
Prog. Theor. Exp. Phys. 2020, 023D02 (12 pages)
DOI: 10.1093/ptep/ptz169

A stochastic microscopic approach to the 10Be and
11Be nuclei

Pierre Descouvemont1,2,∗ and Naoyuki Itagaki2

1Physique Nucléaire Théorique et Physique Mathématique, C.P. 229, Université Libre de Bruxelles (ULB),
B 1050 Brussels, Belgium
2Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
∗E-mail: pdesc@ulb.ac.be

Received December 2, 2019; Revised December 18, 2019; Accepted December 22, 2019; Published February 28, 2020

... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
We use a microscopic multicluster model to investigate the structure of 10Be and of 11Be. These
nuclei are described by α + α + n + n and α + α + n + n + n configurations, respectively,
within the Generator Coordinate Method (GCM). The 4- and 5-body models raise the problem
of a large number of generator coordinates (6 for 10Be and 9 for 11Be), which requires specific
treatment. We address this issue by using the Stochastic Variational Method (SVM), which is
based on an optimal choice of the basis functions, generated randomly. The model provides
good energy spectra for low-lying states of both nuclei. We also compute rms radii and densities,
as well as electromagnetic transition probabilities. We analyze the structure of 10Be and of
11Be by considering energy curves, where one of the generator coordinates is fixed during the
minimization procedure.
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1. Introduction

Nuclear clustering is a well-established phenomenon. In particular, the α particle, due to its large
binding energy, is a typical cluster in light nuclei. About 50 years ago, the seminal paper of Ikeda
and his collaborators [1] showed that α-clustering is expected near the α threshold of 4N nuclei.
This conjecture leads to the famous Ikeda diagram and was remarkably confirmed by theory and by
experiment. It was even extended to N �= Z nuclei (see recent reviews in Refs. [2–5]). For example,
α+14C cluster states have been known in 18O for a long time [6].

Neutron-rich nuclei, in particular in the low-mass region of the nuclear chart, require specific
attention. If α clustering is expected, the role of the external neutrons should be addressed by specific
methods. A typical example is 6He, which requires three-body models to accurately describe the halo
neutrons. Beryllium isotopes are particularly interesting: 8Be is the archetype of α-cluster nuclei.
Although unstable, the ground state is well known to have a marked α +α cluster structure. Going to
heavier Be isotopes requires multicluster approaches, where the α + α structure persists, but where
the additional neutrons play a role. Multicluster descriptions have been proposed in the past within
the Generator Coordinate Method [7], Antisymmetrized Molecular Dynamics [8,9], the molecular
model [10–15] and the Resonating Group Method [16,17]. An experimental review of Z = 2 − 4
neutron-rich isotopes can be found in Ref. [18].

In the present work, we aim to investigate the 10Be and 11Be isotopes within the α +α +n+n and
α + α + n + n + n Generator Coordinate Method (GCM). A previous study on 9Be [19] within this
microscopic approach shows that the α +α +n model is able to reproduce many 9Be properties. The
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main issue in 10Be and 11Be is a large number of independent coordinates. In other words, accurate
bases require large numbers of functions. This problem can be efficiently addressed by the Stochastic
Variational Method (SVM), where a random choice of the basis sets is performed, which permits the
optimization of the basis [20,21]. A recent application of the SVM to 6Li, considered as a six-body
system, has been performed in Ref. [22].

The paper is organized as follows. In Sect. 2, we briefly present the microscopic model, and provide
some detail about our use of the SVM. Sections 3 and 4 are devoted to the 10Be and 11Be nuclei,
respectively. Concluding remarks and outlook are presented in Sect. 5.

2. The microscopic multicluster model
2.1. Wave functions

The 10Be and 11Be isotopes are described in a multicluster model, involving two α particles and two
or three external neutrons (see Fig. 1). The Hamiltonian of the system is given by

H =
A∑

i=1

ti − Tc.m. +
A∑

i<j=1

vij, (1)

where ti is the kinetic energy of nucleon i, and vij is a nucleon–nucleon interaction (A = 10 or
11). The c.m. motion is treated by removing the c.m. kinetic energy Tc.m.. We adopt the Minnesota
interaction [23] as the central force, complemented by a short-range spin-orbit term with amplitude
S0 = 40 MeV·fm5. This spin-orbit interaction reproduces the energy splitting of the p3/2 and p1/2

resonances in 5He [24]. The Minnesota force contains one parameter, the admixture parameter u,
whose standard value is u = 1, but which can be slightly modified to reproduce important properties
of the system. In our work, u is adjusted on the binding energies of 10Be or 11Be. The Coulomb force
is treated exactly.

The wave functions are defined within the GCM [3,25,26]. In this microscopic multicluster model,
the 10,11Be isotopes are described by various parameters, referred to as the generator coordinates
[3,25], which are illustrated in Fig. 1. As a general statement, the number of generator coordinates

Fig. 1. 10Be and 11Be configurations with the definitions of the various generator coordinates.
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increases with the number of clusters NC . For 9Be [19], we have NC = 3. For 10Be, this number
increases to NC = 6. The various parameters are: Rαα , the distance between the α particles, Rαn, the
distance between the neutron and α − α center-of-mass, and Rnn, the distance between the external
neutrons; three angles (θαn, θnn, ϕnn) complement the list. For the 11Be nucleus, the additional neutron
introduces three new generator coordinates (θαn2, θnn2, ϕnn2—see Fig. 1).

For the sake of clarity, we denote as [R] the set of generator coordinates. In other words, [R] =
(Rαα , Rαn, θαn, Rnn, θnn, ϕnn) for 10Be and [R] = (Rαα , Rαn, θαn, Rnn, θnn, ϕnn, θαn2, θnn2, ϕnn2) for
11Be. Of course these large numbers of generator coordinates raise the problem of the basis selection.
This is addressed by the SVM [20,21], which will be briefly presented in the next subsection.

We first discuss the GCM matrix elements. Let us consider a multicluster wave function as

�[k]([R], �) = Aφα(SSS1)φα(SSS2)φ
k1
n (SSS3)φ

k2
n (SSS4) for 10Be,

= Aφα(SSS1)φα(SSS2)φ
k1
n (SSS3)φ

k2
n (SSS4)φ

k3
n (SSS5) for 11Be, (2)

where SSSi are the locations of the clusters. They are calculated from the generator coordinates [R]
and from the Euler angles �. These Euler angles define the global rotation of the system. In this
definition, φα(SSS) is an α Bloch–Brink wave function [27] defined as a (0s)4 Slater determinant, and
φk

n (SSS) is a neutron spinor with spin projection k . The A-body antisymmetrization is taken into account
through the operator A. In Eq. (2), [k] stands for the set of spin projections, i.e. [k] = (k1, k2) for
10Be and [k] = (k1, k2, k3) for 11Be. To simplify the calculations we assume k1 = −k2 = 1/2, which
represents the dominant component. For 11Be, we limit the k3 values to k3 = 1/2 to keep computer
times reasonable. Some tests in simpler conditions (i.e. with a small number of basis functions) have
shown that this approximation is quite accurate.

In a second step, the basis function (2) is projected an angular momentum and on parity.A projected
basis function is therefore given by

�JM
K ([R]) = 2J + 1

8π2

∫
DJ	

MK (�)R(�)�[k]([R], �)d�, (3)

where DJ
MK (�) is a Wigner function, R(�) is the rotation operator, and K is the projection on the

intrinsic axis. The parity projection is performed by superposing another function where the center
locations are inverted; in a schematic notation, we have

�JMπ
K ([R]) = 1

2

[
�JM

K ([R]) + π�JM
K (−[R])]. (4)

Finally, the total wave function of the system is given by the superposition of many projected basis
functions (4), as


JMπ =
∑
nK

f Jπ
K ([Rn])�JMπ

K ([Rn]), (5)

where f Jπ
K ([Rn]) is the generator function, and is obtained from the diagonalization of the

Hamiltonian and overlap kernels

H Jπ
Kn,K ′n′ = 〈�JMπ

K ([Rn])|H |�JMπ
k ′ ([Rn′ ])〉,

N Jπ
Kn,K ′n′ = 〈�JMπ

K ([Rn])|�JMπ
k ′ ([Rn′ ])〉. (6)

These matrix elements, as well as those of other operators (rms radii, densities, electromagnetic
operators) are obtained from three-dimensional integrals over the Euler angles. As a large number
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of matrix elements (6) is necessary, in particular when we optimize the basis with the SVM, special
attention must be paid to the efficiency and to the parallelization of the codes.

2.2. Brief description of the SVM

The main issue in the present model is finding an optimal set of basis functions, keeping the total
number within reasonable limits. The 10Be and 11Be nuclei are described by 6 and 9 generator
coordinates, respectively. Notice that the minimization is performed over the generator coordinates
[R], not over the cluster locations SSSi. This procedure avoids the redundancy of the wave functions
due to translation and rotation invariance. The sets of generator coordinates [R] contain the minimal
number of independent parameters. Obviously, using a standard mesh over each coordinate is not
feasible. This problem can be efficiently addressed by using the SVM, widely adopted in problems
dealing with large bases (see, for example, Ref. [22] for a recent application).

The SVM has been described in previous references [20,21], and we only give a brief overview
here. The SVM is based on a random selection of the basis sets. A first set is determined by randomly
generating NS sets. Then we perform NS calculations with a single basis function, and choose the
set corresponding to the minimum energy. For the second basis function, we randomly generate NS

new sets of basis functions, and perform NS calculations of 2 × 2 matrices. From this procedure,
we determine the second optimal set of generator coordinates [R]. Of course, this second step needs
two calculations of new matrix elements (diagonal, and coupling to the first set). The process is then
repeated until the energy remains nearly constant. Of course, the computer times rapidly increase
when the size of the basis increases. In practice, we found that NS ≈ 25–30 gives a fair convergence.
The calculations can be tested by repeating the process with another initial set of basis functions.
Obtaining close results is a reliable indication that the energy is converged. This method allows one
to reduce the computer times and memory requirements significantly.

As these optimized calculations remain extremely demanding in terms of computing resources,
we minimize the ground-state energy and use the same sets for the other states. Again, we have
performed tests in simplified conditions, and found insignificant changes.

3. The 10Be nucleus

The energy convergence is illustrated in Fig. 2 for several Jπ values. We use the Minnesota parameter
u = 0.973 which reproduces the experimental binding energy with respect to the α + α + n + n
threshold (−8.64 MeV). Experimental states are shown on the right-hand part of the figure. The
calculation predicts a 2+ excitation energy in excellent agreement with the experiment, although a
2+

2 state is found below the experimental energy. The convergence is reasonable with about 400 basis
functions. We find 0+

2 and 1− states whose energies differ by 1–2 MeV from the experiment. The 0+
2

state is known to have an α+6He cluster structure [28], and its theoretical energy might be slightly
improved by constraining the random selection to such configurations. For the negative-parity states,
a different u value would permit the more precise reproduction of the experimental energy.

The ground-state proton and neutron densities of the 10Be ground state are presented in Fig. 3. The
transition density between an initial state i and a final state f is defined as

ρ
i,f
pn (rrr) = 〈
Jf Mf πf |

A∑
i=1

(1

2
± tiz

)
δ(rrr − rrri)|
JiMiπi〉, (7)
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Fig. 2. Convergence of 10Be energies with respect to the number of basis functions N . The energies are defined
from the α + α + n + n threshold. Experimental energies of low-lying states are shown on the right-hand side
of the figure.

Fig. 3. Proton (solid lines) and neutron (dashed lines) monopole densities of the 10Be ground state. The inset
shows the same densities plotted in a logarithmic scale.

where ttti is the isospin of nucleon i, and the signs “+” and “-” correspond to the neutron and proton
densities, respectively. These densities are expanded in multipoles [29] as

ρ
i,f
pn (rrr) =

∑
λ

〈Jf Mf λMf − Mi|JiMi〉ρJjJi
pn,λ(r)Y

∗
λMf −Mi

(�r), (8)

and are computed as explained in Ref. [19]. The monopole (λ = 0) densities of the ground state are
normalized such that

√
4π

∫
ρp(r)r

2dr = Z

√
4π

∫
ρn(r)r

2dr = N , (9)

where Z = 4 and N = 6 for the 10Be nucleus.
As expected, the neutron density extends to larger distances, owing to the presence of the external

neutrons. From these densities, we obtain the rms radii presented in Table 1, and compared with

the experimental data of Ref. [30]. The proton radius
√

< r2 >p is in excellent agreement with
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Table 1. 10Be properties: proton, neutron and matter radii, as well as the E2 transition probability from the
ground to the first excited state.

GCM Exp. Ref.√
< r2 >p (fm) 2.27 2.357 ± 0.018 [31]√
< r2 >n (fm) 2.67√
< r2 > (fm) 2.52 2.44 ± 0.021 [30]

B(E2, 0+ → 2+) (e2 fm4) 28.3 52 ± 6 [32]

1Corrected for the proton radius.

experimental data, but the matter radius
√

< r2 > is slightly larger. Notice that the experimental
values are partly model-dependent.

With the GCM wave functions, we can also compute the E2 transition probability. Our value is
lower than the experimental one, which suggests that an effective charge is necessary. This is not
surprising in neutron-rich nuclei, where polarization effects usually require an effective charge which
simulates neutron effects.

To achieve a deeper insight on the 10Be structure, we have investigated energy curves, where one
of the generator coordinates is fixed. The energy curves are presented in Fig. 4 for Rαα , Rαn, and Rnn.
Figure 4(a) shows that the minimum of the energy is obtained for Rαα ≈ 3 fm, which is lower than
in 9Be (≈ 4 fm) but still significant. The α-cluster structure is stronger for J = 1−, in agreement
with the α+6He configuration suggested in Ref. [28]. For Rαn, the minimum is found near Rαn ≈ 2
fm. For Rnn, however, the energy is minimum near Rnn ≈ 3 fm. This result stresses the importance
of a four-body model for 10Be. A simple dineutron approximation for the external neutrons would
not provide accurate wave functions.

4. The 11Be nucleus

The 11Be nucleus has attracted much interest over the last decades, owing to the well-known parity
inversion [33] and to the low binding energy of the ground state. This property makes 11Be an ideal
example of a one-neutron halo nucleus. Many microscopic studies have been devoted to 11Be: the
GCM [7,34], Antisymmetrized Molecular Dynamics [35], and, more recently, the No Core Shell
Model, [36] where it is shown that an explicit treatment of the 10Be + n cluster structure is necessary
to reproduce the large B(E1) transition probability between the 1/2+ ground state and the 1/2− first
excited state. In most models, however, the parity inversion cannot be reproduced with a common
interaction. A parity-dependent interaction must be adopted.

In the present work, we aim to investigate the 11Be structure in the framework of a multicluster
approach. An improvement with respect to Ref. [7] is the use of a more efficient method to select the
optimal basis, and therefore to get more precise properties of 11Be. As mentioned in the introduction,
the GCM description of 11Be involves 9 generator coordinates, and the use of the SVM turns out to
be quite useful in keeping the basis within a reasonable size.

We first illustrate the energy convergence of various states in Fig. 5. The admixture parameter u
has been adjusted to the experimental neutron separation energy. As is well known, effective forces
such as the Minnesota interaction cannot reproduce the 1/2+ and 1/2− energies simultaneously.
This parity effect can be partly simulated by adopting different values for the admixture parameter
u. With u = 1.066 for positive parity and u = 0.893 for negative parity, we reproduce the energy of
the 1/2+ and 1/2− states (−0.50 MeV and −0.18 MeV, respectively, with respect to the 10Be + n
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(a)

(b)

(c)

Fig. 4. Energy of the 10Be system (with respect to the α + α + n + n threshold) as a function of Rαα (a), Rαn

(b) and Rnn (c).

threshold). Reproducing the experimental binding energies is crucial for the asymptotic part of the
wave functions.

Strictly speaking, the states above threshold need to include scattering boundary conditions. We
use, however, the bound-state approximation, which is known to provide reliable energies for nar-
row states. These energies are obtained consistently with those of the bound states, i.e. from the
diagonalization of the Hamiltonian kernel. Figure 5 shows that a fair convergence can be achieved
with about 600–700 basis functions. A similar number of basis functions has been employed for the
6-nucleon description of 6Li [22]. The model not only provides the ground state and the first excited
state, but a realistic description of low-lying resonances is also obtained. For these resonances, the
energies are in reasonable agreement with the experiment.

Figure 6 presents the 11Be proton and neutron densities for the 1/2+ and 1/2− states. For both
states, the proton density is rather peaked near the origin. In contrast, the neutron densities extend
to large distances. This is a well-known effect, due to the weak binding energy of the last neutron.
The rms radii, obtained from the densities, are displayed in Table 2. The proton and matter radii
of the ground state are smaller than the experimental values, a result consistent with the previous
study of Ref. [7]. Most likely, other configurations are necessary to improve the comparison with
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Fig. 5. Convergence of 11Be energies with respect to the number of basis functions N . The energies are defined
from the α + α + n + n + n threshold. Experimental energies of low-lying states are shown on the right-hand
side of the figure.

Fig. 6. Proton and neutron densities of the 11Be ground state (solid lines) and of the 1/2− state (dashed lines).
The inset shows the same densities plotted in a logarithmic scale.

Table 2. 11Be properties: proton, neutron and matter radii, as well as the E1 transition probability from the
ground to the first excited state.

GCM Exp. Ref.√
< r2 >p (fm) 1.94 2.463 ± 0.015 [31]√
< r2 >n (fm) 2.56√
< r2 > (fm) 2.36 2.73 ± 0.05 [37]

B(E1, 1/2+ → 1/2−) (W.u.) 6.3 × 10−3 0.360 ± 0.033 [38]

experiment. The B(E1) value is also underestimated by the GCM. This was already observed in
previous multicluster calculations [7,35], and in the NCSM [36]. The authors of Ref. [36] suggest
that an explicit account of 10Be + n configurations is necessary to reproduce the large experimental
value.

In Fig. 7, we analyse various energy curves of 11Be. In each case, a generator coordinate is kept
fixed, and the SVM is applied to the 8 remaining generator coordinates.Although these curves cannot
be strictly considered as potentials, they provide a valuable insight into the structure of 11Be. The
minimum for Rαα is found near Rαα ≈ 2 fm, i.e. a value smaller than in 10Be. This result confirms
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(a) (b)

(c) (d)

Fig. 7. Energy of the 11Be system (with respect to the α + α + n + n threshold) as a function of Rαα (a), Rαn

(b), Rαn2 (c), and Rnn (d).

that the α + α distance decreases when the number of external nucleon increases [7]. For Rαn, the
minimum is rather flat up to Rαn ≈ 2 fm. Large values are therefore unlikely. The Rnn dependence
is quite interesting: it shows a weak variation of the total energy. Consequently, it is important to
include several configurations covering a wide interval. This conclusion holds for all considered
states. The dependence on Rαn2, i.e. on the distance between the α + α c.m. and the third neutron,
presents a flat minimum around Rαn ≈ 2 fm.

5. Conclusion

The main goal of this paper is to investigate the 10Be and 11Be nuclei within a microscopic multicluster
model. The only adjustable parameter is the admixture parameter u, involved in the Minnesota
interaction, and fitted on the binding energy of the ground states. A challenge with many-body
approaches is to cope with a large number of generator coordinates or, in other words, with a large
number of degrees of freedom. We have confirmed that the SVM provides an excellent framework
to address this issue. Although computer times are still quite long, they remain within reasonable
limits on modern computers.

The multicluster model is based on 2 α clusters, and 2 or 3 surrounding neutrons. It provides
an excellent description of the low-energy spectrum of both nuclei. In particular, 11Be is nicely
reproduced, not only for bound states but also for resonances. The stability of the energies with the
number of basis functions (see Fig. 5) shows that we also have a fair description of the continuum.

We have used the GCM wave functions to compute various properties. In particular, the 10Be
and 11Be densities could be used to determine folding potentials. In 10Be, the rms radii are in
good agreement with the experiment. A small effective charge should be introduced to improve the
agreement for the B(E2) value. The rms radii in 11Be, however, are somewhat underestimated, and
the B(E1) value is much smaller than the experiment. This is not surprising in a multicluster model
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[7,35], and even in the NCSM [36]. As suggested in Ref. [36], couplings to 10Be + n configurations
should be introduced explicitly.

Finally, we have analysed the structure of 10Be and 11Be with the energy curves, where one of
the generator coordinates is fixed. This approach provides a qualitative overview of the nucleus. The
α + α clustering decreases from 10Be to 11Be. It should likely disappear for heavier Be isotopes,
such as 14Be.
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