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We study the null geodesics in a static circularly symmetric (SCS) black hole spacetime, which
is a solution in the (2 + 1)D massive gravity proposed by Bergshoeff, Hohm, and Townsend
(BHT massive gravity). We obtain analytic solutions for the null geodesic equation in the SCS
black hole background and find the explicit form of deflection angles. We see that, for various
values of the impact parameter, the deflection angle can be positive, negative, or even zero in
this black hole spacetime. The negative deflection angle indicates the repulsive behavior of the
gravity that comes from the gravitational hair parameter that is the most characteristic quantity
of the BHT massive gravity.
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1. Introduction

It is well known that in (2+1) dimensions, the Riemann tensor can be expressed in terms of the Ricci
tensor and the Ricci scalar since the Weyl tensor is identically zero. This fact means that there are
no local degrees of freedom. Due to this simplicity, Einstein gravity in (2 + 1) dimensions does not
have a nontrivial black hole solution except for the Banados–Teitelboim–Zanelli (BTZ) black hole
solution [1,2], which is the solution of the Einstein equation with a negative cosmological constant.

In addition, there are some modifications to introduce local degrees of freedom to gravity in (2+1)

dimensions. For example, the topologically massive gravity [3], which has the Lorentz Chern–Simons
term in its action in addition to the Einstein–Hilbert action, possesses a single propagating degree
of freedom in the linearization level around maximally symmetric spacetime.

Another massive gravity in (2 + 1) dimensions has been suggested by Bergshoeff, Hohm, and
Townsend (BHT) [4,5]. The BHT massive gravity is a ghost-free theory with quadratic terms of
the Ricci tensor and Ricci scalars by adjusting the coefficients appropriately [6]. The BHT massive
gravity has some nontrivial black hole solutions [7], including the BTZ black hole as its special case.

Since the BHT massive gravity includes a massive graviton, which gives a new mass scale, we
can expect that the large-scale interaction of gravity must be different from that of Einstein gravity.
The deviation from Einstein gravity appears as a new parameter in the black hole solution, which
is called the gravitational hair parameter [7]. In order to clarify the consequences of the deviation,
we investigate the null geodesics and the deflection angles of the null geodesics in the black hole
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spacetime with the gravitational hair parameter1. We obtain analytic solutions for the geodesic
equation of massless particles and find that the gravity behaves as if a repulsive force acts on the
geodesics with some values of the parameters. Instead of the effective potential, we calculate the
deflection angles of the null geodesics to evaluate this repulsive behavior of the gravity and then
we obtain the explicit form of the deflection angles in the black hole background. We show that
the deflection angle in the static circularly symmetric (SCS) black hole spacetime can be negative.
This fact indicates the repulsive behavior of the gravity. The negative deflection angles caused by
wormholes are mentioned in Refs. [11–13]. The applications of such behaviors of null geodesics
around exotic objects to the gravitational lensing have also already been discussed in Refs. [14,15].
Also, we show that the origin of the repulsive behavior of the BHT massive gravity is the existence
of the gravitational hair parameter. In fact, it is known that the Lifshitz black hole [16,17], which
is another type of black hole spacetime in the BHT massive gravity, does not have the gravitational
hair parameter and the geodesics in its black hole background do not show such a repulsive behavior
of the gravity. This is consistent with our claim.

This paper is organized as follows. In Sect. 2, we explain the BHT massive gravity and the SCS
black hole spacetime. In Sect. 3, we derive the analytic solution of the geodesic equation for massless
particles in the SCS black hole spacetime.Also, we discuss that there exist geodesics whose behaviors
seem as if the massless particles receive a repulsive force from the black hole. In Sect. 4, we introduce
the deflection angles of the null geodesics in the SCS black hole spacetime. We derive the explicit
form of the deflection angle and reveal that, for various values of the impact parameter, the deflection
angles can be positive, negative, or even zero. The last section is devoted to the conclusion and the
discussion.

2. BHT massive gravity and the static circularly symmetric black hole solution

The BHT massive gravity is characterized by the following action [4]:

S = 1

16πG

∫
d3x

√−g

(
R − 2λ − 1

m2 K

)
, (2.1)

where K is quadratic in the Ricci tensor and the Ricci scalar as

K = RμνRμν − 3

8
R2. (2.2)

The source-free field equation can be obtained as

Gμν + λgμν − 1

2m2 Kμν = 0, (2.3)

where

Kμν = 2�Rμν − 1

2
(∇μ∇νR + gμν�R) − 8RμρRρ

ν + 9

2
RRμν + gμν

(
3RαβRαβ − 13

8
R2

)
. (2.4)

When a spacetime has a constant curvature as Rμνρσ = 	(gμρgνσ − gμσ gνρ), Kμν in Eq. (2.3) is
also simplified as Kμν = −1

2	2gμν [4,7], and there can be solutions of constant curvature with two

1 For the (2 + 1)D black hole in Einstein gravity, i.e., the BTZ black hole, the analytic solution for the
geodesic equation for massless particles is examined in Ref. [8] and for (3 + 1) and higher-dimensional black
holes, these are discussed in Refs. [9,10].
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different curvature radii,

	± = 2m(m ±
√

m2 − λ), (2.5)

from Eq. (2.3). As mentioned in Ref. [7], in the special case with m2 = λ, the theory has a unique
maximally symmetric solution, since the two curvature constants 	+ and 	− take the same value,
	+ = 	− = 2λ = 2m2. For simplicity, we focus on this case in the rest of this paper.

In this spacial case of the BHT massive gravity, we can obtain the following static circularly
symmetric (SCS) black hole solution [7]:

ds2 = −f (r)dt2 + dr2

f (r)
+ r2dφ2,

f (r) = −	r2 + br − μ, (2.6)

where μ is related to the mass of the black hole and b is called the gravitational hair parameter [18],
which is the origin of the repulsive behavior of the gravity, as we will explain later. When b = 0, the
solution (2.6) reduces to the non-rotating BTZ black hole solution. As is well known, the BTZ black
hole is the unique, nontrivial black hole solution for Einstein gravity in (2 + 1) dimensions with a
negative cosmological constant and μ can be regarded as the mass parameter in the BTZ black hole
solution. The black hole mass M is encoded to

M = μ + 1

4G
, (2.7)

with respect to the anti-de Sitter (AdS) spacetime (b = 0 and μ = −1). 	 in Eq. (2.6) works as an
effective cosmological constant, while the original cosmological constant λ differs twice as much
as 	. Though there is no black hole solution in Einstein gravity when 	 > 0, there exists a black
hole solution in the BHT massive gravity even if 	 > 0 [7]. In this paper, however, we set 	 < 0
to compare with the BTZ black hole and consider the case of b > 0 and μ > 0.

The black hole spacetime represented by the metric (2.6) has the horizon at

rh = −b + √
b2 − 4	μ

−2	
, (2.8)

and its scalar curvature R is calculated as

R = 6	 − 2b

r
. (2.9)

Equation (2.9) means that this spacetime is asymptotically AdS and there is a curvature singularity
at r = 0. When 	 = 0, the black hole spacetime represented by the metric (2.6) is asymptotically
locally flat [7]. Figure 1 shows the causal structures of the spacetimes denoted by the metric (2.6)
with some values of parameters. The causal structures for the other values of the parameters are
discussed in Ref. [18].

The existence of the gravitational hair b is one of the crucial differences between the BHT massive
gravity and Einstein gravity. Interestingly, b enables us to find other types of black hole solutions.
For example, there is a black hole solution with radius r = μ/b even when 	 = 0 as long as b and
μ are positive [18–20]. Black hole solutions in the general case, i.e., m2 �= λ, have also been found,
e.g., the Lifshitz black hole [16] and black holes in the AdS background [21,22].
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Fig. 1. Penrose diagrams for the SCS black hole solution in the BHT massive gravity with various parameters.

3. Null geodesics of the SCS black hole spacetime in the BHT massive gravity

In this section, we study the null geodesics in the SCS black hole spacetime (2.6). There are two
Killing vectors associated with the spacetime, (∂t)

μ and (∂φ)μ. Thus we can find the constants of
motion along the geodesic as follows:

E = −gμtp
μ = f (r)ṫ (3.1)

and

L = gμφpμ = r2φ̇, (3.2)

where pμ is the four-momentum of a massless particle. The dot denotes the derivative with respect
to an affine parameter λ. E and L correspond to the energy and the angular momentum of a massless
particle, respectively. The geodesic equation reduces to an ordinary differential equation by using
the null condition pμpμ = 0 as

ṙ2 = E2 − f (r)
L2

r2 . (3.3)

Now we define the effective potential V 2
eff (r) by

V 2
eff (r) = f (r)

L2

r2 . (3.4)

In Fig. 2 we depict the effective potentials for some values of the angular momentum L. The effective
potential has a maximum that corresponds to an unstable circular orbit of a massless particle around
the SCS black hole that locates at ra = 2μ/b. The maximum value V 2

max of the effective potential
increases as L becomes larger.

Fig. 2. Effective potentials with various angular momenta L.
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Fig. 3. Effective potential for a massless particle in the SCS spacetime. rh and ra correspond to the radius of
the event horizon and the unstable circular orbit of a massless particle, respectively.

Combining the geodesic equation (3.3) and φ̇ = L/r2, we obtain(
dr

dφ

)2

= r4

L2

(
E2 − f (r)

L2

r2

)
= E2

L2 r4 − (−	r2 + br − μ)r2. (3.5)

We can integrate this equation easily. The solutions are classified into the following three types by
values of the parameters D̄, β, and μ (see Fig. 3):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rI(φ) = 2μ

b + 2μκI sinh(±√
μφ + β)

, (Type I : E2 > V 2
max) (3.6)

rII(φ) = 2μ

b + 2μκII cosh(±√
μφ + β)

, (Type II : E2 < V 2
max, r0 < ra) (3.7)

rIII(φ) = 2μ

b − 2μκII cosh(±√
μφ + β)

, (Type III : E2 < V 2
max, r0 > ra) (3.8)

where r0 is an initial location of a massless particle. Also, κ2
I = (4μ/D̄2 − b2)/4μ2, κ2

II = (b2 −
4μ/D̄2)/4μ2, and

D̄2 = D2

1 + D2	
, D = L

E
, (3.9)

where D is the impact parameter. For the geodesics of Type I, the effective impact parameter D̄
satisfies 4μ/D̄2 > b2 and for the geodesics of Types II and III, b2 > 4μ/D̄2. β is an integration
constant. The behaviors of the null geodesics of Types I, II, and III are summarized as follows:

◦ Type I: the energy of a particle is larger than the maximum value of the effective potential. The
particle can cross the event horizon from the outside and hits the singularity at the center of the
black hole.

◦ Type II: all particles fall to the singularity at the center.
◦ Type III: starting from outside the horizon, a particle gets close to the black hole and then moves

away from it.

We examine the details of the orbits of these solutions by the particles’ energy and initial positions
as shown in Fig. 4. The null geodesics of Types I and II always fall into the black hole across the
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Fig. 4. Behaviors of the geodesics for various parameters. We fix the parameters as 	 = 0, b = 1, μ =
1, L = 10.

horizon. In particular, the null geodesics of Type III is worth focusing on. The null geodesics of Type
III get close to the horizon and can escape to infinity, reflected by the wall of the effective potential.
However, there are two subclasses of orbits of this type. One is the orbit that goes around the black
hole (Type III-1 in Fig. 4) and the other is the orbit that is bounced off from the black hole (Type
III-2 in Fig. 4). So we can classify all types of geodesics as follows:

Energy

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

larger than the maximum of V 2
eff (I)

smaller than the maximum of V 2
eff

⎧⎪⎨
⎪⎩

cannot escape to infinity (II)

can escape to infinity (III)

{
goes around (III-1)
is bounced off (III-2)
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This fact means that the gravity works repulsively on massless particles when the energy takes a
value in some range that corresponds to the geodesics of Type III-2. We will show this explicitly in
next section. Such behaviors of the geodesics in black hole spacetimes cannot be seen in Einstein
gravity where the gravitational force always works attractively.

4. Deflection angle

In this section we explicitly calculate the deflection angles of the null geodesics in the SCS black
hole spacetime represented by the metric (2.6) to characterize the repulsive behavior of the gravity.
We can rewrite the geodesic equation for massless particles (3.5) as

(
dr

dφ

)2

= 1

D̄2
r4 − br3 + μr2, (4.1)

where D̄ is defined by Eq. (3.9). As we showed in the previous section, we should classify the null
geodesics not only by the energy of a particle but also the impact parameter D. Here, let Dc denote the
value of D corresponding to the unstable circular orbit, which is given by Dc = 2

√
μ/

√
b2 − 4μ	.

The geodesics with D < Dc fall into the black hole, which corresponds to the geodesics of Type I.
On the other hand, the geodesics with D > Dc are bounced by the wall of the effective potential,
which corresponds to the geodesics of Type III.

To characterize the repulsive behavior of the gravity that acts on the geodesics of Type III, we
calculate the deflection angle. Introducing a new variable u by u = 1/r, the geodesic equation
becomes (

du

dφ

)2

= 1

D̄2
− bu + μu2 = F(u). (4.2)

We define the deflection angle α in the present coordinate system as

α = 2
∫ 1/R0

0

du√
F(u)

− π , (4.3)

where R0 is the closest approach radius that is given by

R0 = bD̄2 + D̄
√

b2D̄2 − 4μ

2
. (4.4)

For F(u) in Eq. (4.2) we obtain the deflection angle as

α = 1√
μ

log

∣∣∣∣∣bD̄ + 2
√

μ

bD̄ − 2
√

μ

∣∣∣∣∣ − π . (4.5)

Figure 5 shows a schematic picture of the deflection angle and the impact parameter. In Einstein
gravity, the deflection angle is always positive for black holes since the gravity works attractively.
However, as we have seen in the previous section, the gravity works repulsively for some values of
parameters in the SCS black hole spacetime represented by the metric (2.6). This repulsive behavior
of the gravity appears as a negative deflection angle. Here, we have to note that in the spacetime (2.6)
there also exists a region where the geodesics receive an attractive force as we can see from the
geodesic of Type III-1 in Fig. 4. Actually, we can define the critical value D̄α=0 that corresponds to
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Fig. 5. Schematic picture of the deflection angle α and the impact parameter D.

the border between the repulsive and attractive forces, which is calculated as

D̄α=0 = 2
√

μ

b tanh π
√

μ

2

. (4.6)

For the geodesic with this value, the net deflection angle is equal to zero. When D̄ > D̄α=0, the
gravity works repulsively and the deflection angle is negative. By using Eq. (3.9) we can express
D̄ > D̄α=0 in terms of the energy of the particle as2

E < L

√
b2 tanh2 π

√
μ

2

4μ
− 	. (4.7)

Since we consider the case of b > 0, μ > 0, and 	 < 0, the right-hand side is always real. Therefore,
the orbit with such energy behaves like that of the geodesics of Type III-2 shown in Fig. 4. In Fig. 6
we summarize these orbits for various values of the impact parameter.

It is worth mentioning the b = 0 and b < 0 cases. In both cases, the effective potentials do not
have a maximum and they increase monotonically with respect to r, which means that there is no
potential barrier and all of the ingoing massless particles fall into the black hole. This implies that,
in these cases, we cannot define the deflection angle. Therefore, the repulsive behavior of the gravity
does not appear in the BTZ black hole background (the b = 0 case) and it appears only in the the
BHT massive gravity with b > 0.

5. Conclusion and discussion

In this paper we have studied the null geodesics in the static circularly symmetric black hole in
the BHT massive gravity. We obtained analytic solutions for the geodesic equation for massless
particles and found that the gravity behaves repulsively for the null geodesics with the parameters
corresponding to Eq. (4.7). This repulsive behavior of the gravity cannot be seen by analysis of the
effective potential alone. This is because the effective potential tells us only the motion in the radial
direction.

In order to evaluate the repulsive behavior of the gravity in the spacetime represented by Eq. (2.6),
we have also investigated the deflection angles of the null geodesics. We obtained the explicit forms
of the deflection angles in terms of the impact parameter D, and found that for various values

2 In the case of b > 0, μ > 0, and 	 > 0, the expression under the square root in Eq. (4.7) becomes
negative. In such a case the maximum value of the effective potential is negative, which means that we cannot
define the deflection angle. In other cases, e.g., the b < 0 and μ < 0 cases, we cannot define the deflection
angle either because there is no unstable circular orbit.
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Fig. 6. The goedesics for massless particles for various values of the impact parameter. The red dashed line
corresponds to the D̄c orbit, which takes an unstable circular orbit. The orange dot-dashed line is the one for
which the gravity works attractively. The blue dotted line receives no net gravitational force. The purple solid
line corresponds to an orbit with a negative deflection angle.

of the impact parameter, the deflection angles can be positive, negative, or even zero. A negative
deflection angle indicates the repulsive behavior of the gravity. Note that it is difficult to define the
deflection angle in asymptotically non-flat spacetime as many authors are working on (see Ref. [23]
and references therein). The definition that we have used here has been proven to be a scalar quantity
at least in the asymptotically flat spacetime [23]. We would like to investigate whether this definition
is also valid in asymptotically non-flat spacetime in future work.

We have shown that the gravitational hair parameter b, which characterizes the BHT massive
gravity, is essential for the repulsive behavior of the gravity. In fact, when we put b = 0, the
metric (2.6) reduces to that of the BTZ black hole in Einstein gravity and the repulsive behavior of
the gravity does not appear in this case.

We should note that the sign of the gravitational hair parameter b is important. When b < 0,
the effective potential increases monotonically with r, so the effective potential does not have a
maximum. Therefore, all of the ingoing massless particles fall into the black hole, which means that
we cannot define the deflection angle for this case. The repulsive behavior of the gravity appears
only when b > 0.

Since the BHT massive gravity is a (2 + 1)D theory, the results that we have obtained in this
paper are not directly related to realistic observations. However, if there is a spacetime whose metric
includes a linear term with respect to r such as br, it is possible that the gravity could work repulsively
for a particle in any dimensions. For example, there exist (3 + 1)D spacetime solutions that have
such a linear term in the Weyl conformal gravity theory [24] or in the de Rahm-Gabadadze-Tolley
(dRGT) massive gravity theory [25,26]. The deflection angle for the black hole spacetime in the Weyl
conformal gravity was investigated in Refs. [23,27] though the repulsive behavior of the gravity was
not noted. As in our case, the linear term in the black hole solutions of the Weyl conformal gravity
or the dRGT massive gravity makes the deflection angles smaller than those of the Schwarzschild
black hole spacetime (see, e.g., Eq. (12) in Ref. [27]). The explicit form of the deflection angles
that we have obtained in this paper is applicable to strong gravitational lensing as well [28–30].
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The possibility of observations of the repulsive behavior of the gravity would be more interesting in
(3 + 1) dimensions; this will be further investigated in a forthcoming paper.
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