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Abstract

Objective. The purpose of this study was to review the effects of robot-assisted therapy (RT) for improving poststroke upper
extremity motor impairment.

Methods. The PubMed, Embase, Medline, and Web of Science databases were searched from inception to April 8, 2020.
Randomized controlled trials that were conducted to evaluate the effects of RT on upper extremity motor impairment
poststroke and that used Fugl-Meyer assessment for upper extremity scores as an outcome were included. Two authors
independently screened articles, extracted data, and assessed the methodological quality of the included studies using the
Physiotherapy Evidence Database (PEDro) scale. A random-effects meta-analysis was performed to pool the effect sizes
across the studies.

Results. Forty-one randomized controlled trials with 1916 stroke patients were included. Compared with dose-matched
conventional rehabilitation, RT significantly improved the Fugl-Meyer assessment for upper extremity scores of the patients
with stroke, with a small effect size (Hedges g = 0.25; 95% Cl, 0.11-0.38; /2 = 45.9%). The subgroup analysis revealed that
the effects of unilateral RT, but not that of bilateral RT, were superior to conventional rehabilitation (Hedges g = 0.32; 95% Cl,
0.15-0.50; /2 = 55.9%). Regarding the type of robot devices, the effects of the end effector device (Hedges g = 0.22; 95%
Cl, 0.09-0.36; /2 = 35.4%), but not the exoskeleton device, were superior to conventional rehabilitation. Regarding the stroke
stage, the between-group difference (ie, RT vs convention rehabilitation) was significant only for people with late subacute
or chronic stroke (Hedges g = 0.33; 95% Cl, 0.16-0.50; /2 = 34.2%).

Conclusion. RT might be superior to conventional rehabilitation in improving upper extremity motor impairment in people
after stroke with notable upper extremity hemiplegia and limited potential for spontaneous recovery.
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Introduction

Stroke is one of the most common causes of adult-onset neuro-
logical disability.! According to the Global Burden of Disease
study in 2016,% stroke is one of the leading causes of the
loss of disability-adjusted life-years worldwide. Upper extrem-
ity hemiplegia is the most common and stable symptom of
stroke survivors.> Physical therapy and occupational therapy
interventions delivered by therapists are the mainstream reha-
bilitation treatments for poststroke upper extremity motor
impairment. Various rehabilitation approaches focusing on
upper extremity motor rehabilitation, such as constraint-
induced movement training, task-oriented training, mental
practice, and mirror therapy, have been widely applied in
clinical practice.’ Robot-assisted therapy (RT) has been devel-
oped as an approach for hemiplegia rehabilitation in the
upper extremities in recent decades.* RT is defined as “an
electronic computer-controlled system that can be used with
a device to assist in functional rehabilitation of humans;
these can be divided into therapeutic and assistive robots.”
Compared with conventional therapist-led rehabilitation, RT
can provide high-intensity, repetitive, and highly reproducible
motor training to facilitate the restoration of hemiplegic upper
extremity function and neuroplasticity after stroke.®’

Therapeutic robots can be broadly categorized into end
effector and exoskeleton devices. An end effector device is
a tool that interacts with the environment and connects to
the individual at a solitary point, whereas an exoskeleton
device is connected to the individual at multiple points that
match the joint axes.® In clinical practice, RT is used on
the paretic arm only or both arms and is therefore referred
to as unilateral robot-assisted therapy (URT) or bilateral
robot-assisted therapy (BRT), respectively. URT aims to train
the hemiplegic arm through repeated active or passive exer-
cise. Turner et al’ reported that URT was associated with
the activation of the ipsilesional primary motor cortex in
stroke patients, consequently facilitating the recovery of upper
extremity motor impairment. BRT aims to train both arms,
with the most impaired arm mimicking the unimpaired or less
impaired arm to perform synchronous movements assisted by
the robot device.!? Studies have also examined the usefulness
of bilateral asymmetrical movements for stroke rehabilitation,
although these are seldom practiced with robotic devices.

Some researchers postulate that bilateral arm training is
superior to unilateral arm training in improving hemiplegic
arm function. Indeed, some studies with functional magnetic
resonance imaging!!>'? showed that the effect of bilateral
arm training may be superior to that of unilateral arm train-
ing in terms of activating the ipsilesional primary motor
cortex and supplementary motor area, thus rebalancing the
abnormal interhemispheric transcallosal inhibition caused by
stroke. Such movement also improves interlimb coordina-
tion and enhances intra- and interhemisphere coupling. With
the support of the bilateral recovery theory, BRT has been
developed and applied in several clinical studies with stroke
patients.' 313

Previous reviews investigated the effects of RT in upper
extremity motor rehabilitation. A review conducted by Veer-
beek et al'® in 2016 showed that RT significantly improved
Fugl-Meyer assessment for upper extremity (FMA-UE) scores,
and subgroup analyses revealed that the type of robot device,
stroke stage, and the type of control therapy may impact
the effect size. Similar results were found in a Cochrane
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review conducted by Mehrholz et al,!” in which high-level
evidence was found to support the effects of electromechanical
and RT for improving hemiplegic arm functions, as mea-
sured with the FMA-UE scores, in stroke patients. However,
neither review included statistical comparisons between the
different subgroups. Another meta-analysis by Zhang et al'®
was also published on this topic; however, various outcome
measurements may lead to high heterogeneity among their
analyses. Because a substantial number of studies have been
published in this area, it is time to conduct detailed subgroup
analyses with appropriate statistical comparisons to examine
the potential influence of the patient characteristics and the
interventional methodology on the treatment effect.

Thus, the objective of the present review was to answer
the following questions: (1) Does RT have a superior effect
on the improvement of upper extremity motor impairment in
stroke patients compared with the conventional, therapist-led
rehabilitation training, in terms of short-term (immediately
after intervention) or long-term (follow-up) outcomes? (2)
Is there any difference in effects between BRT and URT?
(3) Could the patient characteristics such as stroke stage
or the baseline level of upper extremity motor impairment
measured with the FMA-UE scores!??? influence the effect
size associated with the treatment? Finally, (4) could the type
of robot device (e.g., end effector or exoskeleton) influence the
effect sizes associated with the treatment? By answering these
questions, this review aims to provide an overall picture of the
currently available evidence regarding the clinical application
of RT in poststroke upper extremity rehabilitation.

Methods
Data Sources and Search Terms

This review was performed in accordance with the guidelines
of the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA).2! Two authors (J.W. and H.C.)
independently searched the PubMed, Embase, Medline, and
Web of Science databases to identify any randomized con-
trolled trials (RCTs) about the effects of RT on the rehabil-
itation of upper extremity motor impairment in patients with
stroke. Studies were collected from inception up to April 8,
2020.In each database, the search was conducted using a com-
bination of the keywords: “stroke OR hemiplegic OR paresis
OR cerebrovascular disorder OR cerebrovascular accident”
AND “upper limb OR upper extremity OR arm OR forearm
OR hand OR shoulder OR elbow” AND “robot-assisted OR
robotics OR exoskeleton OR robotic aided OR robot assisted
OR robotic device” AND “randomized controlled trial OR
controlled trial.” These terms were searched for in the whole
article. Any disagreement was settled by discussion with the
third author (J.Z.). The detailed search strategy is presented
in Supplementary Table 1.

Study Selection

Studies that met all of the following criteria were included
in this review: (1) studies designed as an RCT with either
a crossover or parallel design; (2) studies with participants
who were adults (aged over 18 years) diagnosed as having a
unilateral hemispheric stroke; (3) studies that used a robot-
assisted device for intervention; (4) studies with at least 1
control group in which participants received dose-matched
conventional physical/occupational therapy led by therapists
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(the experimental and control groups had equal treatment
times); and (5) studies that used the FMA-UE scores to assess
hemiplegic upper extremity impairment, which is the most
widely used primary outcome of patients with poststroke
upper extremity motor impairment.”> We restricted the out-
come of interest to hemiplegic upper extremity impairment
because it could reduce the potential heterogeneity during
the subgroup analyses and statistical comparisons among
different subgroups.

Studies that met any of the following criteria were excluded
from this review: (1) studies published as conference abstracts,
conference proceedings, or research protocols; (2) studies
in which the reported data were insufficient for effect size
calculation; (3) studies that used similar robot devices for
intervention in both groups, except for those that compared
BRT and URT, or end effector and exoskeleton devices; (4)
studies that combined RT with other interventional modali-
ties such as functional electrical stimulation, transcutaneous
electrical nerve stimulation, or noninvasive brain stimulation;
(5) studies that were not published in the English language
(the English language restriction did not significantly affect
the results of the meta-analysis, as demonstrated in a previous
study??); and (6) non-RCTs or single-group pre/post-repeated-
measures studies.

Data Extraction

After identifying the relevant studies, 2 authors (J.W. and
H.C.) independently extracted the following information
from each article: (1) the first author and publication year;
(2) the characteristics of the participants (eg, age, time
since stroke, and baseline motor impairment level); (3) the
intervention in both groups, including the involved body parts
in the RT (U = unilateral arm, B = bilateral arm), the joints
involved in the RT (ie, whole upper extremity, shoulder/elbow,
or forearm/wrist/hand), type of robot device (ie, exoskeleton
or end effector robotic device), and intervention duration;
and (4) the short- and long-term outcome data, including
the mean and SD for each group. When the SDs were not
available, estimates were made based on the sample size,
median, interquartile range,>*=2” 95% CI,20-28 SE,2%-30 and
correlation coefficient (r).13-15:31-41 For calculating the
SD of the change in scores, we initially used a » of 0.8.
Subsequently, different levels of 7 (0.3 and 0.5) were replaced
in the calculation to examine the robustness of our results
as a sensitivity analysis.*> Any disagreement was settled by
discussion with the third author (J.Z.).

Quality Assessment

The methodological quality of the included studies was inde-
pendently assessed by 2 authors using the Physiotherapy
Evidence Database (PEDro) scale. The items in the PEDro
scale include random allocation, concealment of allocation,
baseline equivalence, blinding procedure, intention-to-treat
analysis, adequate follow-up, between-group statistical anal-
ysis, measurement of data variability, and point estimates.
A PEDro score greater than or equal to 6 indicated good
methodological quality.*> We removed studies with a PEDro
score less than 6 after every primary meta-analysis to test the
robustness of the results, as another sensitivity analysis.

Data Synthesis and Analysis

Stata version 15.0 software (StataCorp LLC., College Station,
TX, USA) was used for the meta-analysis, and Comprehensive

Meta-Analysis version 3.0 software (Biostat, Englewood, NJ,
USA) was used for the statistical analysis, including meta-
regression and the Q test for the between-subgroup variance.
The Hedges g was used to calculate the effect size, because
it could correct the potential bias caused by studies with
small sample size. A random-effects meta-analysis was per-
formed because of the obvious clinical and methodological
heterogeneity among the included studies.** Between-study
heterogeneity was examined using the Higgins I? statistic.
Studies with an I> of 25%-50% were considered to have
low heterogeneity, and those with an I? of 50% to 75% and
greater than 75% were considered as having moderate and
high levels of heterogeneity, respectively.*> Publication bias
was assessed using funnel plots and Egger tests. Subgroup
analyses were used to examine the moderating effects of
the RT design (ie, URT vs BRT), type of robot device (ie,
end effector vs exoskeleton), stroke stage (ie, <3 months
vs >3 months, or <6 months vs >6 months),*® and base-
line severity of arm hemiplegia (ie, mildly impaired: FMA-
UE score >50; moderately impaired: FMA-UE score 18-50;
and severely impaired: FMA-UE score < 18).1920 After the
subgroup analyses, we further performed a Q test based on
the analysis of variance to test the between-subgroup portion
of the variance.*’” The potential dose-dependent effect of
the RT was assessed using a univariable meta-regression. In
the meta-regression, we treated the total training time, the
number of training sessions, and average training time per
session as the independent variables, and effect size as the
dependent variable. Because the dose is likely to be an impor-
tant modulator of the treatment effects, we further included
significant dose parameters and categorical variables in the
multivariable meta-regression model, when appropriate. The
statistical threshold was set at P < .05 (2-tailed), with the
exception that a threshold of P < .1 (2-tailed) was used for
the Egger test.*8

Role of the Funding Source

This work was supported by the Central Guide to Local
Science and Technology Development (grant no. 2018 L.3009)
and the Science and Technology Platform Construction
Project of the Fujian Science and Technology Department
(grantno.2015Y2001-40). This funding source had no role in
the design of this study, its execution, analyses, interpretation
of the data, or decision to submit results

Results
Study Selection

The search resulted in 1018 citations. After removing dupli-
cates, 548 records were screened, of which 356 citations were
excluded for the following reasons: the studies were irrelevant
(n = 233); the studies were reviews or meta-analyses (n = 29);
the studies focused on infants, children, or adolescents
(n = 19); technical papers (n = 64); or the studies enrolled
healthy individuals exclusively (n = 11). The remaining 192
articles were subjected to full-text screening, of which 151
were removed for the following reasons: RCTs applied similar
RTs in both the experiment and control groups (n = 17); the
studies were not designed as RCTs (n = 44); the reported
data for the meta-analysis were insufficient (n = 7); the
studies were conference abstracts or study protocols (n = 19);
the studies did not use FMA-UE scores as the outcome
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(n = 15); the studies compared brain-computer interface—
guided/electronic-based/electromyography-driven RT with
pure RT (n = 36); or the studies did not use a dose-matched
conventional rehabilitation as the control or used different
conventional rehabilitations in the experiment and control
groups (n = 13). Finally, 41 studies with 1916 stroke patients
satisfied the inclusion criteria and were included in the
present systematic review. Supplementary Figure 1 shows the
flowchart of the study selection, and the characteristics of the
included studies are presented in Supplementary Table 2. The
methodological quality of the included studies is presented in
Supplementary Table 3.

Meta-Analysis

Among the included studies, 34 compared the effect of RT and
dose-matched conventional rehabilitation!4-13,20,24,26-28,
30-41,49-62 (except in 1 study, the duration in the control
group seemed to be longer than that in the RT group®).
Three studies had 3 groups, namely, the BRT, URT, and
dose-matched conventional rehabilitation, and we therefore
divided the comparisons into 2 units of analysis.!3:2%:64
Two studies compared the effect of the sequential use of
BRT and URT with that of dose-matched conventional
rehabilitation.?”>° One study had 4 groups, namely, the
combined URT and BRT, URT, BRT, and dose-matched
conventional rehabilitation and therefore, the comparisons
were divided into 3 units of analysis.® One study directly
compared the effects of BRT and dose-matched URT without
conventional rehabilitation.®”

Seventeen studies were included to estimate both the short-
term effects immediately after the intervention and the long-
term retention effects at follow-up (mean [SD] = 22.0 [7.4]
weeks). When a study had several follow-up time points, the
IODgCSt one was selected,24’26’27’29’30’34’39‘41’50’51’53‘55’59’

65,66 and 24 studies only estimated the short-term effects
immediately after the intervention.!3-19,20,25,28,31-33,35-38,
49,52,56-38,60-64,67 A statistically significant difference was
observed in favor of RT over conventional rehabilitation
immediately after the training (n = 1906; Hedges g = 0.25;
95% CI, 0.11-0.38; P < .001; I> = 45.9%) (Fig.1)
but not at the follow-up assessment (n = 897; Hedges
g = 0.16; 95% CI, —0.03 to 0.34; P = .092; I> = 26.9%)
(Supplementary Figure 2). No evidence of publication bias
was found in the retention effects (P = .31) among the
included studies, but we found a publication bias immediately
after intervention (P = .04), as suggested by the Egger test
(Supplementary Figures 3 and 4).

Meta-Regression With Dose Parameters

In the meta-regression with dose parameters, total training
time, number of training sessions, and average training time
per session were not significantly associated with the effect
sizes in the short term (P = .127,.717, and .079, respectively)
and long term (P = .878,.978, and .093, respectively).

Subgroup Meta-Analysis

This study then analyzed 5 subgroups based on the type of
RT (i.e., URT, BRT, or combined URT and BRT), stroke stage
(using either 3 or 6 months as the cutoff value), baseline motor
impairment level (ie, moderate to severe or mild to moderate),
type of robot device (ie, end effector or exoskeleton), and
trained part (ie, proximal or distal joints). Owing to the
limited number of studies with follow-up assessments, the

Robot-Assisted Therapy for Stroke

subgroup analyses were performed on the basis of the effects
immediately after RT.

Comparison of URT/BRT With Conventional
Rehabilitation

In total, 33 units of analysis compared URT with conventional
rehabilitation, 14 units of analysis compared BRT with
conventional rehabilitation, and 3 units of analysis compared
combined URT and BRT with conventional rehabilitation.
The results indicated that URT was superior to conventional
rehabilitation (n = 1548; Hedges g = 0.32; 95% CI, 0.15-
050’ P < 001’ IZ — 55.9%)'13,2(),24—28,3(),31,35,36,38—40,
49-64,66 When BRT was compared with conventional
rehabilitation, the overall effect was not significant (n = 312;
Hedges ¢ = 0.07; 95% CI, —0.15 to 0.28; P = .542;
12 = 0%).13-15,25,32-34,37,41,64.66 Combined URT and BRT
was also not superior to conventional rehabilitation (n = 80;
Hedges g = 0.22; 95% CI, —0.71 to 1.15; P = .64S5;
I? = 74.5%) (Fig.1).2%:6%:%¢ No statistically significant
difference was detected by the O test when either 2 subgroups
(ie, URT and BRT) (Q = 2.46; P = .12) or 3 subgroups (ie,
URT, BRT, and URT plus BRT) (O = 2.48; P = .29) were
compared.

Comparison of URT and BRT

Five studies directly compared the effects of BRT with those
of URT.13:25,64:66.67 The results showed that URT was better
than BRT in terms of improved FMA-UE scores (n = 68;
Hedges g = —0.53; 95% CI, —1.02 to —0.04; P = .035;
12 = 0%) (Fig. 2).

Influence of Stroke Stage

The subgroup analysis based on 35 studies revealed that RT
significantly improved the FMA-UE scores in patients who
had had a stroke at least 3 months before the assessment
(n = 809; Hedges g = 0.33; 95% CI, 0.16-0.50; P < .001;
2 = 34.2%)13-15.20,25,27,30,32,33,36,38,41,49-52,54-57,59,63-63
but not in those who had had a stroke less than 3 months
before (n = 457; Hedges g = 0.21; 95% CI, —0.12 to 0.54;
P = .220; I2 = 64.8%) (Flg 3).24,26,29,31,34,35,40,53,58,60,61
Similarly, when using 6 months as the cutoff, RT sig-
nificantly improved the FMA-UE scores in patients who
had had a stroke at least 6 months before the assessment
(n = 826; Hedges g = 0.26; 95% CI, 0.12-0.41; P < .001;
12 — 2.3%)13—15,20,25,27,30,32,33,36,38,41,49—52,56,57,59,64,65
but not in those who had had a stroke less than 6 months
before (n = 518; Hedges g = 0.17; 95% CI, —0.08 to 0.42;
P = 177’ 12 — 53.2%)‘24,26,28,29,31,34,35,37,40,53,58,60,61,66
However, no statistically significant difference between the
subgroups was detected by the O test when either 3 months
(P = .473) or 6 months (P = .471) was used as the
cutoff.

Influence of Baseline Motor Impairment Level

We found that RT significantly improved the FMA-UE scores
in the patients with moderate to severe motor impairment,
compared with the control (n = 1295; Hedges g = 0.27; 95%
CI, 0.08-0.46; P = .004; I* = §3.0%).24-26,29-31,34-36,38,39,
49-37,59,61,64-66 However, no significant between-group
difference (RT vs control) was identified in the patients
with mild to moderate motor impairment (n = 316; Hedges
g = 0.19; 95% CI, —0.01 to 0.40; P = .063; I? = 0%)
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Study %
ID Hedges’ g (95% CI)  Weight
Uilateral+Bilateral robot-assisted )
Lum et al. 2002 —H— 0.81 (0.02, 1.60) 1.86
Lum et al. 2006a ——IO_ 0.54 (-0.49, 1.58) 1.28
Burgar et al. 2011 —_— -0.58 (-1.24, 0.08) 2.30
Subtotal (I-squared = 74.5%, p = 0.020) <:j> 0.22 (-0.71, 1.15) 5.44
. 1
Uilateral robot-assisted 1
Lum et al. 2006b —_— 0.53 (-0.52, 1.59) 1.24
Housman et al. 2007 ———— 0.38 (-0.44, 1.21) 1.75
Rabadi et al. 2008 —_— -0.28 (-1.16, 0.60) 1.61
Viope et al. 2008 —_— 0.21 (-0.65, 1.07) 1.67
Housman et al. 2009 : + 0.43 (-0.29, 1.14) 2.1
Lo etal. 2010 _‘_I -0.01 (-0.42, 0.39) 3.50
Masiero et al. 2011 —— -0.18 (-1.03, 0.68) 1.67
Conroy et al. 2011a - 0.49 (-0.15, 1.13) 2.39
Conroy et al. 2011b —_— 0.14 (-0.50, 0.79) 2.36
Reinkensmeyer et al. 2012 —t——— 0.55 (-0.23, 1.34) 1.87
Yang et al. 2012a ———— 0.49 (-0.58, 1.56) 1.22
Byl et al. 2013b g g -0.62 (-1.91, 0.67) 0.90
Timmermans et al. 2014 —_— 0.08 (-0.76, 0.92) 1.73
Ang et al. 2014 —_— 0.51 (-0.53, 1.55) 1.27
Brokaw et al. 2014 + 0.27 (-0.88, 1.43) 1.08
Sale et al. 2014 ——— 0.54 (-0.01, 1.09) 2.77
Masiero et al. 2014 ——|0— 0.41 (-0.31, 1.14) 2.06
Klamroth et al. 2014 —T—— 0.47 (0.00, 0.93) 3.18
Prange et al. 2015 —— -0.25 (-0.73, 0.22) 3.12
Susanto et al. 2015 —_— -0.10 (-1.00, 0.80) 1.56
McCabe et al. 2015 + + -0.47 (-1.30, 0.36) 1.74
Wolf et al. 2015 —_— -0.03 (-0.44, 0.38) 3.49
Takahashi et al. 2016 —I—O— 0.31 (-0.22, 0.84) 2.87
Tomic et al. 2017 | ——— 1.32 (0.46, 2.18) 1.66
Hsieh et al. 2018a —_—— 0.08 (-0.68, 0.84) 1.95
Hsieh et al. 2018b —_— 0.23 (-0.56, 1.02) 1.87
Daunoraviciene et al. 2018 ; —p——  2.16 (1.30, 3.03) 1.65
Calabro et al. 2019 1 —_—— 1.23 (0.62, 1.84) 2.51
Rodgers et al. 2019 - -0.06 (-0.25, 0.12) 4.69
Franceschini et al. 2019 | ——— 0.94 (0.34, 1.54) 2.55
Dehem et al. 2019 ——t—— 0.44 (-0.26, 1.15) 214
Hung et al. 2019b +—— 0.87 (-0.06, 1.80) 1.50
Carpinella et al. 2020 —— 0.10 (-0.54, 0.73) 2.40
Subtotal (I-squared = 55.9%, p = 0.000) <|> 0.32 (0.15, 0.50) 70.07
Bilateral robot-assisted :
Lum et al. 2006¢ g 1 -0.64 (-1.87, 0.60) 0.97
Hsieh et al. 2011a ,¢ 0.36 (-0.78, 1.51) 1.09
Hsieh et al. 2011b — -0.07 (-1.20, 1.07) 1.1
Wu et al. 2012a —r— 0.11 (-0.63, 0.85) 2.01
Wu et al. 2012b —‘_—E.—_ -0.20 (-0.95, 0.54) 2.01
Hsieh et al. 2012a 0.35 (-0.31, 1.01) 2.31
Hsieh et al. 2012b —t— 0.03 (-0.62, 0.68) 2.33
Yang et al. 2012b —_——— 0.00 (-1.05, 1.05) 1.25
Liao et al. 2012 -, 0.70 (-0.21, 1.61) 1.54
Byl et al. 2013a < : -0.68 (-1.97, 0.62) 0.89
Hesse et al. 2014 —0——l -0.29 (-0.86, 0.27) 2.7
Hsieh et al. 2017 —— 0.05 (-0.66, 0.75) 2.14
Hsu et al.2019 —_—t— 0.25 (-0.35, 0.85) 2.54
Hung et al. 2019a —— 0.52 (-0.37, 1.42) 1.58
Subtotal (l-squared = 0.0%, p = 0.783) <> 0.07 (-0.15, 0.28) 24.49

1
Overall (I-squared = 45.9%, p = 0.000) <> 0.25 (0.11, 0.38) 100.00
NOTE: Weights are from random effects analysis :

|
-3.03 0 3.03

control group

experiment group

Figure 1. Meta-analysis of short-term changes in FMA-UE score between RT and the control group, URT and the control group, BRT and the control
group, and combined URT and BRT and the control group. BRT = bilateral robot-assisted therapy; FMA-UE = Fugl-Meyer assessment for upper
extremity; RT = robot-assisted therapy; URT = unilateral robot-assisted therapy.

(Fig. 4).13715,20,27,32,33,41,60 ©Moreover, no statistically sig-
nificant difference among the subgroups was detected by the
O test (O = 0.24; P = .889).

Influence of the Type of Robot Device

We found that end effector robots (n = 1605; Hedges
¢ = 0.22; 95% CI, 0.09-0.36; P = .001; I> = 35.4%)
13-15,20,24-41,50,52,53,55,60-62,65,66 put not exoskeleton

robots (n = 301; Hedges g = 0.31; 95% CI, —0.14 to 0.76;

P = 171; I = 68.9%)%:51,94,36-59,63,64 \yere superior

to conventional rehabilitation in terms of improving the
FMA-UE scores (Fig. 5). However, no statistically significant
difference between the subgroups was detected by the O test
(O =0.25; P =.616).

Influence of the Trained Part

The subgroup analysis based on 30 studies revealed that
shoulder/elbow robotics (n = 1097; Hedges g = 0.27; 95% CI,
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Robot-Assisted Therapy for Stroke

Study %
ID Hedges’ g (95% CI) Weight
l
Lum et al. 2006 + i -1.08 (-2.27, 0.11) 1717
l
Yang et al. 2012 - -0.56 (-1.64, 0.52) 21.04
l
Byl et al. 2013 i o -0.40 (-1.66, 0.86) 15.33
|
Kim et al. 2013 l o -0.16 (-1.40, 1.08) 15.77
|
Hung et al. 2019 i= -0.46 (-1.35, 0.43) 30.70
|
Overall (I-squared = 0.0%, p = 0.872) @ -0.53 (-1.02, -0.04) 100.00

NOTE: Weights are from random effects analysis

I
-2.27 0

unilateral robot-assisted

!
2.27

bilateral robot-assisted

Figure 2. Meta-analysis of changes in FMA-UE score between URT and BRT. BRT = bilateral robot-assisted therapy; FMA-UE = Fugl-Meyer assessment

for upper extremity; URT = unilateral robot-assisted therapy.

005_050, P = 018, IZ — 61.9%)24,26,29—31,35,36,38,39,50,_
33,54,58,60-62,65,66 4nd forearm/wrist/hand robotics (n = 417;
Hedges g = 0.19; 95% CI, 0.01-0.37; P = .042; I = 0.0%)-
13-15,25,28,32,33,37,40,41,55,59 were superior to conventional
rehabilitation in terms of improving the FMA-UE scores
(Fig. 6). However, no statistically significant difference
between the subgroups was detected in the Q test (Q = 0.10;
P =.755).

Sensitivity Analyses

The results of the sensitivity analysis are presented in
Supplementary Table 4. The overall results of the analysis
were robust when different levels of correlation coefficients
were used to estimate the SD of the change scores, except
the results of the 2-subgroup analyses (ie, URT vs BRT, and
proximal joints vs distal joints). An additional sensitivity
analysis was performed on the basis of the methodological
quality of the included studies as measured with the PEDro
scale. The overall results of the analysis were robust when
only high-quality (PEDro score >6) studies were included.

Discussion

This review suggests that RT was superior to conventional
rehabilitation in terms of improving upper extremity motor
impairment as assessed using the FMA-UE scores. A subse-
quent subgroup analysis revealed that URT, but not BRT, was
superior to conventional rehabilitation, with a small effect
size. Furthermore, URT seemed to be better than BRT in
improving upper extremity motor impairment based on the

meta-analysis of the 5 studies with direct comparisons. End
effector robots, but not exoskeleton robots, seemed to be
more useful for improving upper limb motor impairment after
stroke than conventional rehabilitation. The subgroup analy-
sis also revealed that the superiority of RT was more obvious
when it was applied to patients with a limited potential
for spontaneous biological recovery after stroke and patients
with moderate to severe upper extremity motor impairment,
although the statistical comparison did not reach significance
in all the subgroup comparisons.

Learned nonuse is a common phenomenon whereby the
movement of the hemiplegic arm is suppressed because of
stroke, resulting in failure to use the hemiplegic arm dur-
ing daily activities.®® Along with the suppression of neural
activities in the affected hemisphere, the unaffected hemi-
sphere becomes overactivated, which leads to an interhemi-
spheric asymmetry; however, this phenomenon could be over-
come with appropriate behavioral training.®” URT can be
used to address learned nonuse by delivering high-intensity,
repetitive training. Repetitive and high-intensity movement
of the hemiplegic arm results in the reorganization of the
affected motor cortex and consequently rebalances the inter-
hemispheric asymmetry caused by unilateral stroke.”~"> The
results of this meta-analysis were in line with this theory
and suggest that URT is an effective intervention for improv-
ing the upper extremity motor function of stroke patients.
In addition, the theory on the recovery of bilateral hemi-
spheric interaction after stroke suggests that bilateral arm
training is potentially more effective than unilateral arm train-
ing in upper extremity rehabilitation. The underlying mecha-
nisms may include the activation of the ipsilateral non-cross
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Wu et al

Study %
ID Hedges’g (95%CI) Weight
=3 months 1
Lum et al. 2002 ——— 0.81 (0.02, 1.60) 2.24
Housman et al. 2007 —_— 0.38 (-0.44, 1.21) 212
Viope et al. 2008 —_— 0.21 (-0.65, 1.07) 2.02
Housman et al. 2009 —_—r— 0.43 (-0.29, 1.14) 2.52
Lo et al. 2010 —_— -0.01 (-0.42, 0.39) 3.96
Hsieh et al. 2011a —+ 0.36 (-0.78, 1.51) 1.36
Hsieh et al. 2011b o— -0.07 (-1.20, 1.07) 1.38
Conroy et al. 2011a ——E—O— 0.49 (-0.15, 1.13) 2.82
Conroy et al. 2011b —-ﬁl— 0.14 (-0.50, 0.79) 2:79
Reinkensmeyer et al. 2012 1T 0.55 (-0.23, 1.34) 2.26
Wu et al. 2012a ——— 0.11 (-0.63, 0.85) 2.41
Wu et al. 2012b ————t— -0.20 (-0.95, 0.54) 2.41
Hsieh et al. 2012a —_——— 0.35 (-0.31, 1.01) 2.73
Hsieh et al. 2012b —0:— 0.03 (-0.62, 0.68) 2.76
Yang et al. 2012a ¢ 0.49 (-0.58, 1.56) 1.50
Yang et al. 2012b T 0.00 (-1.05, 1.05) 1.55
Liao et al. 2012 —_— 0.70 (-0.21, 1.61) 1.88
Byl et al. 2013a . - -0.68 (-1.97, 0.62) 1.12
Byl et al. 2013b g : -0.62 (-1.91, 0.67) 1.13
Timmermans et al. 2014 —0|— 0.08 (-0.76, 0.92) 2.09
Ang et al. 2014 & 0.51 (-0.53, 1.55) 1.57
Brokaw et al. 2014 4 0.27 (-0.88, 1.43) 1.34
Klamroth et al. 2014 ——— 0.47 (0.00, 0.93) 3.65
Susanto et al. 2015 —_————— -0.10 (-1.00, 0.80) 1.90
McCabe et al. 2015 —0——: -0.47 (-1.30, 0.36) 2.1
Hsieh et al. 2018a —_— 0.08 (-0.68, 0.84) 2.35
Hsieh et al. 2018b —_— 0.23 (-0.56, 1.02) 2.25
Daunoraviciene et al. 2018 1 —— 2.16 (1.30, 3.03) 2.00
Calabro et al. 2019 | —— 1.23 (0.62, 1.84) 2.95
Hsu et al.2019 —_—— 0.25 (-0.35, 0.85) 2.99
Hung et al. 2019a ——,0— 0.52 (-0.37, 1.42) 1.92
Hung et al. 2019b T + 0.87 (-0.06, 1.80) 1.84
Subtotal (l-squared =34.2%, p = 0.032) <> 0.33 (0.16, 0.50) 69.95

1
<3 months !
Rabadi et al. 2008 —O—+ -0.28 (-1.16, 0.60) 1.96
Burgar et al. 2011 —— -0.58 (-1.24, 0.08) 2.73
Masiero et al. 2011 —_—r -0.18 (-1.03, 0.68) 2.03
Hesse et al. 2014 —_— -0.29 (-0.86, 0.27) 3.16
Sale et al. 2014 ——— 0.54 (-0.01, 1.09) 3.23
Masiero et al. 2014 O B 0.41 (-0.31, 1.14) 2.47
Prange et al. 2015 ——t, -0.25 (-0.73, 0.22) 3.59
Takahashi et al. 2016 ——— 0.31 (-0.22, 0.84) 3.33
Tomic et al. 2017 | — 1.32 (0.46, 2.18) 2.02
Franceschini et al. 2019 | —— 0.94 (0.34, 1.54) 2.99
Dehem et al. 2019 —_ 0.44 (-0.26, 1.15) 2.55
Subtotal (l-squared = 64.8%, p = 0.002) <:> 0.21 (-0.12, 0.54) 30.05
- 1
Overall (I-squared = 45.4%, p = 0.001) <> 0.29 (0.13, 0.44) 100.00
NOTE: Weights are from random effects analysis :

|
-3.03 0 3.03

control group

experiment group

Figure 3. Meta-analysis of changes in FMA-UE score between RT and control groups in the different stages of stroke. FMA-UE = Fugl-Meyer

assessment for upper extremity; RT = robot-assisted therapy.

corticospinal pathway. Bilateral arm training may be bet-
ter than unilateral arm training in terms of increasing the
excitability of the ipsilesional motor cortex and transcallosal
inhibition from the ipsilesional to the contralesional motor
cortex, which results in the rebalance of interhemispheric
activities in stroke patients.“’12 However, in our review, we
found that the effect of BRT was not superior to conventional

rehabilitation. A potential reason for this finding may be the
limited number of studies/the units of analysis (n = 11/n = 14)
that used BRT. In addition, BRT can be varied according to
symmetrical, asynchronous, and cooperative training modes
with bilateral arms, compared with URT, which is impor-
tant for neurological recovery. However, the included stud-
ies applied bilateral synchronous movements during BRT.
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Robot-Assisted Therapy for Stroke

Study %
D Hedges’ g (95% CI)  Weight
moderate-severe -

Lum et al. 2002 :—0— 0.81 (0.02, 1.60) 1.86
Lum et al. 2006a 1 g 0.54 (-0.49, 1.58) 1.28
Lum et al. 2006b ! g 0.53 (-0.52, 1.59) 1.24
Lum et al. 2006¢ g T -0.64 (-1.87, 0.60) 0.97
Housman et al. 2007 —_— T 0.38 (-0.44, 1.21) 1.75
Rabadi et al. 2008 —_— -0.28 (-1.16, 0.60) 1.61
Viope et al. 2008 g 0.21 (-0.65, 1.07) 1.67
Housman et al. 2009 —————— 0.43 (-0.29, 1.14) 211
Lo et al. 2010 ——i— -0.01 (-0.42, 0.39) 3.50
Burgar et al. 2011 & , -0.58 (-1.24, 0.08) 2.30
Masiero et al. 2011 —-O-—e— -0.18 (-1.03, 0.68) 1.67
Conroy etal. 2011a - 0.49 (-0.15, 1.13) 2.39
Conroy et al. 2011b —_— 0.14 (-0.50, 0.79) 2.36
Reinkensmeyer et al. 2012 o . mmm— 0.55 (-0.23, 1.34) 1.87
Byl et al. 2013a < T -0.68 (-1.97, 0.62) 0.89
Byl et al. 2013b = - -0.62 (-1.91, 0.67) 0.90
Hesse et al. 2014 ——1t -0.29 (-0.86, 0.27) 2.71
Ang et al. 2014 —t 0.51 (-0.53, 1.55) 1.27
Brokaw et al. 2014 -4~ 0.27 (-0.88, 1.43) 1.08
Sale et al. 2014 ——p—— 0.54 (-0.01, 1.09) 2.77
Masiero et al. 2014 ——!—ﬁ— 0.41 (-0.31, 1.14) 2.06
Klamroth et al. 2014 —IO— 0.47 (0.00, 0.93) 3.18
Susanto et al. 2015 -_— -0.10 (-1.00, 0.80) 1.56
McCabe et al. 2015 ——TT -0.47 (-1.30, 0.36) 1.74
Tomic et al. 2017 | —— 1.32 (0.46, 2.18) 1.66
Calabro et al. 2019 1 —— 1.23 (0.62, 1.84) 2.51
Rodgers et al. 2019 - -0.06 (-0.25, 0.12) 4.69
Franceschini et al. 2019 | e——— 0.94 (0.34, 1.54) 2.55
Hung et al. 2019a —_—t 0.52 (-0.37, 1.42) 1.58
Hung et al. 2019b ————— 0.87 (-0.06, 1.80) 1.50
Subtotal (I-squared = 53.0%, p = 0.000) <> 0.27 (0.08, 0.46) 59.23
mild-moderate :

Hsieh et al. 2011a na 0.36 (-0.78, 1.51) 1.09
Hsieh et al. 2011b — -0.07 (-1.20, 1.07) 1.11
Wu et al. 2012a —r— 0.11 (-0.63, 0.85) 2.01
Wu et al. 2012b —o_-'—-—_’_ -0.20 (-0.95, 0.54) 2.01
Hsieh et al. 2012a 0.35 (-0.31, 1.01) 2.31
Hsieh et al. 2012b —_— 0.03 (-0.62, 0.68) 2.33
Yang et al. 2012a — 0.49 (-0.58, 1.56) 1.22
Yang et al. 2012b : 0.00 (-1.05, 1.05) 1.25
Liao et al. 2012 _I_._ 0.70 (-0.21, 1.61) 1.54
Timmermans et al. 2014 —_— 0.08 (-0.76, 0.92) 1.73
Takahashi et al. 2016 ——— 0.31 (-0.22, 0.84) 2.87
Hsieh et al. 2018a —_— 0.08 (-0.68, 0.84) 1.95
Hsieh et al. 2018b —— 0.23 (-0.56, 1.02) 1.87
Hsu et al.2019 —_— 0.25 (-0.35, 0.85) 2.54
Subtotal (l-squared = 0.0%, p = 0.992) <> 0.19 (-0.01, 0.40) 25.83
: 1

mild-severe :

Prange et al. 2015 —0——: -0.25 (-0.73, 0.22) 3.12

Wolf et al. 2015 —GT -0.03 (-0.44, 0.38) 3.49

Hsieh et al. 2017 —_— 0.05 (-0.66, 0.75) 2.14

Daunoraviciene et al. 2018 | —— 2.16(1.30, 3.03) 1.65

Dehem et al. 2019 0.44 (-0.26, 1.15) 214

Carpinella et al. 2020 —_—— 0.10 (-0.54, 0.73) 2.40

Subtotal (I-squared = 80.0%, p = 0.000) 0.34 (-0.21, 0.89) 14.93

; 1

Overall (I-squared = 45.9%, p = 0.000) <> 0.25 (0.11, 0.38) 100.00
1

NOTE: Weights are from random effects analysis 1

I | |
-3.03 0 3.03

control group

experiment group

Figure 4. Meta-analysis of changes in FMA-UE score between RT and control groups according to upper extremity motor impairment level. FMA-UE =

Fugl-Meyer assessment for upper extremity; RT = robot-assisted therapy.

Thus, whether BRT may provide benefits to stroke patients
with ipsilesional upper extremity dysfunction, which occurs
in approximately one-third of stroke survivors, is unclear.”?
Further studies are needed to investigate these points.

In terms of disease stage, the results of this meta-analysis
were consistent with those of a previous meta-analysis

by Zhang et al'® in that RT led to significant improve-
ment in FMA-UE scores compared with the dose-matched
conventional rehabilitation in chronic stroke patients.
Spontaneous biological recovery is prominent within the first
3 months after stroke, and it is mostly diminished 6 months
after stroke. The nonsignificant results may be due to the
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Wu et al

Study %
ID Hedges’ g (95% CI)  Weight
End-effector ;

Lum et al. 2002 :—0— 0.81 (0.02, 1.60) 1.86
Lum et al. 2006a : 4~ 0.54 (-0.49, 1.58) 1.28
Lum et al. 2006b —t 0.53 (-0.52, 1.59) 1.24
Lum et al. 2006¢c -4- T -0.64 (-1.87, 0.60) 0.97
Rabadi et al. 2008 ——t—t— -0.28 (-1.16, 0.60) 1.61
Viope et al. 2008 —_— 0.21 (-0.65, 1.07) 1.67
Lo et al. 2010 —_— -0.01 (-0.42, 0.39) 3.50
Hsieh et al. 2011a 4 0.36 (-0.78, 1.51) 1.09

- |
T
Hsieh et al. 2011b ~— -0.07 (-1.20,1.07) 1.1
Burgar et al. 2011 —_— -0.58 (-1.24, 0.08) 2.30
Masiero et al. 2011 —_——r -0.18 (-1.03, 0.68) 1.67
Conroy et al. 2011a - 0.49 (-0.15, 1.13) 2.39
Conroy et al. 2011b ——— 0.14 (-0.50, 0.79) 2.36
Wu et al. 2012a ———— 0.11 (-0.63, 0.85) 2.01
Wu et al. 2012b —0_-':—‘_ -0.20 (-0.95, 0.54) 2.01
Hsieh et al. 2012a 0.35 (-0.31, 1.01) 2.31
Hsieh et al. 2012b —0—=— 0.03 (-0.62, 0.68) 2.33
Yang et al. 2012a : - 0.49 (-0.58, 1.56) 1.22
Yang et al. 2012b - 0.00 (-1.05, 1.05) 1.25
Liao et al. 2012 —4—e— 0.70 (-0.21, 1.61) 1.54
Timmermans et al. 2014 —_—r— 0.08 (-0.76, 0.92) 1.73
Hesse et al. 2014 —— -0.29 (-0.86, 0.27) 2.7
Ang et al. 2014 —t- 0.51 (-0.53, 1.55) 1.27
Sale et al. 2014 ——— 0.54 (-0.01, 1.09) 2.77
Masiero et al. 2014 ——}-0— 0.41 (-0.31, 1.14) 2.06
McCabe et al. 2015 _0——| -0.47 (-1.30, 0.36) 1.74
Wolf et al. 2015 —_— -0.03 (-0.44, 0.38) 3.49
Takahashi et al. 2016 —t—— 0.31 (-0.22, 0.84) 2.87
Hsieh et al. 2017 —_— 0.05 (-0.66, 0.75) 2.14
Tomic et al. 2017 | | ——— 1.32 (0.46, 2.18) 1.66
Hsieh et al. 2018a —_——— 0.08 (-0.68, 0.84) 1.95
Hsieh et al. 2018b —I—o— 0.23 (-0.56, 1.02) 1.87
Calabro et al. 2019 : —_—— 1.23 (0.62, 1.84) 2.51
Rodgers et al. 2019 - i -0.06 (-0.25, 0.12) 4.69
Franceschini et al. 2019 \ —_—— 0.94 (0.34, 1.54) 2,55
Dehem et al. 2019 —_—— 0.44 (-0.26, 1.15) 2.14
Hsu et al.2019 —_— 0.25 (-0.35, 0.85) 2.54
Hung et al. 2019a —_—— 0.52 (-0.37, 1.42) 1.58
Hung et al. 2019b T——— 0.87 (-0.06, 1.80) 1.50
Carpinella et al. 2020 ——— 0.10 (-0.54, 0.73) 2.40
Subtotal (I-squared = 35.4%, p = 0.016) 0.22 (0.09, 0.36) 81.88

Exoskeleton

Housman et al. 2007
Housman et al. 2009
Reinkensmeyer et al. 2012

0.38 (-0.44, 1.21) 1.75

0.55 (-0.23, 1.34) 1.87

Byl et al. 2013a

-0.68 (-1.97, 0.62) 0.89

Byl et al. 2013b

-0.62(-1.91,0.67)  0.90

Brokaw et al. 2014
Klamroth et al. 2014
Prange et al. 2015 e
Susanto et al. 2015 —
Daunoraviciene et al. 2018

-

1

I

I ¢
————— 0.43 (-0.29, 1.14) 2.11
_l_‘_

¢ 0.27 (-0.88, 1.43) 1.08
—{-0— 0.47 (0.00, 0.93) 3.18
— -0.25 (-0.73, 0.22) 3.12
-0.10 (-1.00, 0.80) 1.56

————— 2.16(1.30, 3.03) 1.65

1
]
1

Subtotal (I-squared = 68.9%, p = 0.001) = 0.31(-0.14, 0.76) 18.12

) 1

Overall (I-squared = 45.9%, p = 0.000) <> 0.25 (0.1, 0.38) 100.00
1

NOTE: Weights are from random effects analysis 1

| |
-3.03 0 3.03

control group

experiment group

Figure 5. Meta-analysis of changes in FMA-UE score between RT and control groups according to RT device. FMA-UE = Fugl-Meyer assessment for

upper extremity; RT = robot-assisted therapy.

strong spontaneous biological recovery in stroke patients
in the early stage. This may lead to a similar improvement
in upper limb motor function regardless of the type of
training provided. Therefore, poststroke patients with limited
potential for spontaneous recovery may obtain more benefits
from RT than from conventional rehabilitation.

With regard to the severity of upper extremity motor
impairment in stroke patients, the functional gains associated
with RT were higher than those associated with conventional
rehabilitation in stroke patients with moderate to severe upper
limb impairment. Patients with notable upper limb hemiplegia
likely obtain more benefits from RT, where their movements
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Study
ID

Robot-Assisted Therapy for Stroke

%
Hedges’g (95%CI) Weight

T
Proximal joints 1
Lum et al. 2002 + g 0.81 (0.02, 1.60) 2.37
Lum et al. 2006a —s 0.54 (-0.49, 1.58) 1.58
Lum et al. 2006b : ¢ 0.53 (-0.52, 1.59) 1.53
Lum et al. 2006¢ -4- T -0.64 (-1.87, 0.60) 1.18
Rabadi et al. 2008 * T -0.28 (-1.16, 0.60) 2.02
Viope et al. 2008 -4~ 0.21 (-0.65, 1.07) 2.10
Burgar et al. 2011 —_— : -0.58 (-1.24, 0.08) 3.00
Masiero et al. 2011 - : -0.18 (-1.03, 0.68) 2.10
Conroy et al. 2011a S B . SEm— 0.49 (-0.15, 1.13) 3.12
Conroy et al. 2011b —_— 0.14 (-0.50, 0.79) 3.08
Reinkensmeyer et al. 2012 — 0.55 (-0.23, 1.34) 2.38
Sale et al. 2014 e e 0.54 (-0.01, 1.09) 3.70
Masiero et al. 2014 : - 0.41 (-0.31, 1.14) 2.66
Prange et al. 2015 —— -0.25 (-0.73, 0.22) 4.25
McCabe et al. 2015 -4~ T -0.47 (-1.30, 0.36) 2.20
Takahashi et al. 2016 —_—— 0.31 (-0.22, 0.84) 3.85
Tomic et al. 2017 : -4~ 1.32 (0.46, 2.18) 2.09
Calabro et al. 2019 | —— 1.23 (0.62, 1.84) 3.31
Rodgers et al. 2019 1 -0.06 (-0.25, 0.12) 7.00
Franceschini et al. 2019 | —— 0.94 (0.34, 1.54) 3.36
Carpinella et al. 2020 —_—— 0.10 (-0.54, 0.73) 3.14
Subtotal (I-squared =61.9%, p = 0.000) <> 0.27 (0.05, 0.50) 60.02
: 1
Distal joints 1
Hsieh et al. 2011a - 0.36 (-0.78, 1.51) 1.34
Hsieh et al. 2011b * - -0.07 (-1.20, 1.07) 1.36
Wu et al. 2012a or 0.11 (-0.63, 0.85) 2.58
Wau et al. 2012b L g T -0.20 (-0.95, 0.54) 2.57
Hsieh et al. 2012a —_— 0.35 (-0.31, 1.01) 3.01
Hsieh et al. 2012b —_—— 0.03 (-0.62, 0.68) 3.04
Yang et al. 2012a : g 0.49 (-0.58, 1.56) 1.50
ang et al. 2012b 1 = 0.00 (-1.05, 1.05) 1.55
Liao et al. 2012 T A g 0.70 (-0.21, 1.61) 1.93
Ang et al. 2014 —- 0.51 (-0.53, 1.55) 1.57
Susanto et al. 2015 g + -0.10 (-1.00, 0.80) 1.95
Wolf et al. 2015 —0—:— -0.03 (-0.44,0.38)  4.85
Hsieh et al. 2017 & T 0.05 (-0.66, 0.75) 2.76
Dehem et al. 2019 — 0.44 (-0.26, 1.15) 276
Hsu et al.2019 —_— 0.25 (-0.35, 0.85) 3.36
Hung et al. 2019a —t 0.52 (-0.37, 1.42) 1.98
Hung et al. 2019b - -5~ 0.87 (-0.06, 1.80) 1.87
Subtotal (I-squared = 0.0%, p = 0.925) <> 0.19 (0.01, 0.37) 30.98
: |
Overall (l-squared = 39.7%, p = 0.007) 0.25 (0.10, 0.39) 100.00

1
NOTE: Weights are from random effects analysis 1

|
-2.18 0 2.18

control group

experiment group

Figure 6. Meta-analysis of changes in FMA-UE score between RT and control groups according to training focus. FMA-UE = Fugl-Meyer assessment for

upper extremity; RT = robot-assisted therapy.

can be assisted, than those with mild hemiplegia, who can
perform most training tasks without robotic assistance.

We also demonstrated that the application of end effector
robots could lead to better outcomes in the restoration of
motor impairment after stroke than conventional rehabilita-
tion. End effector robots allow multijoint coordination, which
segment the arm movements, and may promote relearning
of normal motor patterns of the affected limbs.”* However,
a recent clinical trial by Lee et al® reported no interaction

effect on FMA-UE scores after training with end effector and
exoskeleton robots. Because only 1 study was available for the
direct comparison, a meta-analysis could not be performed to
determine which type of robot device is potentially superior.
Further studies are needed to investigate this point.

Limitations

This study is not free from limitations. First, the present meta-
analytic review only focused on the effects of RT on the
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outcome measures of upper extremity motor impairment to
maintain the homogeneity of our meta-analysis and subgroup
comparisons. Other important domains such as activities of
daily living were not evaluated in the meta-analysis owing
to the heterogeneity of the outcome measurements. Second,
although this review examined the retention effects, the results
should be considered as preliminary due to the differences
in the follow-up lengths. Third, all the moderators remained
insignificant in the statistical tests by meta-regression and Q
test for the between-subgroup variance. Although Q test has
taken the weight of each study into account in the calculation,
the fact that there are more studies in some subgroups may still
influence the statistical comparisons. Also, we were unable
to perform further multivariate meta-regression by includ-
ing all significant modulators, with regards to the statistical
insignificance. Therefore, the results of the subgroup analyses
should be interpreted with caution. The numerically large
effect sizes in the subgroup analyses may help determine the
modulators when designing future studies about RT in stroke
rehabilitation.

Conclusion

RT is an effective intervention for improving upper extremity
motor impairment in stroke patients. The superiority of RT
compared with conventional methods might be more obvious
when it is applied to stroke patients with notable upper limb
hemiplegia and limited potential for spontaneous biological
recovery. In addition, URT is likely to be superior to BRT.
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