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We modify the procedure for estimating the primordial black hole (PBH) abundance proposed
in [C.-M. Yoo, T. Harada, J. Garriga, and K. Kohri, Prog. Theor. Exp. Phys. 2018, 123E01
(2018)] so that it can be applied to a broad power spectrum such as the scale-invariant flat
power spectrum. In the new procedure we focus on peaks of the Laplacian of the curvature
perturbation �ζ , and use the values of �ζ and ��ζ at each peak to specify the profile of ζ
as a function of the radial coordinate; the values of ζ and �ζ are used in the previous paper.
The new procedure decouples the larger-scale environmental effect from the estimate of PBH
abundance. Because the redundant variance due to the environmental effect is eliminated, we
obtain a narrower shape of the mass spectrum compared to the previous procedure. Furthermore,
the new procedure allows us to estimate the PBH abundance for the scale-invariant flat power
spectrum by introducing a window function. Although the final result depends on the choice of
the window function, we show that the k-space tophat window minimizes the extra reduction
of the mass spectrum due to the window function. That is, the k-space tophat window has the
minimum required property in the theoretical PBH estimation. Our procedure makes it possible
to calculate the PBH mass spectrum for an arbitrary power spectrum by using a plausible PBH
formation criterion with the nonlinear relation taken into account.
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1. Introduction

Since Zel’dovich, Novikov, and Hawking pointed out the possibility [1,2], primordial black holes
(PBHs) have continued to attract attention. They are still viable candidates for a substantial part of
dark matter (see, e.g., Refs. [3,4] and references therein), and a possible origin of the observed binary
black holes [5,6]. The mass, spin, or spatial distribution of PBHs provides valuable information about
relatively small-scale inhomogeneity in the early universe. When we connect a PBH production sce-
nario and observational constraints on it, theoretical estimation of the PBH distribution is inevitable.
Here, we provide a plausible procedure to calculate the PBH mass spectrum for an arbitrary power
spectrum based on the peak theory.

Until relatively recently, the Press–Schechter (PS) formalism was applied to the estimation of
PBH abundance, based on a perturbation variable such as the comoving density or the curvature
perturbation. As PBHs started to draw more attention after the discovery of the binary black holes, as
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well as gravitational waves, people have begun to seriously doubt the relevance of the PS formalism
in the estimation of PBH abundance. In order to improve the estimation, one needs to resolve the
following mutually related issues: the PBH formation criterion, the statistical treatment of nonlinear
variables [7], and the use of a window function [8–10].

For the criterion of PBH formation, there has been a long-term debate since Carr proposed a
rough criterion [11]. A lot of efforts to clarify the appropriate criterion have been made through
numerical and analytic treatments [12–21]. One useful criterion was proposed in Ref. [14] by using
the compaction function, which is equivalent to half of the volume average of the density perturbation
in the long-wavelength limit [22]. In Ref. [22], through spherically symmetric numerical simulations,
it was shown that the threshold of the maximum value of the compaction function gives a relatively
accurate criterion which is within about 10% accuracy for a moderate shape of initial configuration.
More recently, the threshold value for the volume average of the compaction function was proposed
in Ref. [23], and it was shown that this variable gives the PBH formation criterion within 2%
accuracy for a moderate inhomogeneity in the radiation-dominated universe (see Ref. [24] for general
cosmological background). These recent developments show that the use of the compaction function
is crucial for an accurate estimation of PBH abundance.

Another important ingredient in the calculation of PBH abundance is the statistics of perturbation
variables. Naively, we would expect the curvature perturbation to be relevant for the Gaussian distri-
bution assumed in the PS formalism. However, the absolute value of the curvature perturbation does
not have any physical meaning in a local sense because it can be absorbed into the coordinate rescal-
ing. Therefore, setting the threshold value for the absolute value of the curvature perturbation seems
irrelevant. Conversely, while setting the threshold on the compaction function would be appropriate,
the compaction function cannot be a Gaussian variable even if the curvature perturbation is totally
Gaussian because of their nonlinear relation. Furthermore, the difference in the gauge confuses the
relation between perturbation variables.

In Ref. [22], the relations between different gauge conditions were summarized and the gauge
issue clarified. The compaction function is expressed in terms of the curvature perturbation in the
same reference [22]. Then, apart from the window function, the remaining issue is how to count the
number of PBHs by taking into account the nonlinear relation between the curvature perturbation
and the compaction function. Although a few procedures for treating the nonlinear relation have
been proposed [25,26], their consistency with each other is not yet clear.

In Ref. [25], a plausible procedure to estimate PBH abundance for a narrow power spectrum of
the Gaussian curvature perturbation was proposed, where the threshold for the compaction function
is used and the nonlinear relation is taken into account. However, this procedure cannot be directly
applied to a broad spectrum (see Ref. [27] for a simple approach with linear relations). Our aim in
this paper is to improve the procedure in Ref. [25] so that we can introduce a window function, and
make it possible to apply to any power spectrum.

The paper is organized as follows. First, the criterion based on the compaction function is introduced
in Sect. 2. In Sect. 3, focusing on a high peak of the Laplacian of the curvature perturbation�ζ , we
characterize the typical profile of the curvature perturbation ζ around the peak by using the values of
�ζ and ��ζ . This treatment allows us to decouple the environmental effect on the absolute value
of the curvature perturbation, and the criterion can be expressed in a purely local manner. In Sect. 4,
the procedure to estimate PBH abundance is explained, and applied to the single-scale narrow power
spectrum previously presented in Ref. [25]. We discuss the case of the scale-invariant flat spectrum
implementing a window function in Sect. 5. Section 6 is devoted to a summary and discussion.
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Throughout this paper we use geometrized units in which both the speed of light and Newton’s
gravitational constant are unity, c = G = 1.

2. Criterion for PBH formation

Let us consider the spatial metric given by

ds2
3 = a2e−2ζ γ̃ijdxidxj, (1)

with det γ̃ being the same as the determinant of the reference flat metric, where a and ζ are the scale
factor of the background universe and the curvature perturbation, respectively. In the long-wavelength
approximation, the curvature perturbation ζ and the density perturbation δ with the comoving slicing
are related by [22]

δ = −8

9

1

a2H 2 e5ζ/2�
(
e−ζ/2) (2)

in the radiation-dominated universe, where H is the Hubble expansion rate and � is the Laplacian
of the reference flat metric.

We will be interested mainly in high peaks, which tend to be nearly spherically symmetric [28].
Therefore, in this section we introduce the criterion for PBH formation originally proposed in
Ref. [14] assuming spherical symmetry. Here, we basically follow and refer to the discussions
and calculation in Ref. [22].

First, let us define the compaction function C as

C := δM

R
, (3)

where R is the areal radius at the radius r, and δM is the excess of the Misner–Sharp mass enclosed
by the sphere of radius r compared with the mass inside the sphere in the fiducial flat Friedmann–
Lemaître–Robertson–Walker universe with the same areal radius. From the definition of C, we can
derive the following simple form in the comoving slicing (see also Eq. (6.33) in Ref. [22]):

C(r) = 1

3

[
1 − (

1 − rζ ′)2] . (4)

We will assume that the function C is a smooth function of r for r > 0. Then, the value of C takes
the maximum value Cmax at rm, which satisfies

C′(rm) = 0 ⇔ (
ζ ′ + rζ ′′) |r=rm = 0. (5)

We consider the following criterion for PBH formation:

Cmax > Cth ≡ 1

2
δth. (6)

In the comoving slicing, the threshold Cth for PBH formation is evaluated as � 0.267 (see Figs. 2
and 3 or Tables I and II in Ref. [22]). This threshold corresponds to the perturbation profiles of
Refs. [14,17,29], and is found to be quite robust for a broad range of parameters (see Ref. [23] for a
more robust criterion). In this paper we shall use this value as a reference value.

3/17

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/1/013E02/5936537 by guest on 20 M

arch 2024



PTEP 2021, 013E02 C.-M. Yoo et al.

3. Peak of �ζ and the spherical profile

Throughout this paper we assume the random Gaussian distribution of ζ with its power spectrum
P(k) defined by the following equation:

〈ζ̃ ∗(k)ζ̃ (k′)〉 = 2π2

k3 P(k)(2π)3δ(k − k′), (7)

where ζ̃ (k) is the Fourier transform of ζ and the bracket 〈. . .〉 denotes the ensemble average. Each
gradient moment σn can be calculated by

σ 2
n :=

∫
dk

k
k2nP(k). (8)

Hereafter we suppose that the power spectrum is given. Then the gradient moments can be calculated
from the power spectrum and regarded as constants.

In this paper we focus on high peaks of ζ2 := �ζ , which coincide with peaks of δ with a linear
relation. We note that this procedure is different from the previous one proposed in Ref. [25], where
peaks of −ζ were considered.

Focusing on a high peak of ζ2 and taking it as the origin of the coordinates, we introduce the
amplitude μ2 and the curvature scale 1/k• of the peak as follows:1

μ2 = ζ2|r=0 , (9)

k2• = −��ζ |r=0

μ2
. (10)

According to the peak theory [28], for a high peak, assuming spherical symmetry, we may expect
the typical form of the profile ζ̄2 to be described using μ2 and k• as follows:

ζ̄2(r)

σ2
= μ2/σ2

1 − γ 2
3

(
ψ2 + 1

3
R2•�ψ2

)
− μ2k2•/σ4

γ3(1 − γ 2
3 )

(
γ 2

3ψ2 + 1

3
R2•�ψ2

)
, (11)

with γ3 = σ 2
3 /(σ2σ4), R• = √

3σ3/σ4, and

ψn(r) = 1

σ 2
2

∫
dk

k
k2n sin(kr)

kr
P(k). (12)

It is worth noting that for k• = σ3/σ2 we obtain

ζ̄2(r; σ3/σ2) = μ2ψ2(r). (13)

It will be shown in Eq. (27) that, regarding k• as a probability variable, we obtain σ3/σ2 as the mean
value of k•.

Let us consider the profile ζ̄ given by integrating Eq. (11). Integrating ζ̄2, and assuming regularity
at the center, we obtain

ζ̄ (r)

σ2
= − μ2/σ2

(1 − γ 2
3 )

(
ψ1 + 1

3
R•�ψ1

)
+ μ2k2•/σ4

γ3(1 − γ 2
3 )

(
γ 2

3ψ1 + 1

3
R•�ψ1

)
+ ζ∞
σ2

, (14)

1 The notation of the amplitude μ2 and the curvature scale k• are chosen so that they will be distinguished
from μ and k∗ in Ref. [25].
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where ζ∞ = ζ̄ |r=∞ is an integration constant. Because we have ψ1|r=0 = σ 2
1 /σ

2
2 and �ψ1|r=0 =

−1, we obtain

ζ0 := ζ̄ |r=0 = −μ2
σ 2

1 σ
2
4 − σ 2

2 σ
2
3 + (σ 4

2 − σ 2
1 σ

2
3 )k

2•
σ 2

2 σ
2
4 − σ 4

3

+ ζ∞. (15)

We may consider either ζ0 or ζ∞ as a probability variable. Since the constant shift of ζ can be
absorbed into the renormalization of the background scale factor, a nonzero value of ζ∞ would be
regarded as a larger-scale environmental effect. Actually, in Appendix A we show that the mean value
of ζ∞ is 0 for a given set of μ2 and k•. In Ref. [25], we used ζ0 to characterize the profile of the
curvature perturbation. However, using ζ0 would mix the environmental effect with the local state.
Therefore, in this paper we ignore ζ∞ by renormalizing the background scale factor as e−ζ∞a → a
to eliminate the environmental effect, and regard ζ0 as a dependent variable on μ2 and k• through
Eq. (15) with ζ∞ = 0.

In order to obtain PBH abundance we can follow the procedure proposed in Ref. [25], replacing
μ and k∗ by μ2 and k•. Here, we just copy part of the procedure from Ref. [25] (a flow chart of our
procedure can be seen in Ref. [30]). Applying Eq. (4) to ζ̄ , we obtain the relation between μ2 and C
as

μ2 = 1 − √
1 − 3C

rg′ , (16)

where g(r; k•) := ζ̄ /μ2 and the smaller root is taken. Let us define the threshold value μ(k•)
2th as

μ
(k•)
2th (k•) = 1 − √

1 − 3Cth

r̄m(k•)g′
m(k•)

, (17)

where r̄m(k•) is the value of rm for ζ = ζ̄ , and

gm(k•) := g(r̄m(k•); k•). (18)

In Eq. (17), we explicitly denote the k• dependence of r̄m and gm to emphasize it.
In order to express the threshold value as a function of the PBH mass M , let us consider the horizon

entry condition:

aH = a

R(r̄m)
= 1

r̄m
eμ2gm . (19)

Since the PBH mass is given by M = α/(2H ) with α being a numerical factor, from the horizon
entry condition in Eq. (19), the PBH mass M can be expressed as

M = 1

2
αH−1 = 1

2
αar̄me−μ2gm = Meqk2

eq r̄2
me−2μ2gm =: M (μ2,k•)(μ2, k•), (20)

where we have used the fact that H ∝ a−2 and a = a2
eqHeq r̄me−μ2gm , with aeq and Heq being the

scale factor and Hubble expansion rate at the matter–radiation equality, and Meq and keq defined by
Meq = αH−1

eq /2 and keq = aeqHeq, respectively. For simplicity we set α = 1 as a fiducial value.2

2 In order to take into account the critical behavior [31,32], α should be given by a function of μ2 and k• as
α = K(k•)(μ2 − μ2th(k•))γ with γ � 0.36 [15,16,18,29,33–37] and K(k•) being some function of k•, which
would be profile dependent.
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Then, we can obtain the threshold value of μ(M )
2th (M ) as a function of M by eliminating k• from

Eqs. (20) and μ2 = μ
(k∗)
2th (k•), and solving it for μ2. That is, defining k th• (M ) by the inverse function

of M = M (μ2,k•)(μ(k•)
2th (k•), k•), we obtain the threshold value of μ(M )

2th for a fixed value of M as

μ
(M )
2th (M ) := μ

(k•)
2th (k

th• (M )). (21)

Meanwhile, from Eq. (20) we can describe μ2 as a function of M and k• as follows:

μ2 = μ(M ,k•)(M , k•) := − 1

2gm
ln

(
1

k2
eq r̄2

m

M

Meq

)
. (22)

The value of μ2 may be bounded below by μ2min(M ) for a fixed value of M . Actually, in the specific
examples in Sects. 4 and 5, the value of μ2min(M ) is given as

μ2min = μ(M ,k•)(M , 0). (23)

Then, for a fixed value of M , the region of μ for PBH formation can be given by

μ2 > μ2b := max
{
μ2min(M ),μ(M )

2th (M )
}

. (24)

4. PBH abundance

From Ref. [25], we obtain the expression for the peak number density characterized by μ2 and k• as

n(k•)
pk (μ2, k•)dμ2dk• = 2 · 33/2

(2π)3/2
μ2k•

σ 2
4

σ2σ
3
3

f

(
μ2k2•
σ4

)
P1

(
μ2

σ2
,
μ2k2•
σ4

)
dμ2dk•, (25)

where

f (x) = 1

2
x(x2 − 3)

(
erf

[
1

2

√
5

2
x

]
+ erf

[√
5

2
x

])

+
√

2

5π

{(
8

5
+ 31

4
x2
)

exp
[
−5

8
x2
]

+
(

−8

5
+ 1

2
x2
)

exp
[
−5

2
x2
]}

(26)

and

P1

(
μ2

σ2
,
μ2k2•
σ4

)
= μ2k•
πσ2σ4

√
1 − γ 2

3

exp

[
− μ2

2

2σ̃ (k•)2

]
(27)

with

1

σ̃ 2(k•)
:= 1

σ 2
2

+ 1

σ 2
4 (1 − γ 2

3 )

(
k2• − σ 2

3

σ 2
2

)2

. (28)

In Eq. (25), the following replacements have been made from Eq. (58) in Ref. [25]:

μ → μ2, k∗ → k•, σn → σn+2, γ → γ3. (29)

Since the direct observable is not k• but the PBH mass M , we further change the variable from k• to
M as follows:

n(M )
pk (μ2, M )dμ2dM := n(k•)

pk (μ2, k•)dμ2dk•
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= 33/2

(2π)3/2
σ 2

4

σ2σ
3
3

μ2k•f

(
μ2k2•
σ4

)
P1

(
μ2

σ2
,
μ2k2•
σ4

) ∣∣∣∣ d

dk•
ln r̄m − μ2

d

dk•
gm

∣∣∣∣
−1

dμ2d ln M , (30)

where k• should be regarded as a function ofμ2 and M given by solving Eq. (20) for k•. We note that
an extended power spectrum is implicitly assumed in the above expression. In the monochromatic
spectrum case, the expression reduces to the same expression in Ref. [25] because σn = σ for
P(k) = σ 2k0δ(k − k0).

It should be noted that, since we relate k• to M with μ2 fixed, we have implicitly assumed that
there is only one peak with�ζ2 = −μ2k2• in the region corresponding to the mass M , that is, inside
r = rm. If the spectrum is broad enough or has multiple peaks at far separated scales, and the typical
PBH mass is relatively larger than the minimum scale given by the spectrum, we would find multiple
peaks inside r = rm. Then, we cannot correctly count the number of peaks in the scale of interest. In
order to avoid this difficulty we need to introduce a window function to smooth out the smaller-scale
inhomogeneities. We discuss this issue in the subsequent section. In this section we simply assume
that the power spectrum is characterized by a single scale k0 and there is no contribution from the
much smaller scales k  k0.

The number density of PBHs is given by

nBHd ln M =
[∫ ∞

μ2b

dμ2 n(M )
pk (μ2, M )

]
Md ln M . (31)

We also note that the scale factor a is a function of M as a = 2M 1/2M 1/2
eq keq/α. Then, the fraction

of PBHs to the total density β0d ln M can be given by

β0d ln M = MnBH

ρa3 d ln M = 4π

3
αnBHk−3

eq

(
M

Meq

)3/2

d ln M

= 2 · 31/2αk−3
eq

(2π)1/2
σ 2

4

σ2σ
3
3

(
M

Meq

)3/2 [∫ ∞

μ2b

dμμ2k•f

(
μ2k2•
σ4

)

P1

(
μ2

σ2
,
μ2k2•
σ4

) ∣∣∣∣ d

dk•
ln r̄m − μ2

d

dk•
gm

∣∣∣∣
−1]

d ln M . (32)

Here we note again that k• should be regarded as a function of μ2 and M . The above formula can be
evaluated in principle once the form of the power spectrum is given. A crucial difference of Eq. (32)
from Eq. (61) in Ref. [25] is that the expression does not depend on σ0, which has infrared-log
divergence for the flat scale-invariant spectrum. Thus we can consider the PBH mass spectrum for
the flat spectrum without introducing an infrared cut-off.3

In order to give a simpler approximate form of Eq. (32), we approximately perform the integral
with respect to μ as follows:

β0d ln M � 2 · 31/2αk−3
eq

(2π)1/2
σ 2

4

σ2σ
3
3

(
M

Meq

)3/2 [
σ̃ (k•)2k•f

(
μ2k2•
σ4

)

P1

(
μ2

σ2
,
μ2k2•
σ4

) ∣∣∣∣ d

dk•
ln r̄m − μ2

d

dk•
gm

∣∣∣∣
−1]

μ2=μ2b

d ln M . (33)

3 The PBH fraction to the total density f0 at the equality time is given by f0 = β0(Meq/M )1/2. We do not
explicitly show the form of f0 in this paper since the scale dependence can be more easily understood by the
form of β0.
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Since P1 given in Eq. (27) has exponential dependence, we may expect that the value of β0 is
sensitive to the exponent −μ2

2/2σ̃
2. Therefore, assuming μ2b = μ

(M )
2th = μ

(k•)
2th (k

th• (M )), we can
roughly estimate the maximum value of β0 at the top of the mass spectrum by considering the value
kt of k• which minimizes the value of μk•

2th(k•)/σ̃ ,4 namely,5

kt := argmink•

[
μ
(k•)
2th (k•)/σ̃ (k•)

]
. (34)

The value of kt cannot be given in an analytic form in general, and a numerical procedure to find the
value of kt is needed. We note that the value of kt is independent of the overall constant factor of the
power spectrum, and depends only on the profile of the spectrum. Substituting kt into k• in Eq. (33),
we obtain the following rough estimate for the maximum value β0,max:

β0,max � β
approx
0,max := 2 · 31/2αk−3

eq

(2π)1/2
σ 2

4

σ2σ
3
3

(
Mt

Meq

)3/2 [
σ̃ (k•)2k•f

(
μ2k2•
σ4

)

P1

(
μ2

σ2
,
μ2k2•
σ4

) ∣∣∣∣ d

dk•
ln r̄m − μ2

d

dk•
gm

∣∣∣∣
−1]

k•=kt, μ2=μ(k•)2th (kt)

, (35)

where Mt := M (μ2,k•)(μ(k•)
2th (kt), kt). We note that the expression in Eq. (35) gives a better approx-

imation for a smaller value of the amplitude of the power spectrum σ 2, and may have a factor of
difference from the actual maximum value for σ � 0.1 due to the mass dependence of the factors
other than the exponential part, as can be found in the examples below.

Let us consider the extended power spectrum given by

P(k) = 3

√
6

π
σ 2
(

k

k0

)3

exp

(
−3

2

k2

k2
0

)
. (36)

Gradient moments are calculated as

σ 2
n = 2n+1

3n
√
π
�

(
3

2
+ n

)
σ 2k2n

0 , (37)

where � represents the gamma function. The result is shown in Fig. 1. Our new procedure gives a
narrower and slightly higher spectrum than that obtained in Ref [25]. This behavior can be understood
as the environmental effect induced by the variance of ζ∞. Although the effect is so small that it
could be practically ignored in this example, we successfully decoupled the environmental effect.

5. Implementing a window function

In our new procedure, a window function can be straightforwardly implemented. That is, introducing
the UV cut-off scale kW , instead of Eq. (7) we consider the following power spectrum of ζ :

PW (k) = P(k)W (k; kW )
2, (38)

where W (k; kW ) is a window function satisfying W (k; kW ) ≤ 1 and W (k; kW ) = 0 for k  kW .
Then, following the procedure given in the previous section, we can calculate the PBH abundance

4 Expansion around k• = σ3/σ2 like in Ref. [25] does not work well because of the large k• dependence
of μ(k•)2th . That is, the peak of the exponent −μ2

2th/σ̃
2 significantly deviates from k• = σ3/σ2, and the Taylor

expansion is not as effective as in Ref. [25].
5 argminxf (x) = {x | ∀y(f (y) ≥ f (x))}.
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Fig. 1. PBH mass spectrum (left) and βapprox
0,max as a function of σ (right) for the extended power spectrum in

Eq. (36) with k0 = 105keq. The solid lines correspond to the spectra calculated by our new procedure with
α = 1, and the dashed lines show the spectra calculated in Ref. [25]. We also plot the mass spectrum βPS

0

obtained from the Press–Schechter formalism explained in Appendix B for comparison. In the left panel, the
dotted horizontal lines show the corresponding values of βapprox

0,max .

for a given value of kW . The final PBH mass spectrum is given by the envelope curve of the mass
spectra for all values of kW . We note that, for a narrow power spectrum, PW (k) → P(k) in the limit
kW → ∞, and the mass spectrum results in the case without the window function irrespective of the
choice of the window function.

One important issue here is the window function dependence of the final mass spectrum. In order
to clarify this issue, let us consider, for a sufficiently broad power spectrum, the effect of the window
function for a peak number density at a fixed scale given by the wave number k• = k0. If k0  kW ,
no peak can be found. On the other hand, if k0 � kW , we would find many smaller-scale peaks
inside the region of radius ∼ 1/k0 because the smaller-scale modes with k  k0 are superposed on
top of the inhomogeneity with k ∼ k0. Thus, every peak has a sharp profile due to the superposed
small-scale inhomogeneity and satisfies k•  k0. This means that there is essentially no peak with
k• = k0 � kW if k0 � kW and the original power spectrum has a sufficiently broad support in
k > k0 (Fig. 2 is an aid to understanding this). For a fixed k• = k0, in both limits k0 � kW and
k0  kW the number of peaks decreases.

In our procedure, since we take the envelope curve for all values of kW , the final estimate for the
peak number density at k• = k0 is given by the value for kW which maximizes the peak number
density at k• = k0. For this specific value of kW , k0 corresponds to kt introduced in Eq. (35), which
basically maximizes the peak number, and generally we have kW > kt � k0. If the window function
reduces the amplitude of the power spectrum in the region of k much smaller than kW , the maximum
number density of peaks with k• = k0 � kt < kW also inevitably decreases due to the window
function. Thus, the final estimate for the peak number density at k• = k0 also decreases. For this
reason, we expect that a sharp cut-off of the window function would provide a larger value of the peak
number density, minimizing the extra reduction of the mass spectrum due to the window function.

Let us check the above discussion by considering the flat scale-invariant spectrum with a window
function:

PW (k; kW ) = σ 2W (k; kW )
2. (39)

We consider the following window functions:

Wn(k/kW ) = exp

(
−1

2

k2n

k2n
W

)
, (40)
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Fig. 2. Three functions, cos(x/10) + cos(x) + cos(10x), cos(x/10) + cos(x), and cos(x/10), are plotted as
functions of x. For cos(x/10)+ cos(x), every peak has a scale of order 1, but the peak profiles are sharper for
cos(x/10)+ cos(x)+ cos(10x) and broader for cos(x/10).

Fig. 3. PBH mass spectrum (left) and βapprox
0,max as a function of σ (right) for the flat power spectrum with each

window function. In the left panel we set σ = 0.1 and the dotted horizontal lines show the corresponding
values of βapprox

0,max .

WkTH(k/kW ) = (kW − k), (41)

where we note that W1 is the standard Gaussian window function.6 For each window function, we
can calculate the PBH mass spectrum with a fixed value of kW following the procedure presented in
the previous section. The results are shown in Fig. 3, where it can be seen that the result significantly
depends on the window function. For the overall mass spectrum, taking the envelope curve of the mass
spectra for all values of kW , we obtain a flat mass spectrum with the amplitude given by the maximum
value in the plot. Therefore, the k-space tophat window function gives the largest abundance, as
expected. This behavior is contrary to the case of the conventional Press–Schechter (PS) formalism
where the Gaussian window function gives a larger abundance than the k-space tophat window (see
Appendix B and Ref. [8]). The σ -dependence of βapprox

0,max , which gives an order-of-magnitude estimate
for the maximum value of the mass spectrum, is also shown in Fig. 3.

6 The real-space tophat window function leads divergent gradient moments for the scale-invariant flat
spectrum, so that practically we cannot use it.

10/17

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/1/013E02/5936537 by guest on 20 M

arch 2024



PTEP 2021, 013E02 C.-M. Yoo et al.

6. Summary and discussion

We have improved the procedure proposed in Ref. [25] so that we can decouple the larger-scale
environmental effect, which is irrelevant to the PBH formation. Thus, we can eliminate the redundant
variance due to the environmental effect, and obtain a narrower mass spectrum than Ref. [25]. This
new procedure also allows us to straightforwardly implement a window function and calculate the
PBH abundance for an arbitrary power spectrum of the curvature perturbation. For a sufficiently
narrow power spectrum, the PBH mass spectrum results in the case without the window function
irrespective of the choice of the window function. That is, there is no window function dependence
for a sufficiently narrow spectrum in our procedure.

It should be noted that Ref. [26] attempted to estimate PBH abundance for a broad spectrum without
a window function. The results in Ref. [26] show a significant enhancement of the mass spectrum
in the large-mass region compared with our results. Although the reason for this discrepancy should
be further investigated in the future, we discuss it in Appendix C.

The PBH abundance for the scale-invariant flat power spectrum has been calculated in Sect. 5
as an example. The result largely depends on the choice of the window function. Nevertheless, we
found that the k-space tophat window function has the minimum required property. Specifically, it
minimizes the extra reduction of the mass spectrum due to the window function. When one estimates
PBH abundance without any concrete physical smoothing process, the choice of the k-space tophat
window function would be the best in our procedure. Finally, we emphasize that our procedure makes
it possible to calculate the PBH mass spectrum for an arbitrary power spectrum by using a plausible
PBH formation criterion with the nonlinear relation taken into account.
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Appendix A. Random Gaussian distribution of ζ

Due to the random Gaussian assumption, the probability distribution of any set of linear combinations
of the variable ζ(xi) is given by a multidimensional Gaussian probability distribution [28,38],

P(VI )d
nVI = (2π)−n/2 |det M|−1/2 exp

[
−1

2
VI
(M−1)IJ VJ

]
dnV , (A.1)

where the components of the matrix M are given by the correlation 〈VI VJ 〉 defined by

〈VI VJ 〉 :=
∫

dk

(2π)3
dk′

(2π)3
〈Ṽ ∗

I (k)ṼJ (k
′)〉, (A.2)

with ṼI (k) = ∫
d3xVI (x)eikx.

The nonzero correlations between two of ν = −ζ/σ0, ξ = �ζ/σ2, and ω = −��ζ/σ4 are given
by

〈νν〉 = 〈ξξ〉 = 〈ωω〉 = 1, (A.3)

〈νξ〉 = γ1 := σ 2
1 /(σ0σ2), (A.4)
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〈νω〉 = γ2 := σ 2
2 /(σ0σ4), (A.5)

〈ξω〉 = γ3 := σ 2
3 /(σ2σ4). (A.6)

Then, the probability distribution function for these variables is given by

P(ν, ξ ,ω) = (2π)−3/2 |D|−1/2 exp
[
− 1

2D

{
(1 − γ 2

3 )ν
2 + (1 − γ 2

2 )ξ
2 + (1 − γ 2

1 )ω
2

− 2(γ1 − γ2γ3)νξ − 2(γ2 − γ3γ1)ων − 2(γ3 − γ1γ2)ξω
}]

, (A.7)

where

D = det M = 1 − γ 2
1 − γ 2

2 − γ 2
3 + 2γ1γ2γ3 (A.8)

with

M =
⎛
⎜⎝ 1 γ1 γ2

γ1 1 γ3

γ2 γ3 1

⎞
⎟⎠. (A.9)

We re-express the probability P as a probability distribution function P̃ of ζ0, μ2, and k•:

P̃(ζ0,μ2, k•)dζ0dμ2dk• = P(ν, ξ ,ω)dνdξdω = 2μ2k•
σ0σ2σ4

P

(
ζ0

σ0
,
μ2

σ2
,
μ2k2•
σ4

)
dζ0dμ2dk•. (A.10)

Then, the conditional probability p(ζ0) with fixed μ2 and k• is given by

p(ζ0) =
(

1 − γ 2
3

2πDσ 2
0

)1/2

exp

[
−1 − γ 2

3

2Dσ 2
0

(
ζ0 − ζ̄0

)2] =
(

1 − γ 2
3

2πDσ 2
0

)1/2

exp

[
−1 − γ 2

3

2Dσ 2
0

ζ 2∞

]
, (A.11)

where

ζ̄0 = −μ2

(
σ 2

1 σ
2
4 − σ 2

2 σ
2
3

)+ (
σ 4

2 − σ 2
1 σ

2
3

)
k2•

σ 2
2 σ

2
4 − σ 4

3

. (A.12)

Appendix B. Estimation and window function dependence in the Press–Schechter
formalism

For a comparison, we review a conventional estimate of the fraction of PBHs based on the PS
formalism. In the conventional formalism, the scale dependence is introduced by a window function
W (k/kM ), where

kM = keq(Meq/M )1/2. (B.1)

Then, each gradient moment is replaced by the following expression:

σ̂n(kM )
2 =

∫
dk

k
k2nP(k)W (k/kM )

2. (B.2)

12/17

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2021/1/013E02/5936537 by guest on 20 M

arch 2024



PTEP 2021, 013E02 C.-M. Yoo et al.

Fig. B.1. The window function dependencies of the PS formalism and our procedure are shown for the
monochromatic spectrum (left) and the flat spectrum (right). The solid lines and dashed lines show the results
for our procedure based on the peak theory and for the PS formalism, respectively. In the left panel, the values
for the PS formalism are given by Eq. (B.6) with k0 = kM , and the value in our procedure is depicted as a
single solid line because the fraction of PBH does not depend on the window function in our procedure.

The conventional estimate starts from the following Gaussian distribution assumption for the density
perturbation δ̄:

Pδ(δ̄)d δ̄ = 1√
2πσδ

exp

(
−1

2

δ̄2

σ 2
δ

)
d δ̄, (B.3)

where σδ is given by the coarse-grained density contrast,

σδ(kM ) = 4

9

σ̂2(kM )

k2
M

. (B.4)

Here, for simplicity, we use the same numerical value of δth as in our approach; in other words,
we assume that the volume average of the density perturbation obeys the Gaussian probability
distribution given by Eq. (B.3) with the coarse-grained density contrast of Eq. (B.4) in the PS
formalism. This Gaussian distribution and the dispersion are motivated by the linear relation between
ζ and δ. The fraction βPS

0 is then evaluated (see, e.g., Ref. [39]) as

βPS
0 (M ) = 2α

∫ ∞

δth

d δ̄Pδ(δ̄) = α erfc
(

δth√
2 σδ(kM )

)
= α erfc

(
9

4

δthk2
M√

2σ̂2(kM )

)
. (B.5)

Let us check the window function dependence in the PS formalism for the cases of the monochro-
matic spectrum P(k) = σ 2k0δ(k − k0) and the flat spectrum P(k) = σ 2. For the monochromatic
spectrum, the fraction βPS

0,mono is given by

βPS
0,mono = erfc

(
9

4

δthk2
M√

2σk2
0 W (k0/kM )

)
. (B.6)

From this expression, the existence and significance of the window function dependence is clear
(see the left panel of Fig. B.1). On the other hand, as stated in the first paragraph of Sect. 5, for a
narrow power spectrum there is essentially no window function dependence in our procedure. In
particular, for the monochromatic spectrum case the fraction reduces to the result given in Ref. [25]
for an arbitrary window function satisfying the properties listed in the same paragraph.
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For the flat spectrum, the value of the second gradient moment is given by σk2
M/

√
2 and σk2

M/2
for the Gaussian and k-space tophat window functions, respectively. Therefore, in the PS formalism
the abundance is larger for the Gaussian window function, different from our case shown in Fig. 3. In
the right panel of Fig. B.1 the window function dependencies in the PS formalism and our procedure
are shown. In both cases, the window function dependence is significant at a similar extent.

It should be noted that in the PS formalism the reason for the larger abundance for the Gaussian
window is the contribution from the high-k modes through the tail of the Gaussian function. There-
fore, it is clear that the longer the tail of the window function, the larger the abundance becomes.
Of course, we cannot take the long-tail limit because the window function becomes irrelevant in
this limit. Contrary to the PS formalism, in our procedure the sharpest cutoff in the k-space gives
the largest abundance, and the extra reduction due to the window function can be minimized in this
well-defined limit.

Appendix C. Discrepancy between our results and Ref. [26]

As noted in Sect. 6, a qualitative difference can be seen between our PBH mass spectrum and that in
Ref. [26] in the large-mass region. First, we briefly review the basic idea used in Ref. [26] (see also
Ref. [40]).

In order to clearly distinguish the equations which are valid only for spherically symmetric cases
from generally valid equations, we use the notation � for equality with spherical symmetry. Let us
start with the relation between the nonlinear volume-averaged density perturbation δ̄, the compaction
function C, and the curvature perturbation [22]:

δ̄ � 2C � 2δM

R
� −2

3
rRζ

′
R[2 + rRζ

′
R], (C.1)

where rR is a certain radius and the subscript R denotes the value at r = rR.7 This equation is valid
for super-horizon spherically symmetric perturbations. We may define δl, which is linearly related
to ζ , as follows:

δl � −4

3
rRζ

′
R. (C.2)

Then we obtain

δ̄ � δl − 3

8
δ2

l . (C.3)

The linear density perturbation δl should be compared with δR defined in Eq. (9) of Ref. [26] as
follows:

δR(rR) = 3

4πr3
R

∫
d3x

δρ

ρ
θ(rR − |�x − �x0|), (C.4)

where θ is the Heaviside step function, which effectively acts as the real-space tophat window
function. We note that this expression is defined not only for spherically symmetric perturbations

7 rR corresponds to R in Ref. [26].
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but for general ones. Using the linear relation

δρ

ρ
= −4

9

1

a2H 2�ζ � −4

9

1

a2H 2

1

r2 ∂r(r
2∂rζ ) (C.5)

in a spherically symmetric case, we can find [40]

δR(rR) � 4

3rR

∫ rR

0
drr2(ζ ′′ + 2

r
ζ ′) � −4

3
rRζ

′
R � δl (C.6)

at the horizon entry time defined by rR = 1/(aH ).
In Ref. [26], the relation with spherical symmetry 2C = δl − 3

8δ
2
l is extended to the general

relation 2C = δR − 3
8δ

2
R, and the PBH formation criterion for C is expressed in terms of δR and used

to estimate PBH abundance. δR is equivalent to the linear density perturbation with the real-space
tophat window function. However, it should be noted that the real-space tophat window function is
naturally introduced so that the relation Eq. (C.6) can be satisfied, and not introduced by hand as a
window function.

Let us consider the estimation of PBH abundance in the large-mass region where the discrepancy
exists. For simplicity, let us focus on a single-scale power spectrum with the typical scale 1/k0.
First, we note that in Ref. [26] the value of rR is chosen such that dδR/drR = 0 and C(�x, rR) takes
a maximal value at �x = �x0, where C is regarded as a function of �x and rR. The scale of the region
relevant to PBH formation is given by rR, which can be significantly different from 1/k0.8 However,
the relevance of the present criterion given in terms of the compaction function C is not clear for the
outer maxima. In Fig. 2 of Ref. [41], the result of a numerical simulation for a spherically symmetric
and oscillatory initial profile is shown. The initial profile in the simulation corresponds to the most
probable profile for a delta-function power spectrum peaked at 1/k0. The most probable profile is
given by a peak at the center surrounded by repeated concentric overdense and underdense regions.
More precisely, the most probable profile of the curvature perturbation is given by a sinc function,
where the compaction function is oscillatory with respect to the distance from the center. We can find
that the PBH formation criterion is satisfied for the multiple radii corresponding to the maxima in
Fig. 2 of Ref. [41]. The resultant PBH, however, has a mass corresponding to the typical scale 1/k0,
whereas no PBH of larger mass scales is formed. This result suggests that the present criterion is
relevant only for the innermost maximum of the compaction function but not for the outer maxima. If
the present criterion is simply applied to not only the innermost but also outer maxima, the abundance
of primordial black holes of large-mass scales could be overestimated.
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