edge representing the upper index (summed from 1 to
R). The dotted half-edges are associated pairwise, representing the summation of the indices a, b, c

3 The results that we obtain concerning dominant Feynman graphs should still apply to models with a time
dependence.

4 An edge between two vertices is divided into two parts, which correspond to the neighborhoods of the two
vertices. We call these parts half-edges.

3/39

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/7/073A01/5529355 by guest on 24 April 2024



PTEP 2019, 073A01 L. Lionni and N. Sasakura

Fig. 1. Graphical representation of an interaction
∑R

i,j=1(
∑N

a=1 φ
i
aφ

j
a)

3. The variables φi
a are located at each

connection point between the solid and the dotted lines. The solid lines represent the contractions of the i and
j indices, while the dotted lines represent the contractions of the lower indices.

in Eq. (5), while the solid half-edges are attached to trivalent nodes, representing the summation of
the indices i, j in Eq. (5).

We consider the formal expansion of the partition function in powers of the coupling constant λ. It
is formally obtained by expanding the exponential of the interaction (5) in Eq. (4), by exchanging the
sum and the integral, and by applying Wick’s theorem to compute the Gaussian expectation values
of products of Eq. (5) of the form

〈U (φ)n〉0 =
( k

π

)NR
2
∫

dφ U (φ)ne−kTr(φφt). (6)

This way, the partition function is formally expressed as

ZN ,R(λ, k) =
∑
n≥0

zn(N , R, k)(−λ)n, zn(N , R, k) = 1

n! 〈U (φ)
n〉0. (7)

By changing variablesφ′ = √
2kφ, we see that zn(N , R, k) = z′

n(N , R)/(8k3)n. In the present section,
we identify the dominant term in zn(N , R, k) for different regimes of large N and R.

2.1. Feynman graphs

Applying Wick’s theorem, 〈U (φ)n〉0 is typically computed by summing over all possible ways to
pair the 6n matrices involved, and by replacing the paired matrices with the Gaussian covariance

〈φi
aφ

j
b〉0 = 1

2k
δijδab. (8)

This can be expressed graphically using sums over graphs as follows: the n interactions U (φ) are each
represented as in Fig. 1, and contribute with a factor (−λ), while the Wick pairings (the propagators)
are represented by new thin edges between pairs of matrices, which identify the indices corresponding
to the dotted and the solid edges, and contribute with a factor 1/2k . We therefore have graphs with
three kinds of edges, dotted, solid, and thin, and so that we recover n copies of the graph in Fig. 1
when the thin edges are deleted. We denote by G(n) the set of such graphs, and by G the set of
graphs with any positive number of interactions. Similarly, we denote by Gc(n) and Gc the subsets
of connected graphs in G(n) and G. An example of a graph in Gc(3) is represented in Fig. 2.

As with the usual matrix models, the sums of Kronecker deltas corresponding to the indices
contracted pairwise in Eq. (5) yield a factor of N for each free sum on the lower index of the
matrices. In our representation, these free sums correspond to the connected subgraphs obtained
when only the dotted and thin edges are kept, while the solid edges are deleted. These subgraphs are
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Fig. 2. An example of a connected Feynman graph with three interactions. Wick contractions are represented
by the thin lines.

Fig. 3. Faces for the graph of Fig. 2. On the left there are four dotted faces, representing the four free sums
of the lower indices generated by the Wick contractions, each of which contributes with a factor of N . There
is a single solid face, represented on the right, and thus one free sum for the upper indices, which generates a
factor R. Hence, the total weight in N , R of this Feynman graph is N 4R.

loops called dotted faces5. In Fig. 2, for instance, there are four dotted faces, represented on the left
of Fig. 3, and thus a contribution of N 4 for this graph.

In the present case, however, the contraction patterns of the upper indices corresponding to the
solid edges are more complicated: we still get a factor of R for every connected subgraph with only
solid and thin edges, but now such subgraphs are no longer loops as they have nodes of valency
three, as shown on the right of Fig. 3. Even though these subgraphs are not loops, we call them solid
faces.

We denote by Fd (resp. Fs) the number of dotted (resp. solid) faces. For the graph of Fig. 2, we
thus have Fd = 4 and Fs = 1. Then, using Wick’s theorem, the expectation values 〈U (φ)n〉0 are
expressed as

〈U (φ)n〉0 =
( 1

8k3

)n ∑
G∈G(n)

m(G)N Fd (G)RFs(G), (9)

where we have used the fact that the number of thin edges is 3n, and where m(G) is the multiplicity
of the graph G, defined as the number of occurrences of G when adding the thin edges in all possible

5 It is a common denomination in random matrix and tensor models to call such loops faces.
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Fig. 4. The list of Feynman graphs in G(1). For later convenience, they are gathered in two groups, separated
by a comma.

ways for the n(G) interactions. Inserting this into Eq. (7), the partition function is formally expressed
as an expansion indexed by Feynman graphs.

In Fig. 4, all the possible one-interaction graphs are drawn. From the graphs, one can easily
compute the weights coming from the free sums over the indices. One also has to take into account
the multiplicities m(G) of the graphs. For instance, the contribution of the first graph of Fig. 4 can
be computed as N 3R(−λ/(2k)3). By computing similarly for the other graphs, the contributions of
these graphs lead to

z1(N , R, k) = (
N 3R + 3N 2R + 2NR + 3N 2R + 6NR

)
(2k)−3. (10)

The terms are ordered in the same way as the graphs appear in Fig. 4.
In practice, ZN ,R is rather computed by exponentiating the free energy6 whose expansion involves

only connected Feynman graphs:

FN ,R(λ, k) = log ZN ,R(λ, k) =
∑

G∈Gc

m(G)

n(G)!
(−λ

8k3

)n(G)
N Fd (G)RFs(G), (11)

where we have denoted by n(G) the number of interactions U (φ) in the graph G ∈ Gc.
Our aim in the present section is to identify the graphs in Gc(n) that dominate when N or R is

large, or both, in various specific regimes.
More precisely, we will consider the following cases: N large and finite R in Sect. 2.2, R large and

finite N in Sect. 2.3, and both N and R large with R ∼ Nα , where α > 1 in Sect. 2.4 and where
α ≤ 1 in Sect. 2.5. For each one of these regimes, and for a fixed value of n ≥ 1, the connected
graphs in Gc(n) can be classified according to their dependence in N and R. The graphs in Gc(n) for
which this dependence is the strongest are called dominant graphs. We will compute the dominant
free energy, i.e., the free energy restricted to dominant graphs.

Note that because all the one-interaction graphs have the same contribution in R, in all the regimes
where N is large, the only dominant one-interaction graph is given by the leftmost graph in Fig. 4,
so that in any regime we may consider where N is large:

zdom
1 (N >> 1, R, k) = N 3R

8k3 . (12)

For the rectangular matrix model defined with an interaction of the form Ũ (φ) = Tr
(
(φφt)p

)
with

p ≥ 2, the Feynman graphs are ribbon graphs whose vertices have 2p incident edges and whose faces
are colored in black for the lower index ranging from 1 to N and white for the upper index ranging

6 In this paper, we call log ZN ,R the free energy, rather than the real free energy − log ZN ,R in physics to
avoid the frequent appearance of extra minus signs. This “convention" is often used in combinatorics papers.
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Fig. 5. Dominant graphs at large N for the random N × N α matrix models with α > 0.

Fig. 6. Dominant graphs at large N for our random N ×N α matrix models with non-pairwise index contractions
with α > 0.

from 1 to R, so that two neighboring faces have different colors [10,12]. If the black and white faces
are respectively counted by Fb and Fw, and assuming that R ∼ Nα with α ≥ 1 (for 0 < α < 1 the
roles of N and R are just exchanged), the dependence in λ, N , R of a graph behaves as

λnN Fb+αFw = λnNα(Fb+Fw)+(1−α)Fb = λnNα(2+n(p−1)−2g)+(1−α)Fb ,

so that we obtain the two following cases:

(1) If α = 1, the dominant graphs are all the planar 2p-regular ribbon graphs, and we recover the 2D
quantum gravity phase [6].

(2) If α = 1, the dominant graphs are all the planar 2p-regular ribbon graphs that in addition have a
single black face (or a single white face if α < 1). Such graphs are easily shown to have the same
structure as the dominant graphs for a (φ ·φ)p vector model, which we describe in Appendix B for
the (φ ·φ)3 model. These graphs have a tree-like structure characteristic of the branched polymer
phase.

Note that by scaling the coupling constant as λ = λ′Nα(1−p), the contributions of the graphs are
bounded by N 1+α . The scenario for dominant graphs for the rectangular one-matrix model with the
assumption R ∼ Nα with α > 0 is summarized in Fig. 5.

In this section, we will show that the scenario for the dominant graphs of our model is as shown in
Fig. 6. The families of graphs referred to as tree-like and star-like will be described more precisely
in the rest of the section.

We will see that while the dominant graphs for finite R and large N are the same as those for
R ∼ Nα with 0 < α ≤ 1, the dominant graphs for R ∼ Nα with α > 2 are a strict subset of
those for R large and N finite. In the intermediate regime where R ∼ Nα with 1 < α ≤ 2, there
is a competition between the two families of dominant graphs, so that dominant graphs are neither
included in those for R large and N finite, nor in those for finite R and large N .

2.2. The large-N and finite-R regime

The R = 1 vector model at large N . Let us start with this well-known particular regime of the
model: for R = 1, we recover the (φ · φ)3 vector model, for which the graphs that maximize Fd in
Gc(n) are well known and satisfy Fd = 1 + 2n (an example is shown in Fig. 7). Such graphs are
said to have a tree-like structure (see Appendix B).
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Fig. 7. An example of a dominant graph in the large-N and finite-R regime.

Fig. 8. Graphical representation of the self-consistency equation for the normalized two-point function at
leading order in the large-N and R = 1 regime.

To compute the free energy restricted to the dominant graphs in this regime, it is easier to first
compute the two-point function. More precisely, by differentiating the free energy with respect to k ,
we obtain the generating series GN ,R(λ, k) of graphs with one oriented thin edge, which corresponds
to the normalized two-point function

GN ,R(λ, k) = 2k

NR
〈Trφφt〉 = 1 − 2k

NR

∂

∂k
FN ,R(λ, k), (13)

where

〈Trφφt〉 = 1

ZN ,R(λ, k)

∫
RNR

dφTrφφte−λU (φ)−kTr(φφt). (14)

The dominant graphs in this regime have the recursive structure shown in Fig. 8, which translates
in the following self-consistency equation for the two-point function Gdom

N ,1 restricted to dominant
graphs,

Gdom
N ,1 = 1 + z × (Gdom

N ,1 )
3, z = −3λN 2

4k3 , (15)

where the factor N 2 comes from the normalization 1/NR in Eq. (13) (see Appendix B). This is the
usual self-consistency equation for the generating function of rooted regular ternary trees. Note that
by choosing the dependence in N λ = Nλ′ and k = Nk ′ where λ′, k ′ do not depend on N , as usually
done for vector models, we see that Gdom

N ,1 no longer depends on N , so that we get a well-defined limit
when N goes to infinity.
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The coefficients of Gdom
N ,1 (λ, k) are obtained using Lagrange inversion, and are known to be Fuss–

Catalan numbers:

Gdom
N ,1 (λ, k) =

∑
n≥0

1

3n + 1

(
3n + 1

n

)(
−3λN 2

4k3

)n
. (16)

By integrating over k , we find the coefficients of the leading-order free energy,

Fdom
N ,1 (λ, k) = N

6

∑
n≥1

1

n

1

3n + 1

(
3n + 1

n

)(
−3λN 2

4k3

)n
, (17)

where the integration constant has been determined from the fact that Fdom
N ,1 (0, k) = 0.

Equation (15) can also be solved explicitly, and the solution to this equation for z < 0 that leads
to the right series expansion is

Gdom
N ,1 (λ, k) = −2 × 31/3z + 21/3(9z2 + √

3
√

z3(−4 + 27z))2/3

62/3z(9z2 + √
3
√

z3(−4 + 27z))1/3)
. (18)

To recover an exact expression for Fdom
N ,1 , one can use Eq. (13) and integrate Eq. (18) over k;

however, this becomes quite cumbersome. Rather, it is easy to express Fdom
N ,1 as a function of Gdom

N ,1
by keeping the latter to implicitly represent the k-dependence. We obtain

Fdom
N ,1 = −N

2

(
Gdom

N ,1 + λN 2

4k3 (Gdom
N ,1 )

3 − log(Gdom
N ,1 )− 1

)
, (19)

where the integration constant is found knowing that Gdom
N ,1 (0, k) = 1 and Fdom

N ,1 (0, k) = 0. One can
easily show that Fdom

N ,1 satisfies Eq. (13) due to Eq. (15).

The finite-R case at large N . In this case, the dominant graphs are the same as the R = 1 case, the
only difference being that we need to take into account the factor RFs in Eq. (11). Because of the
tree-like structure (Figs. 7 and 8), it is easily seen that the graphs that maximize Fd in Gc(n) have
Fs = 1, so that for R finite, at large N , Gdom

N ,R (λ, k) = Gdom
N ,1 (λ, k) and Fdom

N ,R (λ, k) = RFdom
N ,1 (λ, k).

A consequence of this is that considering random coupling vector models with a finite number R
of real replicas of the form

ZN ,R(λ, k) =
∫

dPe− 1
2
∑N

abc=1 P2
abc

(∫
RN

∏
a

dφae−k
∑N

a=1 φ
2
a−I

√
2λ
∑N

a,b,c=1 Pabcφaφbφc
)R

, (20)

introducing replicas of the fields φi, (i = 1, . . . , R), and then expanding over the Feynman graph,
the graphs that dominate at large N are the celebrated melonic graphs [30–32]. This is explained in
more detail in Appendix C.

2.3. The large-R and finite-N regime

2.3.1. Results
In the case where R is large and N is kept finite, we want to identify the graphs that maximize Fs

in Gc(n). We will show that in this regime, the sum of the contributions of the dominant connected
Feynman graphs in Gc(n) for any n ≥ 1 is given by

Fdom
N ,R (λ, k) =

∑
n≥1

[
N

2n

(
−6(N + 4)λR

8k3

)n + N 3 + 3N 2 − 4N

12n

(
−12λR

8k3

)n
]

. (21)
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Fig. 9. The building blocks of the dominant graphs at large R and finite N . These building blocks can be
obtained by cutting the dotted edges in half in the graphs of Fig. 4. In a graph made of these building blocks,
the three dotted half-edges on each side must be paired with those on another building block, or itself.

Fig. 10. Examples of necklace graphs for n = 3. The weights in N , R are N 2R3 and NR3, respectively.

Summing this series, we find the dominant free energy to be, in this regime,

Fdom
N ,R (λ, k) = −N

2
log
(

1 + 3(N + 4)Rλ

4k3

)
− N (N + 4)(N − 1)

12
log
(

1 + 3Rλ

2k3

)
. (22)

Note that we can choose the dependence in R of λ and k in order to cancel the dependence in R and
have a well-defined limit for R → ∞ and N finite, e.g., by choosing λ = λ′/R with λ′, k independent
of R, and |λ′/k3| < 4/(3(N + 4)).

By exponentiation, we find the dominant partition function in this regime to be

Zdom
N ,R (λ, k) =

(
1 + 3(N + 4)Rλ

4k3

)− N
2
(

1 + 3Rλ

2k3

)− N (N+4)(N−1)
12

. (23)

Dominant graphs. In the finite-R case at large N , it was possible to have dotted faces with a single
dotted edge. This gives rise to the tree-like structure of the dominant graphs. In the present case,
however, a solid face necessarily has an even number of trivalent solid nodes. Furthermore, Fs is
bounded from above by the number of interactions

if G ∈ Gc(n), Fs(G) ≤ n(G), (24)

with equality if and only if every solid face has exactly two trivalent solid nodes. The dominant
graphs in the large-R and finite-N regime are thus the graphs that satisfy this last condition, and they
are easily shown to be necklace-like graphs obtained by forming one loop with the building blocks
listed in Fig. 9 (see the examples in Fig. 10).

2.3.2. Proof
More precisely, given a graph in G ∈ Gc(n), let us consider the following abstract graph �(G):
for each solid face f we draw a vertex v(f ), and for each interaction in G, if its two three-valent
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solid nodes belong to some (non-necessarily distinct) faces f1 and f2, we draw an edge between
the corresponding vertices v(f1) and v(f2). Then the number of independent loops in the graph � is
L(�) = n(G)− Fs(G)+ 1, since � has n(G) edges, Fs(G) vertices, and is connected. Therefore,

Fs(G) = n(G)+ 1 − L(�). (25)

Furthermore, graphs with no loops are trees, which necessarily have vertices of valency one. But as
the solid faces in G contain an even number of three-valent solid nodes, the vertices in �(G) have at
least valency two. Therefore, L(�) ≥ 1, and we recover that 1 ≤ Fs(G) ≤ n(G), but in addition we
now know that the graphs in Gc(n) whose contribution in R is Rn+1−l are obtained by considering
all the abstract graphs �(G) with l loops. In theory, we can thus identify the graphs contributing at
any order in R. In particular, as written above, the dominant contribution in Rn is given by the graphs
for which � is the only one-loop graph, which corresponds to the necklaces of building blocks listed
in Fig. 9. Two examples of necklace graphs for n = 3 are shown in Fig. 10.

As was just proven, the dominant graphs are such that the solid faces having exactly two trivalent
solid nodes are connected by dotted edges to form a loop. Such solid faces are the building blocks of
the dominant graphs, and there exist only two kinds shown in Fig. 9. These building blocks can be
obtained by cutting the dotted edges in half in the graphs of Fig. 4. Two building blocks are connected
by the dotted half-edges on one of their sides (or both, if the whole graph is composed of a single
building block). The summation over Wick pairings in such a building block can be accounted for
by permuting the dotted half-edges. To count the number of ways of connecting the building blocks
in a loop, it is convenient to use a matrix representation. By this, the free energy coming from the
dominant graphs with n interactions is given by

f dom
n = 2n(−λ)nRn

2n(2k)3n Tr
(
An), (26)

where A is a matrix representing the connection of the dotted edges of the building blocks. More
precisely, the matrix A is a sum of two matrices, A = B + C, respectively corresponding to the two
kinds of building blocks in Fig. 9:

B := 1

6
PB̃P, B̃abc,def := δadδbeδcf ,

C := 1

4
PC̃P, C̃abc,def := δadδbcδef , (27)

where a product of two matrices, say X and Y , is defined by

(XY )abc,ghi :=
N∑

d,e,f =1

Xabc,def Ydef ,ghi,

and

Pabc,def := δadδbeδcf + (permutations of d, e, f ). (28)

The matrix P represents all permutations of the three dotted edges on each side of a building block.
The numerical factors in Eq. (27) cancel the graph degeneracies7.

7 Among the 36 terms generated, some correspond to the same graphs. There are respectively 6 and 9
non-equivalent terms for B and C, with degeneracies 6 and 4.
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As for the other factors in Eq. (26), the factor 2n comes from the choice of the sides of the
interactions to form the solid faces, the factor Rn accounts for the contribution of the n solid faces,
and there is a symmetric factor 2n in the denominator, where 2 comes from the overall reflection and
n from the choice of starting points in a loop.

To compute Eq. (26), we use the properties of B, C, and P. By using P2 = 6P, PB̃ = B̃P = P
(so that B = P), and C̃PC̃ = 2(N + 2)C̃, one obtains

B2 = 6B, BC = CB = 6C, C2 = 3(N + 2)C. (29)

One can also show

Tr(B) = N 3 + 3N 2 + 2N , Tr(C) = 3N (N + 2). (30)

Though B and C are the natural choices for representing the connections of the dotted edges, they
are not convenient for the computation of Eq. (26) because of the mixed structure of their products.
A better choice is given by

K = 1

6
B − 1

3(N + 2)
C, H = 1

3(N + 2)
C. (31)

Indeed, from Eqs. (29) and (30), these quantities satisfy

K2 = K , HK = KH = 0, H 2 = H ,

Tr(K) = 1

6
(N 3 + 3N 2 − 4N ), Tr(H ) = N . (32)

Since A = 6K + 3(N + 4)H , we obtain

Tr(An) = 6n−1(N 3 + 3N 2 − 4N )+ 3n(N + 4)nN . (33)

By putting this into Eq. (26), we obtain the aforementioned result (21).
Note that the graphs that maximize Fd at fixed n, when Fs = n, satisfy Fd = n + 1. If there are

only building blocks as on the left of Fig. 9, the number of dotted faces is bounded by 3. To obtain
Fs = n + 1 for n > 2, we therefore need to have building blocks as on the right of Fig. 9, which
means that there is a single dotted face going around the loop. The number of the remaining dotted
faces is bounded by n, which occurs when all the building blocks are as on the right of Fig. 9, and
the dotted edges produce one dotted face between every two building blocks. This causes the graph
to be as in Fig. 11. We will call such graphs star-like graphs.

2.4. The large-R ∼ N α regime with α > 1

2.4.1. Results
In this section, we will identify the dominant graphs in the regime where R ∼ Nα with α > 1 and
N → +∞. They correspond to the graphs in Gc(n) that maximize

Fα = Fd + αFs, (34)

with α > 1. We have seen two families of graphs that maximize Fd at fixed Fs:

◦ The tree-like graphs, which have a maximal Fd among all graphs at fixed n, and for which
Fs = 1. Tree-like graphs in Gc(n) thus have

F tree
α,n = 1 + α + 2n. (35)
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Fig. 11. The star-like graphs that dominate for sufficiently large n in the large-R ∼ N α regime with α > 1.

Fig. 12. Fα as a function of n for α > 1. The region of reachable Fα is shaded. It is delimited by F tree
α,n for small

n and by F star
α,n for larger n.

◦ The star-like graphs shown in Fig. 11, which have a maximal Fd at fixed n (Fd = n+1), among
graphs with maximal Fs. Star-like graphs in Gc(n) thus have

Fstar
α,n = 1 + (α + 1)n. (36)

There is a competition between the two families of graphs. Indeed, we see that

F tree
α,n ≤ Fstar

α,n ⇔ n ≥ α

α − 1
. (37)

In this section, we will show that all other graphs are dominated either by the tree-like graphs or
by the star-like graphs, in the sense that they have a lower Fα at fixed n. An exception occurs for
n = 2, for which another one of the necklace graphs has the same contribution in N and R as the
star-like graph (it belongs to the family of necklaces whose contribution is in N 3Rn in Eq. (21)).
Therefore, Eq. (37) describes the unusual scenario for dominant graphs, which we summarized in
Figs. 6 and 12:

(1) For α > 2, we have 1 < α/(α − 1) < 2, so that tree-like graphs only dominate at n = 1,
while star-like graphs dominate for n > 2. Both the star-like graphs and the necklaces whose
contribution is in N 3Rn in Eq. (21) co-dominate at n = 2. As a consequence, in this regime, the
dominant free energy is given by

Fdom
N ,R (λ, k) = −N 2Rλ

8k3 (N − 3)+ 3N 3R2λ2

32k6 − N

2
log
(

1 + 3NRλ

4k3

)
. (38)
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(2) For α = 2, we have α/(α − 1) = 2, so that tree-like graphs dominate at n = 1, tree-like graphs,
star-like graphs, and the necklaces whose contribution is in N 3Rn in Eq. (21) co-dominate at
n = 2, while star-like graphs dominate for n > 2. As a consequence, in this regime, the dominant
free energy is given by

Fdom
N ,R (λ, k) = −N 2Rλ

8k3 (N − 3)+ 3N 3Rλ2

32k6

(3

2
N 2 + R

)− N

2
log
(

1 + 3NRλ

4k3

)
. (39)

(3) For 1 < α < 2, we have α/(α − 1) > 2. For n ≤ α
α−1 , tree-like graphs dominate, while for

n ≥ α
α−1 , star-like graphs dominate. If α = n0

n0−1 for some positive integer n0, then both tree-
like graphs and star-like graphs co-dominate for n = n0. As a consequence, in this regime, the
dominant free energy is given by

Fdom
N ,R (λ, k) = NR

6

� α
α−1 �∑
n=1

1

n

1

3n + 1

(
3n + 1

n

)(
−3λN 2

4k3

)n + N

2

∑
n≥� α

α−1 �

1

n

(
−3λNR

4k3

)n
. (40)

2.4.2. Discussion
The series that we obtain for the star-like graphs is the remainder of a logarithm, which is convergent
if | λ

k3 | < 4
3

1
NR and divergent otherwise. By choosing the dependence in N , R of the coupling constants

to compensate the factors (NR)n in the sum corresponding to the logarithm, i.e.,

λ

k3 = λ′

k ′3
1

NR
with

∣∣∣ λ′

k ′3
∣∣∣ < 4

3
, (41)

the sum on the right of Eq. (40) can be replaced by the remainder of the logarithm, which scales
in N :

Fdom
N ,R

( λ′

NR
, k ′) = NR

6

� α
α−1 �∑
n=1

un

(
− 3λ′N

4k ′3R

)n − N

2

� α
α−1 �−1∑
n=1

1

n

(
− 3λ′

4k ′3
)n − N

2
log
(

1 + 3λ′

4k ′3
)

, (42)

where un = 1
n

1
3n+1

(3n+1
n

)
. The terms in the partial sum of the tree-like free energy behave in

N 1+α−n(α−1), so that these terms all have a stronger scaling in N than the logarithm8. Note that
the dominant free energy as we defined it only retains the dominant graphs at fixed n, so that for
n ≤ � α

α−1� there might be other graphs whose dependence in N is stronger than N with the choice
(41). However, there are only finitely many of them, so that there exists a polynomial

Pα(λ
′/k ′3, N , R) =

� α
α−1 �∑
n=1

cn(N , R)
(
− λ′

8k ′3
)n

,

where cn(N , R) gathers the contributions of all the graphs with n interactions whose dependence in
N when R = Nα is stronger or equal to N , aside from the star-like graphs, so that

cn(N , R) = un
NR

6

(
− 3λ′N

4k ′3R

)n + o
(
N 2−(n−1)(α−1)),

and in particular

8 Apart from the term for α/(α − 1) if it is an integer.
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Pα(λ
′/k ′3, N , R) = −λ

′N 2

8k ′3 + o(N 2), (43)

and such that

lim
N→+∞,

R∼Nα , α>1

1

N

[
log ZN ,R

( λ′

NR
, k ′)− Pα(λ

′/k ′3, N , R)

]
= −1

2
log
(

1 + 3λ′

4k ′3
)

. (44)

We have, for instance, for any α > 2,9

Pα>2(λ
′/k ′3, N , R) = −λ

′N 2

8k ′3 + 3λ′2N

32k ′6 ,

and for α = 2,

P2(λ
′/k ′3, N , R) = −λ

′N 2

8k ′3 + 3Nλ′2

32k ′6
(3

2

N 2

R
+ 1

)
.

In other words, after retrieving the contribution of a finite number of graphs, the large-N free energy
is essentially a logarithm. In matrix models in the context of 2D quantum gravity, one is naturally
interested in the behavior of large graphs, as they carry the properties of the continuum limit. Here,
for large graphs, the free energy is dominated by a logarithm, so that in a sense the large dominant
graphs are more ordered than the smaller ones. This is an interesting phenomenon, which, as far as
we know, has not been exhibited by any previously studied random vector, matrix, or tensor model.

Note that because the series of star-like graphs is highly divergent outside of its domain of con-
vergence, the conclusions of the graphical study performed in this section (the identification of the
various series of dominant graphs and the comparison between them) cannot be extrapolated outside
the domain of convergence. This applies for instance to the regime where λ/k3 = t/N 2 for t of the
order of 1.

2.4.3. Proof
We split the proof into several parts.

(a) A bound on the number of small faces. We will need the following result for n ≥ 1, which
proves that a dominant graph necessarily contains small faces:

G ∈ Gc(n) is dominant ⇒ F (1)d (G)+ αF (2)s (G) ≥ 2 + n(α − 1) (45)

where F (l)d (resp. F (l)s ) is the number of dotted (resp. solid) faces incident to l interactions counted
with multiplicity: for dotted faces, this means having l dotted edges, and for solid faces, it means
having l trivalent solid nodes. The proof of this preliminary result goes as follows. In the following,
we consider a graph G ∈ Gc(n). By summing lF (l)d (resp. lF (l)s ) over l, we just count the total number
of dotted edges (resp. trivalent solid nodes) in the graph:∑

l≥1

lF (l)d (G) = 3n, and
∑
l≥1

2lF (2l)
s (G) = 2n, (46)

9 Note that because of the convention that F dom
N ,R only retains the dominant graphs order per order, we had

to add the term of order 1 of the logarithm in Eq. (38), and thus the − 3λ′N 2

8k ′3 . This is not necessary here, as we
deal with the full free energy.
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where the second sum has been restricted to an even integer, due to the fact that solid faces visit an
even number of interactions. By considering 3n − Fd(G), we find

3n − Fd =
∑
l≥2

(l − 1)F (l)d ≥ Fd − F (1)d ,

so that

F (1)d ≥ 2Fd − 3n (47)

with equality if and only if F (l)d vanishes for l > 2. Similarly, by considering n − Fs(G), we find

n − Fs =
∑
l≥2

(l − 1)F (2l)
s ≥ Fs − F (2)s .

so that

F (2)s ≥ 2Fs − n. (48)

From Eqs. (47) and (48), we see that any graph G ∈ Gc(n) satisfies

F (1)d (G)+ αF (2)s (G) ≥ 2Fα(G)− n(3 + α). (49)

Since we know that the graph in Fig. 11 has Fα = 1+(α+1)n, we know that Fdom
α (n) ≥ 1+(α+1)n,

so that a dominant graph G satisfies

F (1)d (G)+ αF (2)s (G) ≥ 2(1 + (α + 1)n)− n(3 + α),

which simplifies to Eq. (45).
We now prove recursively on the number of interactions n that if n < α

α−1 , the dominant graphs
in Gc(n) are the tree-like graphs of Sect. 2.2, and if n > α

α−1 , the dominant graphs in Gc(n) are the
star-like graphs of Fig. 11. The method is to assume that G is dominant, and to characterize it using
some graphical moves. In the following, we assume that n ≥ 4, as we will initiate the induction at
n = 3. The cases n = 1, 2, 3 will be treated below in paragraph (d). Note that to show that a graph G
is a tree-like graph, it is sufficient to show that Fd(G) = 2n(G)+ 1, and to show that it is a star-like
graph, if n ≥ 3, it is sufficient to show that Fs(G) = n(G) and to assume that it is dominant.

(b) On the existence of dotted faces with a single edge in a dominant graph. In this paragraph,
we show that if a graph G contains a dotted face with a single dotted edge, then either G is a tree,
or G is not dominant (i.e., we can find another connected graph with a larger Fα). Since tree-like
graphs are not dominant for n > α

α−1 , this implies the following.

LEMMA 2.1 A dominant graph for n > α
α−1 must satisfy F (1)d = 0.

LEMMA 2.2 A graph with n ≤ α
α−1 for which F (1)d > 0 is a tree-like graph or has a smaller Fα than

tree-like graphs.

Suppose that there exists a dotted face in G with a single dotted edge. There are four possibilities
locally, shown in Fig. 13.

We immediately see that the case on the left has more dotted faces than the two cases in the middle,
while they have the same number of solid faces. Therefore, a graph containing the subgraphs in the
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Fig. 13. Local possibilities for an interaction with a dotted face with a single dotted edge.

middle cannot be dominant. Let us first suppose that there exists a subgraph as on the left of Fig. 13.
Performing the operation below

(50)

we obtain a graph G′ with one less interaction.We have that Fd(G) = Fd(G
′)+2 and Fs(G) = Fs(G

′).
If n − 1 < α/(α − 1), either G′ is a tree-like graph, in which case G is a tree-like graph (and

therefore G is not dominant if n > α
α−1 ), or using the recursion hypothesis, Fα(G′) < 1+α+2(n−1),

so that Fα(G) < 1 + α+ 2n, in which case G is not dominant (tree-like graphs always have a larger
Fα).

If n − 1 ≥ α
α−1 , from the recursion hypothesis, Fα(G′) ≤ 1 + (α + 1)(n − 1), so that Fα(G) ≤

1 + (α+ 1)n + 1 −α < 1 + (α+ 1)n, which implies that G is not dominant (star-like graphs always
have a larger Fα).

Now focusing on the case on the right of Fig. 13, we exchange the thin lines as illustrated below,
for one of the two other dotted edges of the interaction:

(51)

There are two cases. If this disconnects the graph into two graphs G1 and G2, one dotted face and
one solid face are created, so that Fα(G) = Fα(G1) + Fα(G2) − (1 + α). We bound Fα(G1) and
Fα(G2) by their maximal possible values, using the recursion hypothesis. Depending on whether
n1 = n(G1) and n2 = n(G2) are smaller than α

α−1 or not, we may have the following situations.

◦ If both n1 and n2 are smaller than α
α−1 , either both G1 and G2 are tree-like graphs so that G

is also a tree-like graph (and so that G is not dominant if n > α
α−1 ), or from the induction

hypothesis, one of the Gi satisfies Fα(Gi) < 1 + α + 2ni, so that

Fα(G) < 2 + 2α + 2(n1 + n2)− (1 + α) = 1 + α + 2(n1 + n2),

which implies that G is not dominant (tree-like graphs always have a larger Fα).
◦ If n1 <

α
α−1 and n2 ≥ α

α−1 (or conversely), we have

Fα(G) ≤ 1 + α + 2n1 + 1 + (α + 1)n2 − (1 + α) = 1 + (α + 1)(n1 + n2)+ (1 − α)n1,

so that G is not dominant (star-like graphs always have a larger Fα).
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Fig. 14. Local possibilities for interactions around a solid face with two trivalent solid nodes.

◦ If both n1 and n2 are larger or equal to α
α−1 , we have

Fα(G) ≤ 2 + (α + 1)(n1 + n2)− (1 + α) < 1 + (α + 1)(n1 + n2),

so that G is not dominant (star-like graphs always have a larger Fα).

The only remaining case in this paragraph is that for which the graph stays connected when
exchanging the thin lines as in Eq. (51). In this case, we obtain a graph G′′ with Fd(G) = Fd(G

′′)−1
and either Fs(G) = Fs(G

′′) or Fs(G) = Fs(G
′′) − 1, depending on whether the solid face splits

or not. In any case, we see that Fα(G) < Fα(G′′), so that G is not dominant. This concludes the
paragraph.

(c) On the existence of solid faces with two trivalent solid nodes in a dominant graph. In this
paragraph, we show that if a graph contains a solid face with two trivalent solid nodes, then either
G is a star, or G is not dominant (i.e., we can find another connected graph with a larger Fα).

Since star-like graphs are not dominant for n < α
α−1 , this implies the following.

LEMMA 2.3 A dominant graph for n < α
α−1 must satisfy F (2)s = 0.

LEMMA 2.4 A graph with n ≥ α
α−1 for which F (2)s > 0 is a star-like graph or has a smaller Fα than

star-like graphs.

Suppose that there exists a solid face in G with two trivalent solid nodes. There are two possibilities
locally, shown in Fig. 14 (and all possible ways of crossing the three thin edges in the center for the
graph on the left).

Let us first consider the case on the left of Fig. 14 (and possible crossings of the central thin edges),
and perform the following move:

(52)

in a way that respects the dotted faces. We obtain a graph G′ with the same number of dotted
faces, and with one less solid face, so that Fα(G) = Fα(G′) + α. As usual, if n − 1 < α/(α − 1),
Fα(G′) ≤ 1 + α + 2(n − 1), so that

Fα(G) ≤ 1 + 2α + 2n − 2 = 1 + (α + 1)n + (n − 2)(1 − α) < 1 + (α + 1)n

as long as n > 2. On the other hand, if n − 1 ≥ α/(α − 1), Fα(G′) ≤ 1 + (α + 1)(n − 1), so that

Fα(G) ≤ 1 + (α + 1)n − 1 < 1 + (α + 1)n,

so that the case on the left of Fig. 14 always leads to a non-dominant graph as long as n > 2.
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Let us now consider the case on the right of Fig. 14. It is slightly more involved than the previous
cases. First, let us specify that the results obtained for the move (51) in the case where it disconnects
the graph are slightly more general: consider a graph G and two thin edges that belong to the same
solid face, such that exchanging them disconnects the graph. Suppose in addition that one of these
connected components is not a tree. Then the graph is not dominant, in the sense that we can always
find graphs with larger Fα . Indeed, the computations are precisely the same as what we have done
before, with the difference that the case in which both G1 and G2 are tree-like graphs is excluded.

Let us consider the following move, which we can perform only if the two thin edges that we
exchange are indeed distinct:

(53)

From what we have just said, if it disconnects the graph, then G is not dominant. If not, we obtain a
connected graph G′′, with one more dotted face, and either one or zero additional solid face. Thus,
Fα(G) < Fα(G′′). Therefore, a dominant graph G with a solid face with precisely two trivalent solid
nodes must be as follows:

(54)

Let us now focus on the interaction C attached to the other extremity of the thin edge eB on the left
of Eq. (54), shown on the left of Eq. (55) below (in the figure, we do not represent the interaction A
anymore). We perform the following move (if the two exchanged edges are distinct):

(55)

Applying the same argument again, we see that if this disconnects the graph G, then G is not dominant,
and if it does not disconnect the graph, it creates a solid face, while the number of dotted faces is
modified by −1, +1, or 0. In any case, we obtain a graph G′′′ with Fα(G) ≤ Fα(G′′′) + 1 − α <

Fα(G′′′). This means that for the graph to be dominant, the two edges that we exchange in Eq. (55)
must in fact be the same edge, so that we are again in the situation on the left of Eq. (53), but for the
interactions C and B instead of B and A.

We then exchange the two thin edges on the upper left of C, concluding that if the graph is dominant,
they must be the same edge, and we then focus on the interaction D at the other extremity of eC and
exchange the two thin edges on the upper right of the interaction D, concluding that if the graph is
dominant, they must be the same edge, and so on.
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We can repeatedly apply the moves (53) and (55), to show that either the graph is not dominant,
or it contains a larger and larger portion of star-like graph—a chain—that we uncover from right
to left at every step until, eventually, all the n interactions are included in the chain. This forces the
chain to be cyclic: when we uncover the (n + 1)th interaction, the leftmost interaction must in fact
be the rightmost interaction A. This proves that a graph with a solid face with exactly two trivalent
solid nodes is a star-like graph, or has a smaller Fα than some other graph.

(d) Small dominant graphs. Since this is a proof by induction, we must study the cases for small
n. We already know that for n = 1, the only dominant graph is the tree-like graph.

For n = 2, we have Fs ∈ {1, 2}. If Fs = 2, we know that Fd ≤ 3 with equality for the star-like
graph (as is the case for larger n) or the other necklace graphs with the R2N 3 behavior in Eq. (21)
(this is specific to n = 2), in which case Fα = 3 + 2α. If Fs = 1, we know that Fd ≤ 5 with equality
for the tree-like graph, in which case Fα = 5 + α. If α < 2, the only dominant graph is the tree-like
graph, while for α > 2, the only dominant graphs are the star-like graph and the other necklace
graph. If α = 2, all of these graphs are dominant. However, this is the only value of n for which a
graph that is not a tree-like graph or a star-like graph is dominant.

For n = 3, there are three possibilities for the number of solid faces: Fs ∈ {1, 2, 3}.Again, if Fs = 3
the graph is at best a star-like graph with Fd = 4 (now the only possible case), while if Fs = 1, the
graph is at best a tree-like graph with Fd = 7.

If Fs = 2, we know that Fd ≤ 6 since the graph is not a tree-like graph. Let us suppose that Fd = 6
and Fs = 2 for a graph G. In that case, we use the lower bound on the number of dotted faces with
a single dotted edge, Eq. (47), which implies that F (1)d ≥ 3. Suppose first that F (1)d = 3. Then F (l)d

vanishes for l > 2, so that from Eq. (46), F (1)d + 2F (2)d = 9, which implies that F (2)d = 3. One

can easily see that the graphs with n = 3 and F (1)d = F (2)d = 3 have Fs = 1. Therefore, if Fs = 2

and Fd = 6, we must have F (1)d ≥ 4. Since there are three interactions, this implies that one of the
interactions has two dotted faces with a single dotted edge each, i.e., one of the interactions is as
on the left of Fig. 13. Applying the move (50), we have a graph G′ with two interactions and with
two solid faces, so that at best there are three dotted faces. Thus at best, Fd(G) = Fd(G

′)+ 2 = 5,
which contradicts the initial hypothesis that Fd(G) = 6. Thus at best, if Fs = 2, Fd = 5, so that
Fα = 5 + 2α.

We see that if α < 3/2, the tree-like graphs are dominant, while for α > 3/2, only the star-like
graph is dominant. For α = 3/2, both the star-like graph and the tree-like graphs are dominant. This
is the scenario that we prove recursively, so that the case n = 3 is enough to initiate the induction.

Using similar arguments, it is possible to prove that for n = 4, the maximum number of dotted
faces at a fixed number of solid faces is obtained for R4N 5, R3N 6, R2N 7, and RN 9, but we do not
detail the computations here.

(e) Proof of the results. The proof is an induction on n. The results hold for n = 3. Using the results
above, under the induction hypothesis, we know from Lemma 2.3 that if n < α

α−1 , a dominant graph

G in Gc(n) has F (2)s (G) = 0, so that from Eq. (45), it must have F (1)d (G) > 0. We thus see from
Lemma 2.2 that either G is a tree, or it has a smaller Fα than tree-like graphs. A dominant graph with
n < α

α−1 must therefore be a tree.

Similarly, from Lemma 2.1, if n > α
α−1 , a dominant graph G in Gc(n) has F (1)d (G) = 0, so that

from Eq. (45), it must have F (2)s (G) > 0. We therefore see from Lemma 2.4 that either G is a star, or
it has a smaller Fα than star-like graphs. A dominant graph with n > α

α−1 must therefore be a star.

20/39

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2019/7/073A01/5529355 by guest on 24 April 2024



PTEP 2019, 073A01 L. Lionni and N. Sasakura

If n = α
α−1 , both cases are possible; a graph G in Gc(n) cannot have both F (1)d (G) = 0 and

F (2)s (G) = 0, and we have shown that it is either a tree, a star, or non-dominant.

2.5. The large-R ∼ N α regime with α ≤ 1

2.5.1. Results
In the previous section, we have shown that for 1 < α < 2, the dominant graphs were tree-like graphs
for n ≤ α

α−1 , and star-like for n ≥ α
α−1 . The dominant free energy (40) consists of a polynomial of

order α
α−1 corresponding to the tree-like graphs, and a series remainder corresponding to the star-like

graphs. When α approaches 1, the polynomial part grows bigger and bigger, and we would expect
that it would eventually take over the full series when α → 1+. In this section, we show that this is
indeed the case, and that tree-like graphs are actually dominant in the full domain 0 < α ≤ 1.

To summarize, in the large-R ∼ Nα regime with α ≤ 1, the dominant graphs are the tree-like
graphs, and the partition function, free energy, and two-point functions are given by those for finite
R and large N .

Note that although we do not know of any statistical physics interpretation of such a regime, from
the point of view of the Feynman graph expansion of random coupling vector models (20) of large
size N , this shows the robustness of the dominance of melonic graphs [30–32] (Appendix C), since
it remains valid when the number of replicas R is large, but not larger than the size N of the system.

2.5.2. Proof
We can adapt the proof of the previous section in this case, with a few modifications. It is again a
recursion on n, initiated at n = 1, for which we already know that the property holds.

Another bound on the number of small faces. Again, we will need to develop a similar lower
bound to Eq. (45) for the case where α ≤ 1. We show that

G ∈ Gc(n) is dominant ⇒ F (1)d (G)+ αF (2)s (G) ≥ 2(α + 1)+ n(1 − α), (56)

where we recall that F (l)d (resp. F (l)s ) is the number of dotted (resp. solid) faces incident to l interactions
(counted with multiplicity). To prove this bound, we just use the lower bound (49) on Fα . Since we
know that Fdom

α ≥ 1 + α + 2n, a dominant graph G must satisfy

F (1)d (G)+ αF (2)s (G) ≥ 2(1 + α + 2n)− n(3 + α),

which simplifies to Eq. (56).

Dominant graphs have no solid faces with two trivalent solid nodes. Let us consider a graph
in Gc(n) and suppose that F (2)s > 0. Then G must contain a subgraph as in Fig. 14. For the case
on the left of Fig. 14 (and possible crossings of the central thin edges), we perform the move (52)
in a way that respects the dotted faces. We obtain a graph G′ with the same number of dotted
faces, and with one less solid face, so that Fα(G) = Fα(G′) + α. Using the induction hypothesis,
Fα(G′) ≤ 1 + α + 2(n − 1), so that

Fα(G) ≤ 1 + α + 2n + (α − 2) < 1 + α + 2n,

so that G is not dominant.
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The case on the right of Fig. 14 is slightly more involved, since the dotted faces are not conserved
when we perform the following move:

→ . (57)

Upon performing this move, we suppress a dotted face if the two vertical thin edges belong to
different dotted faces, and if they belong to the same dotted face, we either create a dotted face or
their number remains the same. In addition, a solid face is always suppressed. If G′′ is the graph
obtained after performing the move, we thus have Fd(G) = Fd(G

′′)+ η, where η ∈ {−1, 0, 1}, and
Fs(G) = Fs(G

′′)+ 1. Importantly, if G′′ is a tree, all three dotted edges on the right of Eq. (57) lie in
different dotted faces, so that if G′′ is a tree-like graph we must have Fd(G) = Fd(G

′′) − 1. Using
the recursion hypothesis, Fα(G′′) ≤ 1 + α + 2(n − 1), with equality iff G′′ is a tree, in which case
Fα(G) = 1 + α+ 2(n − 1)+ α− 1. Otherwise, if G′′ is not a tree, Fα(G′′) < 1 + α+ 2(n − 1) and
Fα(G) < 1 + α + 2n − 2 + α + 1. In both cases,

Fα(G) < 1 + α + 2n + α − 1 < 1 + α + 2n,

so that G is not dominant. In conclusion, under the induction hypothesis, if F (2)s (G) > 0 and α ≤ 1,
G is not dominant. Using the bound (56) on small faces, this implies that a dominant graph G must
therefore satisfy F (1)d > 0.

Dominant graphs are tree-like graphs. Since a dominant graph must contain a dotted face with a
single dotted edge, it must include a subgraph as in Fig. 13. We review the various cases; everything
works as before, with fewer cases.Again, the cases in the middle of Fig. 13 are excluded in a dominant
graph.

Suppose that we have a subgraph as on the left of Fig. 13. Performing the move (50), we obtain
a graph G′ with one less interaction such that Fd(G) = Fd(G

′) + 2 and Fs(G) = Fs(G
′). Either

G′ is a tree-like graph, in which case G is a tree-like graph, or using the recursion hypothesis,
Fα(G′) < 1 + α + 2(n − 1), so that Fα(G) < 1 + α + 2n, in which case G is not dominant.

Suppose that we have a subgraph as on the right of Fig. 13 and we perform the move (51). If the
move disconnects the graph into two graphs G1 and G2, we have Fα(G) = Fα(G1)+Fα(G2)−(1+α).
Using the recursion hypothesis, either both G1 and G2 are tree-like graphs so that G is also a tree-like
graph, or one of the Gi satisfies Fα(Gi) < 1 + α + 2ni, so that

Fα(G) < 2 + 2α + 2(n1 + n2)− (1 + α) = 1 + α + 2(n1 + n2),

so that that G is not dominant.
If on the other hand the graph stays connected when exchanging the thin lines as in Eq. (50), as

before we obtain a graph G′′ with Fd(G) = Fd(G
′′) − 1 and either Fs(G) = Fs(G

′′) or Fs(G) =
Fs(G

′′)− 1, depending on whether the solid face splits or not. In any case, Fα(G) < Fα(G′′), so that
G is not dominant. This concludes the proof.

3. Describing the model in a convergent series

The expansion in λ of the partition function ZN ,R(λ, k) defined in Eq. (1) does not give a convergent
series in general, because there exists an essential singularity at λ = 0. This is obvious from the form
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of Eq. (1), because the integral diverges for λ < 0. In fact, the situation can explicitly be checked
in the exactly solvable case R = 1, as we will see in Sect. 3.3. The reason why we obtained the
convergent results in Sect. 2 comes from the fact that we summed up the dominant graphs only10.
In this section, to have more control over the situation, we will divide the integral over φi

a into its
angular and radial parts. We will see that the angular part admits a convergent series expansion in
λ, whose coefficients are expressed in terms of the coefficients zn of the Feynman diagrammatic
expansions of Sect. 2. On the other hand, the radial part will be treated in a different manner as an
explicit integration. We will finally apply our results to discuss the integrability of the wave function
of a toy model [25] closely related to the tensor model in the Hamilton formalism introduced in Refs.
[23,24].

3.1. Dividing the integration into angular and radial parts

Let us break φi
a into the radial part r2 := Trφφt and the angular part φ̃i

a := φi
a/r, which represents

coordinates on a unit sphere, SNR−1. Then, one can rewrite ZN ,R in Eq. (1) as

ZN ,R(λ, k) = vol
(
SNR−1) ∫ ∞

0
dr rNR−1fN ,R(λr6)e−kr2

, (58)

where

fN ,R(t) := 1

vol
(
SNR−1

) ∫
SNR−1

dφ̃ exp
(
−t U (φ̃)

)
(59)

with U defined in Eq. (5) and vol
(
SNR−1

)
denoting the volume of the unit sphere,

∫
SNR−1 dφ̃. For

finite N , R and for complex t, fN ,R(t) is an entire function11 because of the form of Eq. (59), which
is an integration of an exponential function of t over a compact space.

As an entire function, it is differentiable over R, and since

U (φ̃) =
R∑

i,j=1

(
N∑

a=1

φ̃i
aφ̃

j
a

)3

=
N∑

a,b,c=1

(
R∑

i=1

φ̃i
aφ̃

i
bφ̃

i
c

)⎛⎝ R∑
j=1

φ̃
j
aφ̃

j
bφ̃

j
c

⎞
⎠ ≥ 0, (60)

we see that fN ,R(t) is a monotonically decreasing positive function for finite N , R and real t with
fN ,R(0) = 1.

Furthermore, as an entire function, the series expansion of fN ,R in t is convergent, and the radius of
convergence is infinite. In Sect. 3.2, we will express the coefficients of the series expansion of fN ,R

in terms of the coefficients zn, which are computed using Feynman graphs as detailed in Sect. 2.1.
The angular part of the integration is contained in the expression (59) of fN ,R. This integration is

over a compact space and free from the variables λ, k , but it is still highly non-trivial. It is closely
related to what appears in the p-spin spherical model [15,16] for the spin glass, as the integration
variables are constrained to be on a unit sphere. Therefore we would be able to apply to our model
the various techniques that have been developed for the understanding of this spin glass model.
Although we use diagrammatic expansions instead in the present paper, such applications would be
of potential interest.

10 This is usually the case for vector, matrix, and tensor models.
11 That is, it is holomorphic at every finite point of C.
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To interpret fN ,R, we express it as the moment-generating function (or Laplace transform)

fN ,R(t) =
∫ 1

0
dσ ρN ,R(σ ) exp(−t σ), (61)

of the following probability density:

ρN ,R(σ ) := 1

vol
(
SNR−1

) ∫
SNR−1

dφ̃ δ
(
σ − U (φ̃)

)
. (62)

This quantity obviously satisfies ρN ,R(σ ) ≥ 0 and
∫

dσ ρN ,R(σ ) = 1, which justifies that it can
indeed be regarded as a probability density over σ . Furthermore, we see from Eq. (60) and

U (φ̃) =
R∑

i,j=1

(
N∑

a=1

φ̃i
aφ̃

j
a

)3

≤
R∑

i,j=1

⎛
⎝ N∑

a,b=1

φ̃i
aφ̃

i
aφ̃

j
bφ̃

j
b

⎞
⎠

3
2

≤
R∑

i,j=1

N∑
a,b=1

φ̃i
aφ̃

i
aφ̃

j
bφ̃

j
b = 1 (63)

that the support of ρN ,R(σ ) is included in 0 ≤ σ ≤ 1. In Eq. (63), we have used the Cauchy–Schwartz

inequality,
∑N

a=1 φ̃
i
aφ̃

j
a ≤

(∑N
a,b=1 φ̃

i
aφ̃

i
a φ̃

j
bφ̃

j
b

) 1
2
, and 0 ≤ ∑N

a=1 φ̃
i
aφ̃

i
a ≤ 1.

In terms of ρN ,R, the partition function is expressed as

ZN ,R(λ, k) = vol
(
SNR−1) ∫ 1

0
dσ ρN ,R(σ )

∫ ∞

0
dr rNR−1e−λσ r6−kr2

. (64)

In this expression, the angular part ρN ,R and the radial part can be treated independently, and they
are combined by the last integration over σ . As in the case of fN ,R, the angular integration for ρN ,R

is highly non-trivial. On the other hand, the integration over r is rather straightforward, and one can
obtain an explicit expression in terms of the generalized hypergeometric function 1F2, as shown in
Appendix D. An important property is that it has an essential singularity at λ = 0 (as the partition
function ZN ,R(λ, k)), which is consistent with the fact that the series expansion of ZN ,R(λ, k) in λ is
not convergent.

The probability density ρN ,R also has an interesting meaning in the context of tensor-rank decom-
position (or CP-decomposition) in computer science [33–35], which is an important technique for
analyzing tensors representing data. This technique decomposes a tensor, say a symmetric tensor
Qabc (a, b, c = 1, 2, . . . , N ), into a sum of rank-one tensors as

Qabc =
R∑

i=1

φi
aφ

i
bφ

i
c, (65)

where R is called the rank of Qabc (more precisely, for a given tensor, its rank is the smallest R that
realizes such a decomposition). It is not well understood how such rank-R tensors exist in the space
of all tensors, especially for real tensors. Since

∑N
a,b,c=1 QabcQabc = U (φ), the probability density

ρN ,R in Eq. (62) gives some information on this, namely, the size distributions of tensors with a
certain rank under the normalization Trφφt = 1.

3.2. The series expansion of the angular part

In this subsection, we will compute the series expansion of fN ,R(t) in t, which is guaranteed to have
an infinite convergent radius, as discussed in Sect. 3.1. This could be applied to other models as well.
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By performing the Taylor expansion of fN ,R(t) in Eq. (59) in t, one obtains

fN ,R(t) =
∞∑

n=0

(−t)nCN ,R(n), (66)

where

CN ,R(n) = (−1)n

n!
dn

dtn fN ,R(t)

∣∣∣∣
t=0

= 1

n!
1

vol
(
SNR−1

) ∫
SNR−1

dφ̃
(

U (φ̃)
)n

. (67)

Here, changing the order of the derivative and the integration is allowed for this well-behaved
integration. For any arbitrary positive constant β, we have

CN ,R(n) = 1

n!

∫
RNR dφ

(
U (φ)

(Trφφt)
3

)n

exp
(−βTrφφt

)
∫

RNR dφ exp
(−βTrφφt

) . (68)

Indeed, introducing a radial direction by φi
a = φ̃i

ar, we see that the integrations over r cancel between
the numerator and the denominator, and β is indeed a dummy variable, which does not appear in the
final expression of CN ,R. In particular, β has nothing to do with the parameter k in Eq. (58).

The numerator in the last line of Eq. (68) has the following obvious properties: on one hand, by
performing the rescaling φ → φ/

√
β we see that

∫
RNR

dφ

(
U (φ)(

Trφφt
)3
)n

e−βTrφφt = β− NR
2 A, (69)

where A does not depend on β, while on the other hand,

(−1)3n d3n

dβ3n

∫
RNR

dφ

(
U (φ)(

Trφφt
)3
)n

e−βTrφφt =
∫

RNR
dφ (U (φ))n e−βTrφφt

, (70)

which is equal to (π
β
)

NR
2 n!zn(N , R,β), where zn(N , R,β) are the expansion coefficients of the partition

function defined in Eq. (7). Differentiating Eq. (69), we determine A and obtain the following relation:

CN ,R(n) = �
(NR

2

)
β3n

�
(NR

2 + 3n
) zn(N , R,β). (71)

Since zn(N , R,β) = z′
n(N , R)/(8β3)n (see below Eq. (7)), the dummy parameter β cancels out from

the expression.
The relation (71) provides a method for determining the series expansion of the angular part from

the standard series expansion with the Feynman graphs. As for the n-dependence, Eq. (71) shows
that CN ,R(n) decays much faster than zn(N , R,β) in n. Therefore, in general, fN ,R has a much faster
convergent series than that of the partition function. This is consistent with the argument made in
Sect. 3.1 that fN ,R is an entire function, while the partition function is not.
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3.3. The R = 1 example

The behaviors of fN ,R and the partition function ZN ,R mentioned in Sect. 3.2 can explicitly be checked
in the trivial solvable case with R = 1.12 In this case, U (φ̃) = (Trφ̃φ̃t)3 = 1 identically from the
normalization of φ̃, and hence from Eq. (68) we obtain

CN ,1(n) = 1

n! . (72)

Then the series (66) can be summed up to

fN ,1(t) = e−t . (73)

As mentioned in Sect. 3.1, this is in fact an entire function of t. By putting it into Eq. (58), one obtains

ZN ,1(λ, k) = vol
(
SN−1) ∫ ∞

0
dr rN−1e−λr6−kr2

. (74)

This is of course equivalent to what one will obtain by directly parametrizing φi=1
a with the radial

and angular coordinates in the original expression (1), and integrating out the trivial angular part.
The remaining integration over r can be expressed using the hypergeometric function 1F2 as derived
in Appendix D. The result has an essential singularity at λ = 0, as expected.

This last statement can also be checked from the explicit form of zn. We obtain

zn(N , 1, k) = �
(N

2 + 3n
)

n! � (N
2

) k−3n. (75)

This can be obtained from the relation (71) with β = k and Eq. (72), or even directly computing the
Gaussian integration in Eq. (7). This is a divergent series and its interpretation is not straightforward,
as widely discussed in the literature on random vector models.

As shown in this trivial R = 1 example, it seems useful to divide the integration into the angular
and radial directions for explicit evaluations of the partition function ZN ,R(λ, k), rather than directly
treating a highly divergent series in λ with zn(N , R, k).

3.4. Application to a tensor model

In this subsection, we will apply the results of the previous subsections to study the integrability of
the wave function of the model introduced in Ref. [25]. It is a toy model closely related to a tensor
model in the Hamilton formalism, called the canonical tensor model [23,24], which is studied in a
quantum gravity context (see Appendix A for a brief review).

Let us consider the following wave function depending on a symmetric tensor Pabc, where (a, b, c =
1, 2, . . . , N ):

ψ(P) :=
∫

RN
dϕ exp

⎛
⎝I

N∑
a,b,c=1

Pabcϕaϕbϕc + (I − ε)

N∑
a=1

ϕaϕa

⎞
⎠, (76)

where I denotes the imaginary unit I 2 = −1, and dϕ := ∏N
a=1 dϕa. For general real Pabc, the

integral (76) is oscillatory and is regularized by a small positive regularization parameter ε of the
so-called Feynman prescription, in which ε → +0 is supposed to be lastly taken.

12 This case corresponds to a one-vector model [13,14] with a sixth-order interaction term.
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In Ref. [25], it was argued and explicitly shown for some simple cases that the wave function
(76) has coherent peaks for some specific loci of Pabc where Pabc is invariant under Lie-group
transformations (namely, Pabc = ha′

a hb′
b hc′

c Pa′b′c′ for ∀h ∈ H with a Lie-group representation H ). In
fact, a tensor model [20–22] in the Hamilton formalism [23,24] has a similar wave function ψ̃(P)R

with a power R and ψ̃(P) very similar to ψ(P) [18], and it was shown in Ref. [19] that the wave
function of this tensor model has similar coherent peaks (see Appendix A for a little more detail).
To consistently interpret this phenomenon as the preference for Lie-group symmetric configurations
in the tensor model, we first have to show that we can apply the quantum mechanical probabilistic
interpretation to the wave function; namely, the wave function must be absolute square integrable.
This is a difficult question even for the toy wave function (76), since it has a complicated dependence
on Pabc mainly due to its oscillatory character.

As a first step towards answering this question, in this paper we will study the behavior of the
following quantity in κ:

g(N , R, κ) :=
∫

R#P
dP exp

⎛
⎝−κ

N∑
a,b,c=1

PabcPabc

⎞
⎠ψ(P)R, (77)

where #P := N (N + 1)(N + 2)/6 is the number of independent components of the symmetric tensor
Pabc, and dP := ∏N

a,b,c=1
a≤b≤c

√
dabc dPabc with a degeneracy factor, daaa = 1, daab = 3, and dabc = 6

for a < b < c. In the κ → +0 limit, this quantity coincides with the integration of the wave function
ψ(P)R over the whole space of Pabc. If this is finite in the limit, the wave function is integrable. We
may regard this as a toy case study towards proving the square integrability of the wave function
[18,19] in the tensor model of Refs. [23,24]. By putting Eq. (76) into Eq. (77) and integrating over
Pabc, we obtain

g(N , R, κ) =
∫

R#P
dP
∫

RNR
dφ exp

⎛
⎝−κ

N∑
a,b,c=1

PabcPabc + I
R∑

i=1

N∑
a,b,c=1

Pabcφ
i
aφ

i
bφ

i
c

+(I − ε)

R∑
i=1

N∑
a=1

φi
aφ

i
a

)

=
(π
κ

) #P
2

ZN ,R

(
1

4κ
, −I + ε

)
, (78)

where ZN ,R is the partition function of our matrix model (1).
By using Eqs. (78) and (64), g(N , R, κ) can also be expressed as

g(N , R, κ) = vol
(
SNR−1) (π

κ

) #P
2
∫ 1

0
dσ ρN ,R(σ )

∫ ∞

0
dr rNR−1e−σ r6/(4κ)+(I−ε)r2

. (79)

From this expression, one can see that the most delicate region of the integration over σ is located near
the origin, since the integration over r may need careful treatment in the large-r region for σ ∼ +0.
In addition, the σ ∼ +0 region becomes more important, as κ is taken smaller for our interest in
the κ → +0 limit. Therefore, it is essentially important to determine the behavior of ρN ,R(σ ) near
the origin. In turn, from the relation (61), this is equivalent to determining the t → +∞ behavior of
fN ,R(t). This can also be seen directly from
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g(N , R, κ) = vol
(
SNR−1) (π

κ

) #P
2
∫ ∞

0
dr rNR−1fN ,R

(
r6

4κ

)
e(I−ε)r2

, (80)

which can be obtained by expressing g(N , R, κ) with fN ,R using Eq. (58).
While the toy model of Ref. [25] allows any value of R, the tensor model [23,24] uniquely requires

R = (N + 2)(N + 3)/2 [19,36] for the hermiticity of the Hamiltonian13. Because of the very similar
form of the wave functions of the models, our interest is therefore especially in the regime R ∼ N 2.
The dominant graphs at large N at each order in λ for R ∼ Nα have systematically been analyzed in
Sect. 2.4, and it has been found that there exists a transition region 1 ≤ α ≤ 2, where the dominant
graphs gradually change. This would imply that the dynamics of the model is largely different
between the two regions R � N 2 and R � N . Motivated by this fact, we compute fN ,R through the
relation (71) first by using the result in Sect. 2.3, which incorporates all the necklace graphs and is a
valid approximation for large R and finite N . We will also comment on how our result will change if
we take Eqs. (38) and (39), which come from the dominant graphs in large N for α > 2 and α = 2,
respectively.

In the leading order of large NR, which includes the regime of large R and finite N , and also all
the other regimes with R ∼ Nα discussed in Sect. 2, the relation (71) is given by

CN ,R(n)leading =
(

NR

2

)−3n

β3n zn(N , R,β)leading, (81)

where we have formally employed the following expansion in 1/NR:

�
(NR

2

)
�
(NR

2 + 3n
) =

3n−1∏
i=0

(
NR

2
+ i

)−1

=
(

NR

2

)−3n (
1 + O

(
(NR)−1)), (82)

and zn(N , R,β)leading denotes the leading order of the coefficient zn(N , R,β) in any of the regimes
discussed in Sect. 2. Note that here we have assumed the existence of a 1/R expansion or other
expansions with R ∼ Nα for CN ,R(n), or fN ,R, to employ the formal expansion in 1/NR irrespective
of the value of n in Eq. (82).

In the regime of large R, by using the result from Sect. 2.3 one obtains

fN ,R(t)leading =
∞∑

n=0

(−t)nCN ,R(n)leading

=
∞∑

n=0

(
− 8β3t

N 3R3

)n

zn(N , R,β)leading

=
(

1 + 6(N + 4)t

N 3R2

)− N
2
(

1 + 12t

N 3R2

)− N (N+4)(N−1)
12

, (83)

where we have put Eq. (81) into Eq. (66) and have used Eq. (23). As can be seen in Eq. (83),
the fN ,R(t)leading has an interesting scaling property at large t, which will become important in the
analysis below.

13 The wave function of the tensor model is given by ψ(P)λH /2 with λH = (N + 2)(N + 3)/2 [19,36]. Our
interest in this paper is its square integrability, which is a toy case study for the absolute square integrability.
Therefore, R = λH . See Appendix A for a little more detail.
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Let us check Eq. (83) from the point of view of the expected properties of fN ,R(t). As explained
in Sect. 3.1, fN ,R(t) should be a monotonically decreasing function for real t with fN ,R(0) = 1. This
is satisfied by Eq. (83) in the region t ≥ 0, which is the integration region for the computation of
g(N , R, κ) as in Eq. (80). On the other hand, fN ,R(t) should be an entire function of t as explained
in Sect. 3.1. This is not satisfied by Eq. (83), as there exist singular points at t ∼ −N 2R2, −N 3R2.
Considering the fact that we are discussing the large-R regime, the singular points can be regarded
as being far away from the integration region t ≥ 0. However, for fN ,R(t) to be an entire function,
these singularities in Eq. (83) must be canceled by the sub-leading corrections of fN ,R(t) to Eq. (83).
This means that the sub-leading corrections may also be a series whose radius of convergence is of
the order of N 2R2. Therefore, fN ,R(t) may get some important corrections at t � N 2R2 from such
sub-leading contributions (see also Sect. 2.4.2). Though this should be taken as a caution in using
Eq. (83), we will use it beyond this limit in the computation below as the leading-order expression
of the entire function fN ,R(t).

By putting Eq. (83) into Eq. (80), we obtain

g(N , R, κ)leading

= vol
(
SNR−1) (π

κ

) #P
2

×
∫ ∞

0
dr rNR−1

(
1 + 3(N + 4)r6

2κN 3R2

)− N
2
(

1 + 3r6

κN 3R2

)− N (N+4)(N−1)
12

e(I−ε)r2
. (84)

From now on, let us concentrate only on the behavior in κ . By the change of variable, r → κ1/6r,
we obtain

g(N , R, κ)leading

∝ κ− #P
2 + NR

6

∫ ∞

0
dr rNR−1

(
1 + 3(N + 4)r6

2N 3R2

)− N
2
(

1 + 3r6

N 3R2

)− N (N+4)(N−1)
12

e(Iκ
1/3−ε)r2

. (85)

We now divide further discussions into the following three cases.

(i) R < (N + 1)(N + 2)/2
In this case, the κ → +0 behavior of the integration in Eq. (85) converges to a finite non-zero
value, because the modulus of the integrand damps fast enough in r even without the regularization
by ε. Therefore, the behavior of g(N , R, κ)leading is determined by the factor in front. By putting
#P = N (N + 1)(N + 2)/6 (see below Eq. (77)), we obtain

g(N , R, κ)leading ∼ κ
N
6

(
R− (N+1)(N+2)

2

)
. (86)

Therefore it has diverging behavior in the limit κ → +0.

(ii) R > (N + 1)(N + 2)/2
In this case, since the integrand in Eq. (85) is oscillatory and has a modulus diverging in r → +∞,
the κ → +0 limit has to be taken in a careful manner. For κ ∼ +0, the integral is dominated by the
large-r region. Therefore, the behavior of g(N , R, κ)leading in κ ∼ +0 is given by
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g(N , R, κ)leading ∼ κ− #P
2 + NR

6

∫ ∞
dr rγ−1eIκ1/3r2−εr2

∼ κ− #P
2 + NR

6

(
ε − Iκ

1
3

)− γ
2

, (87)

where γ = NR − N (N + 1)(N + 2)/2. By taking the ε → +0 limit, we find that

g(N , R, κ)leading ∼ κ0. (88)

Therefore g(N , R, κ) converges to a finite value in the κ → +0 limit.

(iii) R = (N + 1)(N + 2)/2
With slight modification of the discussions in case (ii), we obtain

g(N , R, κ)leading ∼ log(κ). (89)

Therefore it diverges logarithmically.
Combining the three cases above, we see that the behavior of g(N , R, κ) in the κ → +0 limit has

a transition at R = Rc := (N + 1)(N + 2)/2, where it is finite and diverging at R > Rc and R ≤ Rc,
respectively. However, this result may be changed by some corrections. As analyzed in Sect. 2.4,
there exists a transition region R ∼ Nα (1 ≤ α ≤ 2), and R ∼ Rc ∼ N 2 is at the edge of the transition
region. Therefore, fN ,R(t)may have some important corrections at R ∼ Rc in addition to fN ,R(t)leading.
We also commented above that fN ,R(t) may have some important corrections at t � N 2R2. In fact,
case (ii) has the main contributions from the large-t region if κ is taken small. Therefore, unless κ is
kept finite for R � Rc in case (ii), the results above must be taken with caution.

Let us see the subtleties more concretely by using our results, Eqs. (38) and (39), which are from
the analysis of the dominant graphs for R ∼ Nα in large N with α > 2 and α = 2, respectively. By
applying the relation (71) as before, we obtain fN ,R(t)leading = exp(Fdom

N ,R (λ, k))with the replacement
λ/k3 → 8t/N 3R3. In either of the cases (38) and (39), fN ,R(t)leading at large t has the divergence
coming from the second term, which violates the monotonically decreasing property of fN ,R(t)leading

discussed in Sect. 3.1. Therefore we encounter a maximum value of t, over which the expression of
fN ,R(t)leading cannot be correct. Then, the integration over r cannot be done to the infinite, and this
is problematic in taking the κ → +0 limit in cases (ii) and (iii), since the main contribution of the
integration comes from the large-r region.

From these discussions, to obtain a more concrete statement in the κ → +0 limit, we would
need to check the sub-leading corrections to fN ,R(t). On the other hand, we would be able to say
that the present result is in favor of, or does not contradict, the consistent quantum probabilistic
interpretation of the wave function of the tensor model [19], because the tensor model requires
R = (N + 2)(N + 3)/2 > Rc, and g(N , R, κ)leading is finite in the κ → +0 limit at least in the
computation above. To improve the statement, in addition to computing the sub-leading corrections,
one should consider the absolute value |ψ(P)|R as the integrand rather than the present ψ(P)R in
Eq. (77), since the former is semi-positive definite, being a probability distribution, but the latter, the
present one, is not. Integrating over Pabc in the former case leads to a more involved form than Eq.
(1), and analyzing it is left for future study.

4. Summary and future prospects

In this paper, we considered a random matrix model with pairwise and non-pairwise contracted
indices. We analyzed the model in various regimes concerning the relative relation between N and
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R, which are the dimensions of the pairwise and non-pairwise contracted indices, respectively. We
used Feynman diagrammatic expansions for the analysis, and have shown a transition of dominant
graphs between tree-like ones at large N and loop-like ones at large R. As a specific application, we
applied our result to study the integrability of the wave function of the model introduced in Ref. [25]
as a toy model for a tensor model [20–22] in the Hamilton formalism [23,24]. The result seems to
be in favor of the consistency of the quantum probabilistic interpretation of the tensor model.

More precisely, in the regimes where N is large but R is finite, or where R ∼ Nα with α ≤ 1, which
includes the case of square matrices α = 1, we have shown the dominance of the tree-like graphs,
which are the dominant graphs for the φ6 vector model. As explained in Appendix C, this tree-like
family corresponds to the family of melonic graphs for the equivalent replicated vector model with
random tensor couplings (or analogues with a time dependence). This shows the robustness of the
dominance of the tree-like graphs for matrix models with non-pairwise contracted indices (such tree-
like behaviors are also found for non-square one-matrix models) or of the dominance of melonic
graphs for replicated random coupling vector models, when the number of replicas does not exceed
the size of the system.

In the regime where R ∼ Nα with α > 1, we have shown that the dominant graphs exhibit a very
interesting behavior: tree-like graphs dominate for graphs with α/(α−1) or fewer interactions, while
a family of very ordered star-like graphs dominate for graphs with more interactions. In a sense, the
small dominant graphs exhibit “more disorder” than the larger ones. The contribution of the tree-like
graphs is a truncation of the usual vector-model free energy, and the contributions of the star-like
graphs is roughly a logarithm. The value of α thus provides a parameter to tune the value at which
the vector-model free energy is truncated, and the remainder replaced by a logarithm expansion.
While such interesting behavior is not known to the authors to exist in other vector, matrix, or tensor
models, it is not possible to rescale the coupling constants to obtain a finite limit for the free energy
that involves both families, precisely because of the different behaviors in N and R of the tree-like
and star-like graphs. It would be interesting to see if a similar situation occurs for dominant graphs
for other models with non-pairwise contracted indices. Our first guess is that we could have such a
competition between necklace-like graphs and tree-like graphs whenever an odd number of indices
are contracted together, while trees could dominate for any α for an even number of contracted
indices; however, the precise situation when α takes values in R

+ should be investigated.
It should be stressed that we have not concluded in the present paper that the wave function of the

model introduced in Ref. [25] is integrable in the region R ∼ N 2, which is the region of interest for
the tensor model of Ref. [23,24]. This is due to some limitations of our approximation in the regime
R ∼ N 2, which comes from the condition R = (N + 2)(N + 3)/2 required for the consistency
[36] of the tensor model of Refs. [23,24]. Therefore an obviously important question about our
results is how they would change by improving the approximations. This could be done by including
higher-order Feynman graphs along the present line, or employing the various techniques that have
been developed for the analysis of the spin glass models, because of the similarities between our
model and the p-spin spherical model [15,16]. In particular, it is important to obtain more correctly
the behavior of the moment-generating function fN ,R(t), especially in the t → ∞ limit, because it
essentially determines whether the wave function of the toy model [25] related to the tensor model
is integrable or not. It is also important to deal with the actual wave function of the tensor model,
which has the same interaction term with a tensor, but for which the Gaussian part is replaced by a
product of Airy functions [18,19].
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An interesting future question is to find a way to take a large-N limit that would keep the non-trivial
characteristics of this model. We have observed that there is a crossover between the tree-like and
star-like graphs by varying the parameter α of R ∼ Nα . However, as pointed out in the text, it is
not possible at the level of the Feynman graph series expansion to take a large-N limit, which keeps
the contributions of both the tree and star-like graphs in an interesting manner. On the other hand, a
close look at Eq. (22) suggests an interesting scenario. To see this, let us consider FN ,R(λ, k)/RN ,
which is the free energy per degrees of freedom, and take a large-N limit with λ/k3 ∼ N−2 and
R ∼ N 2. The former scaling of the coupling constants ensures that the tree-like graphs give a non-
trivial contribution to FN ,R/RN at large N . Assuming that the contribution to FN ,R/RN for the star
graphs actually vanishes in this limit14, the second term, which contains the other necklace graphs,
remains finite and non-trivial. Note that this scenario does not contradict our analysis in the text,
since order-by-order analysis of the dominant graphs is not necessarily related to the dynamics of the
model in general. At the present stage, this scenario is no more than speculation, since we presently
do not understand well the dynamics at R ∼ N 2.
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A. A brief review of the canonical tensor model

The canonical tensor model (CTM) [23,24] is a tensor model for gravity in the canonical (Hamil-
tonian) formalism, mimicking the structure of the ADM formalism [37] of general relativity. It
was originally formulated in the classical framework, and the quantum version was obtained by its
straightforward canonical quantization [36]. The variables of the quantum CTM are the canonical
operator pair with three symmetric indices satisfying

[Q̂abc, P̂def ] = i
∑
σ

δaσd δbσeδcσf , [Q̂abc, Q̂def ] = [P̂abc, P̂def ] = 0, (A.1)

where the indices take the values 1, 2, . . . , N , and σ denotes the permutations of d, e, and f . These
operators are assumed to be Hermitian: Q̂†

abc = Q̂abc, P̂abc = P̂†
abc. The Hamiltonian of the model is

given by

Ĥ = ξaĤa + ηabĴab, (A.2)

14 As mentioned in the text, we cannot rely on the logarithm expression for the first term in Eq. (22) to draw
conclusions in this regime on the relative contributions of the star-like graphs with respect to tree-like graphs or
other necklace graphs, as the series for star-like graphs is highly divergent with these choices for the coupling
constants, while the series for trees and necklaces are convergent.
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whose structure is similar to that of the ADM formalism: ξa and ηab are the arbitrary parameters cor-
responding respectively to the lapse and shift, and Ĥa and Ĵab are the first-class quantum constraints
corresponding respectively to the Hamiltonian and diffeomorphism constraints. These constraints
were shown to take the following unique form for consistency [24]:

Ĥa = 1

2
(P̂abcP̂bdeQ̂cde − λQ̂abb + iλH P̂abb),

Ĵab = 1

4
(Q̂acdP̂bcd − Q̂bcdP̂acd), (A.3)

where λ is an arbitrary real parameter15, and

λH = 1

2
(N + 2)(N + 3), (A.4)

which is required for the hermiticity of Ĥa. As first-class quantum constraints, they satisfy the
following closed commutation algebra:

[Ĥ(ξ1), Ĥ(ξ2)] = iĴ
(
[ξ̃1, ξ̃2] + 2λ ξ1 ∧ ξ2

)
,

[Ĵ (η), Ĥ(ξ)] = iĤ(ηξ),
[Ĵ (η1), Ĵ (η2)] = iĴ ([η1, η2]), (A.5)

where Ĥ(ξ) = ξaĤa, Ĵ (η) = ηabĴab, ξ̃ab = ξcP̂abc, (ξ1 ∧ ξ2)ab = ξaξb − ξbξa, and [·, ·] denotes
the matrix commutator. The physical states are conditioned by

Ĥa|�〉phys = 0,

Ĵab|�〉phys = 0, (A.6)

where the mutual consistency of these conditions is guaranteed by the closure of the commutation
algebra (A.5). In particular, the first equation is the analogue of the Wheeler–DeWitt equation.

By choosing a representation, these constraints (A.6) can be expressed as a set of partial differential
equations. This means that the problem is in principle well defined, though the solutions can in
general have very complicated forms. Several exact solutions have been found before [18,36], and
one solution of particular interest is the wave function in the P representation given by

�phys(P) = �(P)
λH
2 , (A.7)

where

�(P) :=
∫

RN+1
dφdφ̃ ei(Pφ3+φ2φ̃− 4

27λ φ̃
3). (A.8)

Here φ = (φ1,φ2, . . . ,φN ) ∈ R
N , φ̃ ∈ R and we have used the short-hand notation

Pφ3 := Pabcφaφbφc,

φ2 := φaφa,

dφ := �adφa. (A.9)

15 This parameter can be normalized to λ = 0, ±1 by a rescaling, Q̂ → c Q̂, P̂ → P̂/c, without changing
the following structure.
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It is physically important to understand the properties of the wave function (A.7), in particular,
to know the locations of its peaks. Indeed, this will determine the quantum mechanically preferred
values of Pabc, which may be interpreted as preferred geometries by the procedure developed in
Ref. [38]. Generally, the wave function has a complicated dependence on Pabc, because there are
integrations over multiple variables and the presence of the imaginary unit in the exponent of the
integrand will cause complicated quantum interference among all the contributions over parts of
the integration region. However, it can be argued that this interference will occur quite randomly in
general situations, and the wave function will take small values at most values of Pabc. On the other
hand, it can be expected that the wave function will qualitatively take rather large values if Pabc is
invariant under a Lie group: Pabc = ha′

a hb′
b hc′

c Pa′b′c′ for ∀h ∈ H with H being a representation of
a Lie group [25]. Indeed, this peak structure was explicitly found for various small-N cases and/or
various restricted subspaces of Pabc for the CTM in Ref. [19] and for a toy model in Ref. [25], where
in the latter the wave function has the simplified form presented in Eq. (76). The difference between
Eqs. (76) and (A.8) resides in the absence of the integration over φ̃, which makes the toy model
easier to treat. The value of R in Eq. (77) would correspond to λH in Eq. (A.4), if the square of the
physical wave function (A.7) of the CTM is considered. Note that, in the present paper, we do not
consider the absolute square of Eqs. (76) or (A.7), which would obviously be required, but is more
complicated to study.

B. Tree dominance at large N and the Schwinger–Dyson equation

In this appendix, we first prove the dominance of tree-like graphs in the large-N limit, and then
write down the self-consistency equation (Schwinger–Dyson equation) for the two-point function.
The explanation of these matters is kept brief in the main text, because they are assumed to be
well-known standard knowledge. This appendix could be useful for readers who are not familiar
with these results or the way we have formulated them.

In the case where N is large but R is finite, what matters is the weight in N , namely, the number of
dotted loops (faces) in a graph, which correspond to free sums over the lower indices of φ. One can
thus ignore the solid lines, which correspond to the upper indices. This means that the interaction
in Fig. 1 can be simplified to an interaction with only dotted edges as on the left of Fig. B.1 (this
representation is common for vector models) or even simply by a black blob with three legs attached,
as on the right of this figure, as will be explained in detail below. The graph on the right of Fig. B.2
gives an example of a graph represented by such simplified vertices. This example corresponds to
the graph on the left of Fig. B.2, which uses the usual representation of the interaction (Fig. 1). In the
simplified graphs, the connecting points among the legs of the simplified vertices are represented by
white blobs. Each white blob corresponds to a dotted loop, and therefore the weight in N of a graph
is the number of white blobs in it. While the vertices corresponding to the interactions are trivalent,
the number of legs attached to each white blob is not restricted.

Fig. B.1. Left: An interaction represented only with the dotted edges. Right: The simplified representation of
the interaction.
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Fig. B.2. Left: An example of a tree-like graph. Right: The same graph represented using the simplified
vertices. Each white blob corresponds to a dotted loop, showing that this graph has weight N 9.

Fig. B.3. The Schwinger–Dyson equation for the two-point correlation function.

Let us consider a connected graph constructed in the above way with n simplified vertices. Its first
Betti number B1 is given by

B1 = 3n −
⎛
⎝n +

∑
i≥1

bi

⎞
⎠+ 1, (B.1)

where bi denotes the number of white blobs that have i legs attached. Here 3n is the total number
of edges and the quantity in the parenthesis is the total number of vertices, namely, white and black
blobs. Since the weight in N is Fd = ∑

i≥1 bi, we obtain from Eq. (B.1)

Fd = 2n + 1 − B1. (B.2)

Since B1 ∈ N, Fd takes the maximal value 2n + 1 for B1 = 0, namely, if and only if the graph is a
tree.

For a tree, it is easy to prove that the weight in R is R. Therefore, a tree graph has the weight
N 2n+1R in N and R.

From the above proof, in the leading order of N , the two-point correlation function 〈φi
aφ

j
b〉 can be

computed by summing over all the graphs that are obtained by opening any of the Wick contraction
edges (the thin edges) in the tree vacuum graphs. Then, it is easy to see that the two-point correlation
function necessarily has the form

〈φi
aφ

j
b〉tree = Gδabδ

ij, (B.3)

where G depends on λ, k , and N .
From a consistency equation for the tree graphs, one can obtain the Schwinger–Dyson equation

shown in Fig. B.3. By putting the form (B.3), this leads to

G = 1

2k
− 6λN 2

2k
G3. (B.4)

After a rescaling, one obtains Eq. (15).
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C. Feynman graphs of the replicated vector model with random tensor couplings
and melonic graphs

We consider the following expression:

ZN ,R(λ, k) =
∫

dPe− 1
2
∑N

abc=1 P2
abc

(∫
dφe−k

∑N
a=1 φ

2
a−I

√
2λ
∑N

a,b,c=1 Pabcφaφbφc
)R

. (C.1)

Labeling the R copies of φ from 1 to R, we obtain

ZN ,R(λ, k) =
∫

dP
∫

dφ e− 1
2
∑N

abc=1 P2
abce−k

∑N
a=1

∑R
i=1 φ

i
a−I

√
2λ
∑N

a,b,c=1 Pabc(
∑R

i=1 φ
i
aφ

i
bφ

i
c). (C.2)

The initial model (1) is recovered after integrating over P. Let us take a closer look at the Feynman
graphs of Eq. (C.2). In the case where R = 1, we represent each tensor P by a vertex with three dotted
edges attached, one for each one of the vectors. At the end of the dotted edge is a vertex representing
the vector φ. The integration over φ generates trivalent graphs16 whose vertices carry tensors P, and
to which are associated polynomials in P obtained by contracting the indices according to the edges
in the graphs. For a given graph, the integration over P is expressed as a sum over Wick pairings
of the tensors, along with a power of N corresponding to the number of faces thus created. It is
well known that at large N , the graphs that dominate are the so-called melonic graphs obtained by
recursively adding pairs of vertices as in Fig. C.1 [30–32]. The dominance of these graphs is one of
the reasons of the success of the SYK model [28,29] and related models: while these graphs have
a simple recursive structure so that the theory is exactly solvable in the IR, they are not trivial and
contain very interesting physics.

We now return to the case where R > 1. The vertices corresponding to the φ are then linked by new
solid edges that meet at trivalent nodes (Fig. C.2). The graphs representing the interactions of our
model (Fig. 1) are obtained by deleting the edges corresponding to the Wick pairings between the
P, as well as the vertices corresponding to the P, and identifying the dotted half-edges, as illustrated
on the right of Fig. C.2.

As shown in Fig. C.3, the tree-like graphs for the model studied in the present paper precisely
correspond to the melonic graphs for the replicated model with random tensor couplings. Therefore,

Fig. C.1. Recursive construction of a melonic graph for R = 1. The double lines represent the Wick contraction
of the two tensors P in the pair.

16 More precisely, in the convention that we use, it generates Wick pairings between the φ, represented as
thin edges between the corresponding vertices, so that two trivalent vertices corresponding to tensors P are
linked by chains formed by a dotted edge, a thin edge, and another dotted edge.
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Fig. C.2. On the left is the interaction for the replicated model with random couplings. The way in which the
interaction of the matrix model (1) is recovered by integrating the P is shown on the right.

Fig. C.3. The melonic graphs in the replicated model with random couplings correspond to the tree-like graphs
for the model (1).

as explained in Sect. 2.2, the dominance of the melonic graphs still holds at large N for the model
with real replicas, i.e., when R is finite [16,17]. This dominance is quite robust, as we showed that
it actually still holds when the number R of replicas is large, but smaller than or equal to the size
N of the system (R ∼ Nα with 0 < α ≤ 1), although we do not know of any statistical physics
interpretation for such a regime. This should still be true when the fields φ have a time dependence.

D. Explicit expression for the radial integration

In this appendix, we will show

∫ ∞

0
dr rNR−1e−λr6−kr2 = λ− NR

6 �
(NR

6

)
6�(1) 1F2

(
NR

6
;

1

3
,

2

3
; − k3

27λ

)

− λ− NR
6 − 1

3 k �
(NR

6 + 1
3

)
6�(2) 1F2

(
NR

6
+ 1

3
;

2

3
,

4

3
; − k3

27λ

)

+ λ− NR
6 − 2

3 k2 �
(NR

6 + 2
3

)
6�(3) 1F2

(
NR

6
+ 2

3
;

4

3
,

5

3
; − k3

27λ

)
, (D.1)
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where the generalized hypergeometric function 1F2(a; b1, b2; z) (−bi /∈ N) is defined by

1F2(a; b1, b2; z) =
∞∑

n=0

(a)n
(b1)n(b2)n

zn

n! (D.2)

with the Pochhammer symbol

(x)n =
{

1 n = 0,
x(x + 1) · · · (x + n − 1) n > 0.

(D.3)

Since the series (D.2) converges everywhere in z, 1F2(a; b1, b2; z) is an entire function of z. It has an
essential singularity at z = ∞ for −a /∈ N, since the expansion (D.2) is an infinite series of (1/z)−1.
Therefore Eq. (D.1) has an essential singularity at λ = 0.

To show Eq. (D.1), it is enough to employ the following convergent series representing an integral:

∫ ∞

0
dr rN−1e−r6−hr2 =

∞∑
n=0

(−h)n

n!
∫ ∞

0
dr rN−1+2ne−r6

= 1

6

∞∑
n=0

(−h)n

n! �

(
N

6
+ n

3

)
. (D.4)

By dividing the n summation into the three cases n = 3m, 3m + 1, 3m + 2 (m = 0, 1, . . .) and
changing the variables appropriately, we obtain Eq. (D.1).
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