
Movement Variability and the Use of
Nonlinear Tools: Principles to Guide
Physical Therapist Practice
Regina T Harbourne, Nicholas Stergiou

Fields studying movement generation, including robotics, psychology, cognitive
science, and neuroscience, utilize concepts and tools related to the pervasiveness of
variability in biological systems. The concepts of variability and complexity and the
nonlinear tools used to measure these concepts open new vistas for physical therapist
practice and research in movement dysfunction of all types. Because mounting
evidence supports the necessity of variability for health and functional movement,
this perspective article argues for changes in the way therapists view variability, both
in theory and in action. By providing clinical examples, as well as applying existing
knowledge about complex systems, the aim of this article is to create a springboard
for new directions in physical therapist research and practice.
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Variability in human perfor-
mance and the nonlinear man-
ner in which skills and charac-

teristics of movement change over
time reflect the complexity of the
movement system. As Bernstein1 de-
scribed, multiple degrees of freedom
of the body, including joints, mus-
cles, and the nervous system, com-
bine with external forces during
movement to produce countless pat-
terns, forms, and strategies. The re-
dundancy of the system allows for
the use of multiple strategies to ac-
complish any given task. Logically,
there are multiple performance vari-
ants for each movement, depending
on the constraints of each individu-
al’s system. How do therapists utilize
these redundancies in practice? Al-
though many movement science and
neuroscience students are now well
versed in the importance of variabil-
ity, this information has not been in-
tegrated into many physical therapy
interventions and is far from being
embedded in general practice.2

Think about the last time you en-
couraged a patient to acquire a new
or more-efficient movement. How
did you go about it? Did you demon-
strate the movement and ask the pa-
tient to copy your movement pat-
tern? Did you ask the patient to
experiment with various movement
strategies to find success? Perhaps
you asked the patient to think about
the movement, the goal, a similar
task, or a mental image of perfor-
mance. Was some feature of the
movement a focus for measurement
to determine progress or change? Re-
gardless of the practice setting, we
ask patients to move, and we gener-
ally ask them to move differently
than they moved before they came
to us. Although our goals often do
not explicitly target variability in
movement, our implied expectation
is that the functional movement that
emerges will be adaptive and flexible
enough to meet the everyday goals
of our patients. To achieve this flex-

ibility, our patients need adequate
variability of the motor system. It fol-
lows that adequate variability should
be a focal point of examination and
intervention in order to achieve op-
timal function for the individual.

Clinicians trained in medical fields
use linear models for prediction and
problem solving.3 However, it is be-
coming increasingly clear that linear
models are limited in many cases and
are certainly not the optimal model
for function. Professionals in several
areas of health care, including epi-
demiology, infectious disease pro-
cesses, and biomedicine, are turning
to nonlinear models for solutions
to difficult problems.4 For example,
drug dosages are nonlinear; one can-
not increase the dose for more effect
because there is generally a thresh-
old value at which the desired effect
occurs and beyond which negative
effects occur.5 In our field, thera-
pists know that a given amount of
practice cannot ensure the learning
of a skill in a linear manner. Our
patients usually learn sporadically,
progressing in a nonlinear manner
over time. In addition, rates and
paths of progress vary among indi-
viduals with the same diagnoses who
are similar in characteristics. Motor
learning progresses nonlinearly, ex-
hibiting nonlinear learning curves
depending on the task, conditions,
and characteristics of the learner.6

Linear can be defined as pertaining
to a straight line, or consisting of
only one dimension. Nonlinear, usu-
ally used with the term “dynamics,”
as in “nonlinear dynamics,” can be
defined as “not in a straight line,” or
as a system whose output is not pro-
portional to its input.* Nonlinear sys-
tems are more complex than linear
systems, necessitating the use of sets
of equations producing unpredict-
able outcomes that exhibit chaotic

features. In general, biological sys-
tems, including humans, are com-
plex, nonlinear systems with inherent
variability in all healthy organisms.7

In this perspective article, we will
provide an overview of the con-
structs of variability, complexity in
human movement, and nonlinear
analysis. This overview focuses on
clinical relevance; therefore, the def-
initions and explanations herein are
more conceptual than mathematical.
We first describe variability of move-
ment and its relationship to com-
plexity and the changing view of the
importance of variability for success-
ful function. Next, we review non-
linear measures and the concept of
complexity in movement. Finally,
we propose principles and examples
of the use of variability, complexity,
and nonlinearity in examination, in-
tervention, and research compo-
nents of physical therapist practice.

The Importance of
Variability and the
Concepts of Nonlinearity
Variability: For Better or Worse?
Before discussing the changing per-
spective on variability as it pertains
to clinical application, consistent in-
terpretation requires definitions of
terminology. First, the definition of
variability occurs in behavioral, bio-
logical, and statistical forms. Behav-
ioral variability describes differ-
ences in observed behavior when an
entity is placed in the exact same
situation.8 Webster’s Dictionary de-
fines variability in a biological sense
as “the power possessed by living
organisms, both animal and vegeta-
ble, of adapting themselves to mod-
ifications or changes in their environ-
ment, thus possibly giving rise to
ultimate variation of structure or
function.”9 Statistical variability re-
fers to measures of centrality around
a mean or an average and includes
measures such the standard devia-
tion, the range of possible values,

* Terms needed to understand nonlinear con-
cepts are underlined and are listed in
Appendix 1.
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and the variance. All of these defini-
tions contribute to our understand-
ing of human variability.

Human movement variability encom-
passes the normal variations that oc-
cur in motor performance across
multiple repetitions of a task over
time.10 Variability is inherent within
all biological systems and reflects
variation in both space and time,
which can be illustrated easily in hu-
man movement. As a person walks
through sand or snow, his or her
footprints never repeat exactly, re-
flecting variability from step to step
in a continuous cycle of movement.
During quiet standing, we sway
around a central equilibrium point
without ever remaining exactly still
as we maintain orientation to the
world. Are these examples of vari-
ability in movement considered er-
rors in motor performance, or are
they normal output of a healthy mo-
tor system?

Traditionally, random error or noise
within the system was deemed re-
sponsible for the variability mea-
sured during repetitions of a skill.11

Motor learning textbooks usually de-
scribe movement variability as error
and skilled movement as movement
with decreased variability.12 General-
ized motor program theory (GMPT)
considers variation in a given move-
ment pattern to be the result of
errors in the ability to predict the
necessary parameters for using the
underlying motor program.13 How-
ever, there is mounting evidence of
the importance of variability in nor-
mal movement, which reveals varia-
tion not as error but as a necessary
condition for function. Variability
reflects multiple options for move-
ment, providing for flexible, adap-
tive strategies that are not reliant on
rigid programs for each task or for
each changing condition encoun-
tered. Optimal variability as a central
feature of normal movement is con-
sistent with a nonlinear approach.

Counter to a therapeutic assumption
that equilibrium is an indicator of
health, nonlinear theories empha-
size disequilibrium as healthy. This
means that the system never quite
settles into a stable state, and con-
stant fluctuations characterize the
healthy variability that allows adap-
tation to environmental change.4 A
complex dynamic system is in slight
disequilibrium with the environment
and maintains this disequilibrium
over time.14 Goldberger15 described
complete equilibrium as equivalent
to the death of the organism because
it implies a static, nondynamic state.
Therefore, health is indicated by a
dynamic equilibrium that is not a
static state.

Rather than being a negative feature,
variability reflects important infor-
mation for the maintenance of the
health of the system. Reduced vari-
ability is known to cause repetitive
stress injury in a mechanical sense.
Although outwardly this appears to
be a mechanical problem, the under-
lying story describes an information
problem. The lack of variability in
movement leads to abnormal map-
ping of the sensory cortex, which
subsequently disturbs motor func-
tion. These neural maps (both sen-
sory and motor) are more complex
when movement variability is
present and less complex when vari-
ability is reduced.16–18 Movements
with an optimal amount of variability
avoid this abnormal mapping and es-
sentially contribute to the neuroplas-
ticity needed for maintaining or
achieving functional skill. Thus, vari-
ability of the movements used for the
task contributes information to the
nervous system, which then serves
to prevent injury.

Too much variability also can be a
problem, such as in an individual
with an ataxic movement disorder.
Movements that usually fall within a
specific range of variability to accom-
plish a task such as gait unexpect-

edly fall both in and outside the ac-
ceptable range in such an individual.
When one movement falls outside
the expected range, the next move-
ment is perturbed. Gait is an exam-
ple of a continuous, cyclic task,
within which the steps cannot be
random but also are not completely
repeatable or robotic. Thus, we
propose that optimal movement
variability lies between too much
variability and complete repeata-
bility.10 Scientists define this optimal
range of variability using mathemati-
cal chaos. Furthermore, techniques
from mathematical chaos describe
important features of variability.19,20

How Nonlinear Tools Advance
Understanding of Variability
We have established that variability
is not a negative feature of functional
movement or of biological systems
in general. However, exactly when is
variability good? Moreover, how do
we determine whether the varia-
bility we see is good variability or
bad variability? The answers to these
questions lie in understanding dy-
namic models of movement.

The conversation about variability
began with systems theory, a depar-
ture from linear models. In 1990 at
the II STEP conference, dynamic sys-
tems theory (DST) was promoted as
a model for the progression of move-
ment skills and as a way to model
change in movement skills for phys-
ical therapists.21,22 Dynamic systems
theory introduced the notions of
stability and nonlinearity to explain
variability. Based on environmental,
biomechanical, and morphological
constraints, any biological system
will self-organize to find the most
stable solution. An increased amount
of variability indicates less coopera-
tive behavior among the compo-
nents of the system, which eventu-
ally can drive the system to new
attractor states or behaviorally stable
solutions. This is a nonlinear system
because the input does not lead to a
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linear change in output. Input
changes the variability of the system,
which may drive the emergence
of a new behavior. Importantly, the
measure of the variability provides a
means to classify the stability of the
system. Thus, in DST, small amounts
of variability will indicate a highly
stable behavior.

The GMPT and DST perspectives are
similar in that both recognize that
decreased variability results from
the efficient execution of a given
movement pattern. Dynamic sys-
tems theory differs, however, be-
cause it proposes that at a specific
critical point, variability increases
and dominates the system as new
movement emerges. The system be-
comes highly unstable and switches
to a new, stable behavioral state.
An example of this process occurs
when an individual learns to ride a
bicycle. If a child has been using
training wheels, pedaling and con-
trolling the direction of the bicycle
are stable behaviors. However, when
the training wheels are removed,
the system is perturbed. Pedaling
and directional control are very er-
ratic and unstable as the individual
learns the interaction of balance
with the speed of the bicycle and
controlling movement through space.
At the point where the individual
understands how the parameters of
speed, balance, and directional con-
trol interact, the behavioral state (in-
dependent bicycle riding) becomes
stable. The system must cross a crit-
ical point, where the speed of the
bicycle makes balance easier for the
behavior to become less variable in
its new state.

In DST, increased variability in the
system reveals growing instability,
which may lead to a shift to a new
attractor, or a new behavior. Con-
versely, a lack of variability traps a
behavior in a specific state or attrac-
tor. Thus, DST advances our under-
standing of transitions between be-

havioral states, with variability
considered not as error but rather as
a source of behavioral change.
Through DST, the importance of
variability attracted the attention of
developmentalists, who recognize
DST as a theoretical starting point
to study the emergence or self-
organization of developmental ac-
tions, perceptions, and cognitive
skills.23 However, the variability
within an existing state (as opposed
to a developing state), behavior, or
established movement function has
not been appreciated as important
to skillful movement in adults or in
describing pathological conditions.
The use of linear measures, such as
the standard deviation, limits our un-
derstanding of variability as a win-
dow to view the nature of adaptation
in functional skills. Consequently,
the ideas from DST of “stable state”
and “attractor” are not intrinsically
accepted as part of our therapeutic
world. This is partially because we
have lacked the tools to see the “hid-
den” information in the variability of
movement progressing over time.
Variability and its underlying charac-
teristics are not completely de-
scribed or quantified in either GMPT
or DST, even though variability has
an important role in both theories.

Over time, it was recognized that
neither GMPT nor DST accounts for
the observation that some behaviors,
which appear to be stable, paradox-
ically occur in quite variable ways.
This is especially evident when we
observe elite sports players or musi-
cians performing skillfully. Even
though they perform the same skill
as others, they seem to have devel-
oped an infinite number of ways to
perform it. Thus, it seems that a very
stable behavioral state is supported
by a very “rich” behavioral reper-
toire. If we consider fundamental
motor skills (ie, gait, posture) and
not the skills of an elite athlete, we
are all skillful in our ability to walk
through crowds or on diverse and

challenging terrains. Therefore, it
seems that variability does not de-
crease when we develop and refine a
stable behavioral state but actually
increases. The structure of variability
(as opposed to amount) can be de-
scribed using nonlinear tools. These
nonlinear tools best capture varia-
tion in how a motor behavior
emerges in time, for which the tem-
poral organization in the distribution
of values is of interest. Temporal or-
ganization, or “structure,” is quanti-
fied by the degree to which values
emerge in an orderly (ie, predict-
able) manner, often across a range of
time scales. Nonlinear tools quantify
the nature or the structure of vari-
ability and provide the missing abil-
ity to quantify the concept of “stabil-
ity” from DST.

Figure 1 illustrates these concepts of
variability. The figure pictures 4 dif-
ferent time series, with the linear
measure of range and the nonlinear
measure of approximate entropy
(ApEn) listed beside each signal. The
first and third rows show signals that
look messy, seeming to be random,
with one signal larger in amplitude
than the other. Beside these rows,
the range values reflect the varying
amount of the signal between the 2
traces, with the larger number by
the larger signal; however, the ApEn
values are equivalent for these 2
signals. This reflects the fact that
only the amplitude varies and not the
structure of the time series. The sec-
ond and fourth rows depict time
series that are very regular, a sine
wave. Again, comparison of the
range shows they are different in am-
plitude but the same in structure, as
reflected in the ApEn value. How-
ever, comparison of the first signal
with the second signal (and the third
signal with the fourth signal) shows
that the amplitude, quantified by the
range, is the same (and the standard
deviation, a linear measure of vari-
ability, also would be the same) but
that the structure of the series, de-
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scribed by the nonlinear ApEn value,
is different. Therefore, the amount of
variability measured by the standard
deviation (linear) and the structure
of variability measured by ApEn
(nonlinear) are not at all the same. In
fact, as we will discuss later, they
often are inversely related. More-
over, these different facets of vari-
ability can reveal information that
may lead to different clinical deci-
sions, which is illustrated in a clinical
example later.

Nonlinear Measurement
and Description
How Does Variability Relate to
Complexity in Functional
Movement?
In terms of physical therapy, varia-
bility describes the behavioral re-
pertoire possible for a given func-
tion. We will use the example of
controlling balance in a new task. If
you have never walked on a tight-

rope, imagine your first attempt. You
would likely have wide-ranging ex-
cursions of your center of pressure
(COP) at the support surface and
wide movements of your body seg-
ments as you try to balance. This
reveals large variability according to
many measures, including kinemat-
ics, COP movement, and center-of-
mass movement. The performer tries
many different strategies that may in-
clude stiffening or loosening various
body segments in an attempt to bal-
ance on the tightrope. The speed of
the performer’s reactions also may
be varied. However, these early at-
tempts to accomplish the task of bal-
ancing on the tightrope would not
be complex, even though they were
highly variable. Complexity would
arise from fine-tuned adjustments,
with selected and well-practiced yet
flexible strategies for balance. These
strategies utilize specific information
to make the optimal response, which

is characteristic of a skilled and prac-
ticed tightrope walker.

The overall task is difficult to break
into parts and analyze because the
different components are interde-
pendent, and there must be online
adjustments calibrated to the rest
of the system. The overall system is
complex because the analysis of the
system or function is inaccurate if
examined part by part. Although de-
scribing a range of movement op-
tions quantifies variability, complex-
ity is more difficult to measure. This
is because measuring each part of
the movement separately will not
give us an overall measure of the
complexity required for success in
the function. Complexity is some-
thing that is “hidden” within the
time series of a movement sequence
or strategy as it emerges over time.
Movements that occur at one mo-
ment affect and are affected by

Figure 1.
Comparison of linear and nonlinear measures of several signals. Four signals are displayed, with the respective values for range and
approximate entropy (ApEn).
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movements that occur either before
or after the movement in the mo-
ment. Tools for measuring complex-
ity come from nonlinear dynamics,
and mathematical models incorpo-
rate time to describe this complexity.

Linear Measures: Traditional
Measures of Dispersion
Linear tools to measure variability
provide information about the quan-
tity of a signal, they but do not tell us
about the time-evolving nature of
the signal. Linear tools include the
statistics of range, standard devia-
tion, and coefficient of variation and
are limited in their explanation of
human movement variability for sev-
eral reasons. One reason is that
data from several averaged trials gen-
erate a “mean” picture of an individ-
ual’s movement pattern. The mean
removes the temporal variations of
the movement and masks the true
structure of variability present in the
movement pattern. In addition, the
valid use of linear tools to study vari-
ability assumes that variations be-
tween repetitions of a task are ran-
dom and independent (of past
and future repetitions), which has
been shown to be false.24–26 Finally,
linear tools provide different an-
swers when compared with nonlin-
ear tools regarding the way that they
evaluate variability. For example, tra-
ditional linear measures of postural
sway quantify only the magnitude of
sway and not the temporally evolv-
ing dynamics (or disequilibrium) of
postural control. Despite their use in
many studies, it is becoming evident
that linear measures, such as the
range and standard deviation of
the COP, do not quantify stability of
the postural control system because
it is possible to have a large area of
the COP path while having a stable
posture or an unstable posture.27,28

Therefore, linear measures of vari-
ability do not accurately define con-
structs important in movement, such
as stability, because they only pro-

vide insight into the amount of vari-
ability (Fig. 1).

Nonlinear tools give us additional in-
formation about the structure of vari-
ability, which describes the evolu-
tion of the movement over time. This
is possibly the reason why previous
theoretical accounts of variability in
human movement (ie, GMPT, DST)
supported the notion that small
amounts of variability characterize a
very stable behavioral state and that
improved stability links directly to
decreasing variability. If we measure
improved performance linearly, this
conclusion is very reasonable. How-
ever, nonlinear measures provide ad-
ditional information and allow un-
derstanding of complexity.

In Figure 2, it is evident that the time
series signals on the left are different
from each other; the first is very reg-
ular, the second seems to have some
type of pattern that is difficult to de-
scribe verbally, and the third seems
to have no pattern. However, when
these signals are plotted versus their
velocities (phase plane), it becomes
clear that the first signal is com-
pletely regular, with no variation
from the first cycle to the last cycle.
The second signal forms a complex,
yet organized, pattern, with similar
paths for each cycle, but not repeat-
ing the same path and with each
path dependent on a previous path
and influencing the next path. The
third is a random signal, where the
paths are not similar and not depen-
dent on each other. We propose that
functional and healthy movement re-
sembles chaos, the complex center
picture. Nonlinear tools can deter-
mine whether a chaotic structure, or
complexity, is present in movement.

Why Is Variability Inherent in
Biological Systems?
Variability is inherent in biological
systems because it ensures survival.
Gerald Edelman, a Nobel laureate,
described this pervasive rule as

“population thinking,” and he used it
to describe the complexities of the
immune system and then expanded
the principles to neuroscience and
the way the mind works.29 The basic
idea is that variability allows an or-
ganism or group of organisms to
be more successful. This pertains to
antibodies and viral agents, animal
species, the nervous system, and the
evolutionary progress of plants and
animals. Variability allows choices
among options, selection of strate-
gies, and flexibility to adapt to varia-
tions in the environment. If an
animal rigidly performs limited be-
haviors or functions only within a
restricted environment, it is chal-
lenged for survival by a more-
adaptive animal. This Darwinian
principle describing the advantage
of variability lies within many levels
of organisms and is explicitly de-
scribed for the growth of genetic
complexity in an information-rich
environment.30 Variability exists at
many levels and within interacting
components of a system, often oper-
ating at different time scales. Thus,
variability may not be obvious at one
level but can be revealed at another
level. The variability inherent in bio-
logical systems from genes to behav-
ior cannot be considered error if it is
pervasive from one species to an-
other and is linked to survival.

Why Isn’t Movement
Variability Just Error?
If movement variability is equivalent
to error, we can reasonably assume
that more-skillful individuals would
have less error (or variability) at the
outset of learning and then quickly
drop to zero error. In fact, the oppo-
site is true. Individuals who use a
high degree of variability in cognitive
strategies at the beginning of task
development have greater learning
and eventual success in performing
the task.31 Movement researchers
have started to understand the im-
portance of variability in motor skill
learning and examine performance
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differently. For example, a study of
coordination variability in jumpers
revealed a U-shaped curve in the pro-
gression of variability.32 Initial high
variability occurs as different strate-
gies are attempted. Subsequently,
the learner moves toward a reduc-
tion in variability as he or she per-
forms more successfully. Then, sur-
prisingly, as the learner becomes an
expert, the variability increases
again. This skillful variability indi-
cates increasing flexibility of skill to
allow adaptation to perturbations.

Thus, the variability at the beginning
of task learning may seem like error
because the task is not performed
efficiently or accurately. However,
this initial variability also can be seen
as necessary to map the possibilities
of movement for the task. It then is
refined into a different type of vari-
ability when the performer is skillful.
Although variability typically is
known to decrease as a skill is ac-
quired, think about how our notions
of the mechanisms of skill acquisi-
tion change if we consider the role

of variability. If therapists consider
variability to be error, it is seen as
an impairment. However, if thera-
pists consider variability necessary
for skill acquisition, they will exam-
ine the structure of variability to help
build skill. Nonlinear measures can
unmask the hidden structure inher-
ent in variability so that intervention
can successfully address different
features of variability as necessary
during skill development. Although
clinicians can easily understand the
behavioral variability we have been

Figure 2.
Time series and corresponding phase-plane plot. (A) periodic function; (B) time series from a chaotic system, the Lorenz attractor;
(C) random time series.
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discussing, such as the number of
strategies for accomplishing a func-
tional task, it is more difficult to
understand what underlies that
variability.

Motor skills researchers increasingly
find nonlinear tools useful in reveal-
ing information through time series
analysis. The ApEn measure revealed
significant differences between ath-
letes who had a concussion and con-
trols who were healthy by analysis of
the COP time series, even after other
standard linear measures indicated
that the athletes had fully recovered
from the concussion.33,34 Moraiti et
al35 used the Lyapunov exponent
(LyE) measure to show that a group
of patients with anterior cruciate lig-
ament deficiencies exhibited signifi-
cantly more rigid and predictable
walking patterns than controls who
were healthy, suggesting a decrease
in system complexity and narrowed
functional responsiveness. Kurz and
Stergiou36 used an entropy measure
to show that neurophysiological
changes associated with aging may
result in less certainty of the neuro-
muscular system in selecting a stable
gait. Therefore, utilizing a nonlinear
perspective to examine variability
can assist in differentiating between
health and nonhealth.

Nonlinear Measures:
New Ways to Describe the
Nature of Variability
We have established that the amount
and structure of variability are 2 dif-
ferent things (Fig. 1). As a result,
changes in measures of the amount
of variability may be in a completely
different direction than changes in
measures that evaluate the structure
of variability. Similarly, in studies of
postural control, gait, and force pro-
duction, researchers found that as
measures of the amount of variability
increased, measures of the structure
or organization of variability de-
creased.37–39 Let us reflect on an ex-
ample of postural sway in standing.

As a person’s range of sway in-
creases, the standard deviation in-
creases, indicating a greater amount
of variability. However, if we use a
nonlinear tool to examine the fea-
tures of the variability in postural
sway, we may note that sway has
become more regular (with more-
repeatable movement patterns). This
makes sense, because the individual
must have some specific strategy of
control to make the appropriate ad-
justments for balance maintenance
when the range of movement is
large; otherwise, he or she would
fall. The relationship between linear
and nonlinear tools as described
above can further our understanding
of the emergence of functional,
adaptive movement.

Nonlinear measures always describe
a time series, or a series of measure-
ments taken at specific intervals over
uninterrupted time. For example,
the range of motion of a joint during
each step as a person walks, taken
with an electrogoniometer or mo-
tion analysis equipment sampled at
30 times per second over a 2-minute
period of time, can be presented as a
time series. Looking at a measure in
the context of time because it en-
ables us to understand the ability of
the system to adapt as conditions
change. The period of time may vary
from seconds to days, but the impor-
tant concept is that a behavior
emerging from the complex system
can be described over time with spe-
cific mathematical nonlinear tools
that are used to quantify order, pre-
dictability, regularity, and complex-
ity. A time series also is valuable be-
cause information that is important
to understand the health or function
of the individual may be revealed at
different time scales.

Characterizing the nature of the
complexity present in a time series is
of great interest in many scientific
domains, including biology. Healthy
systems, whether referring to heart

rate or the COP time series, corre-
spond to a rich behavioral state with
high complexity.10 This state is de-
fined as highly variable fluctuations
in physiological processes resem-
bling mathematical chaos. This al-
lows the system to have a relatively
predictable course, which can adapt
if a change in the environment oc-
curs. Low levels of complexity cor-
respond to states that resemble ran-
dom, noisy, and erratic behavior or
rigid, periodic, and regular behavior.
Therefore, with low complexity,
adaptability suffers. Nonlinear mea-
sures allow us to extract information
hidden in a time series and to evalu-
ate complexity. Some examples of
possible tools follow.

Approximate entropy is a measure
that can quantify the regularity or
predictability of a time series
(Fig. 1).40–44 Increasing ApEn values
reveal greater irregularity. Con-
versely, lower values reveal a more
regular or periodic behavior. Ap-
proximate entropy has been useful
in the identification of differences
between young and old people in
the COP time series in standing,45 in
revealing deficits in athletes with a
concussion compared with athletes
who were healthy,33,34 and in detect-
ing developmental changes in sitting
postural control.25 Approximate en-
tropy measures the probability that
the configuration of one segment of
data in a time series will allow the
prediction of the configuration of
another segment of the time series a
certain distance apart.41 Data seg-
ments with a greater likelihood of
having the same configuration or pat-
tern upon comparison will result in
lower approximate entropy values,
and data segments with a low likeli-
hood of similarity between segments
will result in higher values. Values
closer to zero are consistent with
maximum regularity, and values
nearing 2 represent maximum irreg-
ularity.
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Clinically, ApEn is useful for under-
standing the predictability of a move-
ment. For example, Cavanaugh et
al46 utilized ApEn to determine the
predictability of everyday walking
activities, using time series data from
a pedometer. They found that inac-
tive elderly individuals walked less
and had more-predictable walking
activity than active elderly individu-
als. This finding allows a more com-
plete picture of the differences in
walking between inactive and active
individuals and allows the clinician
to understand why some elderly peo-
ple may have a more-difficult time
responding to fluctuations in routine
or adapting to different walking
demands. This insight suggests inter-
vention that can elicit greater com-
plexity in the activity, rather than
just simply increasing the amount of
activity.

The largest LyE is a nonlinear mea-
sure that can measure the diver-
gence of the movement trajectories
(Fig. 2). The LyE describing purely
sinusoidal and completely repeat-
able data with no divergence in the
trajectories is zero because the tra-
jectories overlap rather than diverg-
ing (Fig. 2A). This shows minimal
change in the structure of the vari-
ability over time in the data. The LyE
for random, noisy data indicates
greater divergence in the data tra-
jectories (Fig. 2C). The LyE values
for the random data are larger, with
values above 0.4.19 The LyE values
from data that are described by
mathematical chaos (ie, Lorenz at-
tractor; Fig. 2B) are between these
2 extremes. Thus, the values be-
tween random and periodic define
complexity, or highly variable fluc-
tuations in physiological processes
resembling mathematical chaos.
The LyE has been used with gait
time series data to characterize
the underlying complexity during
movement.19,47–49

Using the LyE, Yamada50 reported
body sway that resembles mathemat-
ical chaos from COP data during
standing in adults who were healthy,
thus revealing inherent complexity.
Use of the LyE in an ongoing inter-
vention study with infants with cere-
bral palsy was important as a fine-
grained measure to detect advancing
postural control in sitting, when lin-
ear measures of the COP and clinical
tools did not detect change.51 A stan-
dardized test, the sitting section of
the Gross Motor Function Measure,52

did not consistently detect change.
However, a variety of features of the
child’s movement (more attempts to
stay vertical, the ability to turn the
head without falling, more attempts
to reach while sitting with support)
were noted as changes in behavior
by the parents and therapist. These
small changes in movement, or at-
tempts at new strategies, were quan-
tified by the nonlinear measures of
ApEn and LyE, but were not indi-
cated in the linear measures. This is
an example of a nonlinear tool pro-
viding “hidden” information that
would not be easily measured or doc-
umented otherwise.

Surrogation is a technique used to
determine whether the source of a
given time series is deterministic
(has order) in nature.19,53 The tech-
nique compares the actual data and a
random data set that has a similar
structure with the original data set in
question. That is, the deterministic
structure from the original data set is
removed by generating a random
equivalent with the same mean, vari-
ance, and power spectra as the orig-
inal data. Subsequently, the LyE (or
another nonlinear measure) value of
the surrogate data is compared with
the LyE value of the original data.
Significant differences between the
LyE value of the surrogate data and
the LyE value of the original data
indicate that the original data are
not randomly derived and, therefore,
may be deterministic and possibly

complex in nature. Harbourne and
Stergiou25 and Boker et al26 have
used this technique to show that
variability in the COP time series
from infants during the development
of independent sitting is not just
noise but has a deterministic origin.
This means that infants learning to sit
are not just randomly “wiggling.” For
the clinician, it is important to rec-
ognize that within these outwardly
unorganized and noisy-looking
movements are orderly patterns and
the beginnings of strategies for pos-
tural control. The implication for
therapists is that a movement that is
just beginning to emerge will be un-
organized, but necessarily so. The
variability inherent in this disorgani-
zation may be necessary for ultimate
successful selection of movement
and postural strategies. This may re-
flect the system “mapping” the terri-
tory around the skill region, allowing
the individual to “get back” to the
successful region when perturbed.

Nonlinear analysis includes several
additional tools such as detrended
fluctuation analysis,54 correlation di-
mension, mutual information, Hurst
exponent, symbolic entropy, recur-
rence quantification analysis, and
others. These methods have a com-
mon goal: to evaluate the structure
or organization of variability and un-
cover the underlying complexity.
However, they differ in the math-
ematic manipulation of the available
time series. Here we do not provide
a complete list of all nonlinear tools
but describe only a few tools to pro-
vide the basic concepts of nonlinear
analysis. A more comprehensive re-
view on the topic is available for the
interested reader.19

Application of Nonlinear
Concepts in Practice
Complexity in Health
Goldberger55 described the use of
complexity at the bedside for physi-
cians by providing examples of peri-
odic behavior of pathologic systems.
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Disease brings about a loss of com-
plexity, with resulting increased ri-
gidity, such as Cheyne-Stokes breath-
ing in patients with heart failure,
tremors in patients with neurologic
disease, and a sinusoidal appearance
of heart rate variability in patients
with congestive heart failure.56,57

The medical field is beginning to rec-
ognize the need for a nonlinear view
toward complexity, particularly for
problems that affect multiple sys-
tems. Ahn et al58 described a tradi-
tional reductionist approach as the
antithesis of a complexity-oriented
approach, with the reductionist ap-
proach being appropriate for use
with acute, single-system problems,
such as an acute infection. However,
a disease such as diabetes requires
management of a problem affecting
many systems that interact in various
ways. Extending the nonlinear view,
it could be argued that very few
problems are truly single-system
problems and solvable by linear rea-
soning because each system inter-
acts with other systems for optimal
function. As in medicine, many clin-
ical problems seen in physical ther-
apy need a nonlinear approach.

Clinical uses for nonlinear analysis
appear in a variety of disciplines, in-
cluding cardiology, neurology, and
psychiatry. Heart rate analysis using
ApEn has been used to evaluate risk
factors for sudden infant death syn-
drome.41,42 Nonlinear analysis has
been useful in verification of im-
plantable cardiac defibrillator inter-
ventions by using entropy analysis of
heart rate variability.59 In addition,
postural control analysis using sta-
bilometry has been improved by the
addition of nonlinear analysis, which
can serve to more accurately identify
features of postural control indicat-
ing subtle problems in infants,51 de-
velopmental differences between
young and elderly people,43 or
changes that accompany a disease
state such as parkinsonism.60,61 Gait
variability also has been studied and

modeled using nonlinear tools.62 Ap-
plications in the clinic for physical
therapy intervention are now a real-
istic possibility.

Clinical Application of Nonlinear
Principles and Use of Complexity
in Physical Therapy
Appendix 2 lists some proposed
principles for physical therapy inter-
vention emerging from the theory
and applications in other fields. An
example of clinical application in in-
tervention follows.

Two clinicians must perform an ini-
tial evaluation on an elderly man
who has had a stroke. One therapist
will use a traditional, linear ap-
proach, and the other therapist will
use an approach based on principles
of nonlinearity. As a general rule, the
therapist using a linear approach as-
sumes that decreasing the variability
of movement is equivalent to im-
proving functional skill. Therefore,
the therapist has in mind the “cor-
rect” movement pattern for various
functional skills, which she will
guide her patient toward during in-
tervention. Using principles of mo-
tor learning, the therapist first gives
100% feedback, and then fades sub-
sequently to 50% feedback for vari-
ous skills.63 Because the therapist
wants measurable outcomes, she
uses a standard walking course that
has 7.6-m (25-ft) increments up to
61 m (200 ft).

To determine decreasing variability
and increasing accuracy, the thera-
pist counts errors in the set of pro-
cedures to sit-stand-walk over a stan-
dardized course. This principle of
fading feedback applies as she guides
the patient in transferring out of the
wheelchair. She first locks the brakes
of the patient’s wheelchair and tells
the patient to scoot to the edge of
the chair. The patient receives assis-
tance to lean forward and place his
feet under his center of mass, both
with physical guidance and with ver-

bal guidance. As the patient starts to
reach for the walker, the therapist
tells the patient to push up from the
arms of the chair. The clinician then
has the patient practice the sit-to-
stand activity 5 times, giving feed-
back as described each time. The
next day, the patient makes the same
errors, and the therapist provides
less cueing, hoping to fade cueing
over the next 2 weeks. In addition to
counting errors during the sit-stand-
walk practice, the therapist notices
that the patient’s steps are of un-
equal length and the affected side
shuffles forward rather than exhibit-
ing a heel-toe pattern of stepping.
The therapist uses the same ap-
proach of using verbal and physical
guidance to point out the errors in
the patient’s gait pattern, fading the
feedback over time and counting er-
rors within the measured distance of
the walking track.

In contrast, the therapist using a non-
linear approach assumes that the
general rule for this patient is to en-
hance complexity of movement in
order to improve gait and functional
mobility skills. This will include the
concept of disequilibrium, or keep-
ing the patient in a state of dynamic
equilibrium (as described earlier)
during therapy sessions. Addition-
ally, the therapist uses the strategy of
providing only information for the
patient on how to do a task if the
patient does not have a way to get
the information; the rationale is that
variability is encouraged if the pa-
tient seeks information indepen-
dently, and the patient is kept in a
dynamic state.

The therapist first asks the patient
whether he would like to go sit in a
chair 3.05 m (10 ft) away next to his
wife. He agrees, and the therapist
invites the patient to begin the task,
assuring the patient that the task is
safe while the therapist is present.
The patient pushes back in the un-
locked wheelchair, and the wheel-
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chair rolls back, putting the patient
further away from the targeted goal.
The therapist notes that this is a
point where the patient is not gath-
ering enough information for the
task and addresses this problem by
having the patient do some guided
exploration within the task to in-
crease flexibility in terms of availabil-
ity of options. The therapist tells the
patient that he can roll the wheel-
chair in many different directions
just using his feet and challenges him
to find 10 different directions of
wheelchair movement by pushing
with his feet. During this exercise,
the patient maps the way that foot
force affects the wheelchair move-
ment. The therapist asks whether
there is a way to keep the wheel-
chair from rolling, and the patient
remembers the brakes. The patient
then makes multiple errors in his at-
tempts to stand, including incorrect
foot placement, reaching for the
walker instead of the wheelchair
arms, and leaning back and to one
side instead of leaning forward to get
up. However, the therapist does not
provide guidance at this point be-
cause the patient is not making the
same error but rather is exhibiting a
variety of strategies, which at this
stage of skill development is desir-
able. At several points, the therapist
asks whether the strategy just used
was successful, and when answered
in the negative, reminds the patient
to try some different strategies, just
as they did by pushing the wheel-
chair in different directions with
the feet. Occasionally, the therapist
gives light touch cues to suggest an
effective strategy.

At the end of the trial-and-error ses-
sion, the patient stands and walks
over to his wife to sit in the chair.
After resting and conversing, the
therapist asks the patient to walk
back to the wheelchair, without giv-
ing any verbal instructions. The
patient makes a few errors, self-
corrects, and visibly thinks through

the process of coming to a standing
position but is markedly faster than
on the first try. The next day the
patient makes only one error, moves
from a sitting position to a standing
position with guarding, and elects to
sit on a couch for some social con-
tact with another patient. The thera-
pist notes that during walking the
patient had short steps and shuffled
with the affected leg. The therapist
sees this as a possible problem. The
therapist then uses barefoot tasks,
having the patient identify different
textures or objects under the feet,
place pressure on different parts of
his feet during walking and standing,
and walk with a variety of patterns
through different paths and obstacle
courses. The therapist is more con-
cerned about increasing the adaptive
capacity of walking by increasing
variability at a functional speed than
in producing a consistent heel-toe
pattern.

What differs in these approaches?
The basic difference is that the ther-
apist using the linear measure seeks
to reduce variability of responses
within the intervention and the mea-
surement of the task goals and come
to a state of complete equilibrium,
whereas the therapist using the non-
linear measure seeks to enhance
complexity by encouraging slight
disequilibrium, particularly at the ini-
tial stage of task learning. The thera-
pist using the nonlinear measure
builds complexity into the task, with
the use of multiple systems: cogni-
tive, social, motor, and sensory. The
practice space is strategically varied,
and multiple movement approaches
are encouraged, as well as having an
expanded environmental context in
which the practice takes place. In
addition, the functional task pro-
ceeds in such a way that the series of
movements within the task are re-
lated to each other and dependent
on each other. In the linear measure
approach, each subtask is a task unto
itself and separated from the other

parts of the task due to the interjec-
tion of the therapist’s instructions.
Therefore, the series of movements
and postural adjustments in the task
of standing from the wheelchair are
unrelated to each other and unre-
lated to the overriding environmen-
tal context and underlying values of
the patient. Most importantly, the
therapist using the linear measure
prevents response flexibility from
being part of the learning process by
insisting that the patient avoid er-
rors, precisely because the therapist
considers them undesirable. Thus,
this therapist focuses on the absolute
“correct” pattern of movement, al-
lowing little complexity in the inter-
vention and preventing the emer-
gence of a flexible strategy that
works for this individual patient.

If these therapists had the benefit of
examining the patient’s initial gait by
linear and nonlinear analysis, they
may have noted high variability of
the step length (by looking at the
standard deviation) but low values
on a nonlinear measure (LyE), some-
what like the signal shown in the last
row of Figure 1. If the therapists
wanted to decrease variability, they
would work toward a time series
with a signal like that shown in the
second row of Figure 1 (linear ap-
proach). However, if the goal was
to increase the structure of the vari-
ability for greater complexity, they
would work in a nonlinear fashion
toward a time series with a signal
like that shown in the third row of
Figure 1. You can see that looking at
variability from these differing per-
spectives could lead toward different
types of intervention, as we have just
described.

Another example of the use of the
principles of nonlinearity to acquire
or maintain motor skill is a treatment
approach for the movement prob-
lems of patients with Parkinson dis-
ease (PD). The BIG training program
focuses on a single attentional pa-
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rameter to drive changes in the
motor system.64 This parameter is
“Think BIG,” emphasizing attention
to large-amplitude movements. The
principles of treatment include high-
intensity, multiple repetitions, sa-
liency, and complexity, leading to
neuroplastic changes and functional
improvement. Although patients
with PD have many movement prob-
lems, including problems with
speed, smoothness, accuracy, and
quality of movement patterns such
as step length during gait, this ap-
proach ignores these other move-
ment deficiencies. The focus on in-
creasing amplitude changes the
initial conditions driving the move-
ment and shifts the system into a
new state space where the move-
ment is more skillful and complex. In
this way, the BIG approach ad-
dresses complexity because ampli-
tude serves as the avenue to provide
enhanced adaptability and increased
responsiveness.

Several principles of nonlinearity are
inherent in this approach. First, the
overall variability of movement be-
havior for these patients is increased
as a fallout of the increase in ampli-
tude. The individuals with PD can
now make large movements as well
as small movements, and all the in-
crements in between, whereas they
had previously been restricted to
only small movements. Second, an-
other principle of nonlinearity is ap-
parent because a change in just one
movement parameter, amplitude,
causes a change in other movement
parameters that are difficult to pre-
dict precisely. Third, the input
needed for a motor system change
can come from a different system
(eg, cognitive, attentional, percep-
tual). The focus on attending to mak-
ing a “bigger” movement, in this
case, recalibrates the perceptual sys-
tem to recognize when a movement
is actually big versus the small move-
ments common to individuals with
PD. The therapist would not teach a

particular movement form or strat-
egy, but rather let the patient dis-
cover that increased complexity of
various movements has an inherent
value in producing success during
daily tasks.

Use of Nonlinear Tools in Motor
Skill Research
Setting up methodology for nonlin-
ear analysis in a research project may
seem to be a daunting task. Here are
suggestions to keep in mind when
designing such a project:

1. Carefully design your experimen-
tal setup, incorporating a matched
control group of healthy partici-
pants to provide reference points
for observed changes in the non-
linear parameters.

2. Seek partnerships with mathe-
maticians, neuroscientists, and
biomechanists who are knowl-
edgeable about nonlinear tools.
Technical expertise is needed
from start to finish on the project,
including sampling frequency,
the length of the time series
needed, and examination of the
data with appropriate nonlinear
tools for your questions. Knowl-
edge of movement measurement
is a benefit in interpretation of the
results. Remember that you will
not “speak the same language” as
your collaborator, and be very pa-
tient so that ideas can be ex-
changed comfortably.

3. Measure a task, skill, or variable
that may show emergence of a
new level of function.

4. Variable and task selection must
incorporate a time series; you
should take as long a time series
as possible within the constraints
of your target population and
considering the tools you are us-
ing. Many nonlinear tools need
thousands of data points for accu-
rate use.

5. Examine pilot data to get an idea
of the nature of the fluctuations
in the variable or in the behavior.
Plotting position and velocity
against each other and even
3-dimensionally by incorporating
acceleration can help examine
the organization in the data.

6. Replication of a previously re-
ported project, but with the addi-
tion of nonlinear tools, can help
with planning the methods and
interpreting your results. This is a
new area, and, consequently, it is
difficult to know the “standard”
approach to common issues.

7. If you are considering an interven-
tion study, keep in mind that a
focus on increasing or decreasing
variability will need to be deter-
mined carefully, using a variety
of tools to measure both linear
and nonlinear factors. The 2 ap-
proaches are complementary, and
they do not negate each other.

8. Measure more than one variable;
different variables may reflect
component skills or constructs
differently.

Limitations of
Nonlinear Measures
Because nonlinear measurement
tools require the use of mathematical
equations and software to evaluate
time series data, nonlinear analysis is
primarily done in the research set-
ting. However, the burgeoning inter-
est in nonlinear tools in many scien-
tific fields bodes well for clinicians.
In the future, there will likely be de-
vices that have embedded software
to calculate important measures of
variability using nonlinear tools.
Another limitation is the lack of un-
derstanding of variability and com-
plexity in the field of physical ther-
apy. Physical therapists are taught to
use a reductionist approach, as in
most medical fields. This lack of in-
troduction to nonlinear principles
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early in the education of physical
therapists biases the field against the
productive use of variability and
complexity.

Additional limitations of the tech-
nique itself create challenges for clin-
ical use. Translation of nonlinear
measures to clinical problems re-
quires concurrent use of linear tools
to make associations and determine
clinical meaning. The lengthy time
series required for analysis prohibits
the use of nonlinear tools for move-
ment that is extremely limited. Lastly,
these measures require multiple rep-
etitions or cycles of a movement.

Conclusions
Optimal variability in human move-
ment is a characteristic of healthy
functioning. Nonlinear tools reveal
complexity inherent in normal vari-
ability, indicating features of motor
control that are important for physi-
cal therapists to measure and imple-
ment in intervention. The applica-
tion of principles based on nonlinear
dynamics and use of nonlinear tools
for analysis can provide innovations
to guide physical therapist practice
and research.
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Appendix 1.
Working Definitions for Terms Needed to Understand Nonlinear Concepts

Attractor, attractor state: Behav-
iorally, an attractor is a preferred
state (ie, walk, run). Mathematically,
an attractor is a set to which a dy-
namic system evolves after time.
Points that get close enough to the
attractor remain close even if slightly
perturbed. Geometrically, an attrac-
tor can be a point, a curve, or even a
fractal structure known as a strange
attractor. Describing the attractors of
chaotic dynamical systems is the fo-
cus of the mathematical theory of
chaos.

Chaos: One subject in the field of
nonlinear dynamics, which is part
of the broader field of dynamic
systems.

Complexity: Highly variable fluctu-
ations in physiological processes re-
sembling mathematical chaos.

Constraints: Variability is intro-
duced into the system from the
constraints that dictate the system’s
behavior. The constraints are mor-
phological, biomechanical, environ-
mental, and task specific.

Deterministic: For a given starting
condition, the future state of the
system is determined; randomness is
not present.

Dynamic system: A system that
evolves over time.

Dynamic systems theory (DST):
An area of applied mathematics used
to describe complex dynamic systems.

Linear measures: Measures that de-
scribe the central tendency or dis-
persion of the values within a set
of numbers, such as the mean, the
range, and the standard deviation.

Mathematical chaos: The behavior
of several related systems many
times seems to be erratic, with no
order (ie, random). However, non-
linear measures demonstrate that
such variations are not random but

have a deterministic pattern, mean-
ing that their future dynamics are
fully defined by their initial condi-
tions. This behavior is known as
mathematical or deterministic chaos,
or simply chaos.

Noise: That part of a system descrip-
tion that is not deterministic. For
simplicity, it is usually assumed to
have a simple form, such as white
noise.

Nonlinear measures: Measures
that quantify the relationship, or de-
pendency, of the numbers through-
out the time series. Nonlinear mea-
sures describe the patterns or
structure within the time series, not
simply the quantity.

Periodic: Happening or appearing
at regular intervals like a sine wave.

Phase plane: A representation of
the behavior of the dynamic system
in state space. Typically, it takes the
form of a 2-dimensional plot of the
position X of the time series (on the
horizontal-axis) versus the first deriv-
ative X� (on the vertical axis).

Random: Lack of pattern or order;
lack of a relationship between points
in a time series or parts of a system.

Regularity: The repeatability of a
pattern.

Self-organization: The formation
of moving patterns is a function of
the cooperation of all of the sub-
systems and their interaction with
the environment; it is not centrally
coded or commanded.

Sinusoidal: A regular waveform that
exactly repeats itself over time.

Stability, stable state: A rich behav-
ioral state characterized by high
complexity. The stability of an orbit
in a dynamic system determines
whether nearby orbits remain near
or are repelled by that orbit.

State space: The set of all possible
states of a dynamic system. When
modeling a dynamic system, the
number of variables needed to de-
scribe the system is called the dimen-
sion of the state space.

Systems theory: A field of science
studying the nature of complex
systems.

Time series: Time series data are a
specific example of an ordered list of
numbers, where time is the parame-
ter that gives order to the list.
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Appendix 2.
Proposed Principles of Nonlinearity in the Acquisition and Maintenance of Motor Skill

1. An optimal amount of variability
is necessary for movement to be
functional and efficient; normal,
efficient movement includes both
deterministic and random char-
acteristics, which can fluctuate
within an optimal range.

2. Healthy motor control has charac-
teristics of nonlinearity, including
the spontaneous generation of new
patterns of movement, movement
possibilities that are sensitive to ini-
tial conditions, and a limited ability
to precisely predict future move-
ment based on current status.

3. If variability increases in a system
without enough variability, new
movement options can emerge
spontaneously.

4. Because motor function is sensi-
tive to initial conditions, each per-
son brings a slightly different set
of conditions to a motor problem,
and the optimal solution to that
problem may be unique to that
person. Therefore, therapists can-
not “prescribe” the best motor
pattern or strategy that is com-
mon to all patients.

5. Input into the system can drive
the system into other possibilities
for movement that are not pre-
dictable. The input can come
from more than one system (ie,
not only motor but also sensory,
cognitive, emotional, or social).

6. Measures of complexity can help
predict the emergence of a new

behavior or direct appropriate in-
tervention to allow variability
changes to affect function.

7. Traditional measures of variability
are not equivalent to measures
of complexity. For example, as
the measure of standard deviation
increases, the measure of ap-
proximate entropy can decrease.
Measures of complexity describe
the structure of variability in
new ways that can help quantify
subtle movement changes or
characteristics.

8. Complexity is necessary for sys-
tems to adapt to changing condi-
tions; loss of complexity means
decreased ability for adaptation.

Invited Commentary Daniela Corbetta

One of the ways in which progress
in movement performance and coor-
dination traditionally has been as-
sessed is to measure the amount of
movement variability across repeti-
tions of the same movement. In their
perspective article, Harbourne and
Stergiou1 argue that progress in
movement coordination should
rather be indexed by analyzing the
hidden structure of movement vari-
ability embedded in time series using
time-dependent, nonlinear tools
rather than by assessing the overall
amount of variability. By focusing
their article on the time structure of
variability, the authors make a point
of fundamental importance for our
understanding of biological motion
and its implications for develop-
ment, learning, and rehabilitation.
They show through clear examples
that patterns with similar ranges of
variation can contain very different

structures. These structures, which
are not detected by traditional mea-
sures of response variation (such as
standard deviations or coefficients
of variation), are critical for under-
standing change and progress in
movement control. They provide di-
rect information on the regulation
processes used to control move-
ment. Harbourne and Stergiou also
remark that variability does not al-
ways decrease linearly as a function
of learning time and control. In some
instances, and as further illustrated
below, it can evolve in a nonlinear
fashion over learning time.

Harbourne and Stergiou tell us that
variability should not always be con-
sidered a reflection of movement er-
ror or imperfect control. As they
point out, variability is an omnipres-
ent characteristic of biological mo-
tion, regardless of the stage of profi-

ciency. Whether one is beginning to
learn a new skill, is an expert per-
former, is experiencing a decline in
performance, or is being rehabili-
tated, variability is an inherent prop-
erty of the process of movement reg-
ulation. In all of those cases,
however, variability may have a dif-
ferent structure. Again, this is why
the structure of variability should be
looked at closely; patterns of variabil-
ity can directly inform the practitio-
ner about the control process in-
volved in the movement. In their
examples, Harbourne and Stergiou
remind us that even within the most
skilled and most highly repeatable
behaviors, there is no stereotypy.
Rather, ongoing small variations in
movement are continuously gener-
ated to tailor the movement to its
goal and to respond to the ever-
changing action context. Clearly, as
they remark, lack of movement vari-
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