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Reconnection processes of twin-chains are systematically studied in the quadratic twist 
map. By using the reversibility and symmetry of the mapping, the location of the indicator 
points is theoretically determined in the phase space. The indicator points enable us to obtain 
useful information about the reconnect ion processes and the transition to global chaos. We 
succeed in deriving the general conditions for the reconnection thresholds. In addition, a 
new type of reconnect ion process which generates shearless curves is studied. 

§1. Introduction 

219 

In the past decades, enormous effort has been dedicated to the study of two
dimensional area-preserving maps with the twist condition,l) but very few studies 
have been made of nontwist maps. Recent studies on nontwist maps have revealed 
that rich properties are generated by violating the twist condition. 2) - 6) 

In a previous paper, 6) we studied the properties of the quadratic twist map 
and numerically determined the critical boundary in the two-dimensional parame
ter space, where the transition to global chaos occurs. The critical boundary has 
many sharp singular structures, and their locations seem to have a one-to-one corre
spondence with those of the reconnect ion thresholds. The relationship between the 
transition to global chaos and the reconnect ion processes was first pointed out by 
Howard and Hohs,2) but it has not yet been thoroughly investigated. 

In order to investigate the detailed structure of the critical boundary, one needs 
accurate information regarding the reconnection processes. In this paper, we study 
the details of the reconnect ion processes in the quadratie twist map and propose 
a theoretieal method to determine the reconnection thresholds. We show that the 
reversibility and symmetry of the mapping guarantee the existence of the "indicator 
points" in the phase space. These enable us to study the reconnect ion processes sys
tematieally. For twin-chains of period one and period two, the reconnect ion thresh
olds have already been determined, either exactly or approximately. 2), 3) The method 
presented here reproduces results which have been previously obtained, and it pro
vides general conditions for the reconnect ion thresholds. 

The quadratie twist map (QTM) is defined by 

(1·1) 

(1·2) 
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220 S. Shinohara and Y. Aizawa 

where K represents the strength of the perturbation and J-l the maximum value of the 
twist function fJ.l(I). As the variable () is 27r-periodic, J-l is also periodic with period 
1. Moreover, Eq. (1·1) is invariant under the transformation (K, I) 1---+ (-K, -I). 
Thus it is sufficient for us to consider the parameter regions J-l E [-0.5,0.5) and 
K E [0,00]. 

The mapping Eq. (1·1) is often called the logistic twist map or the standard 
nontwist map, depending on the form of the twist function fJ.l(I). 2) - 5) In this paper, 
we adopt a form of Eq. (1·2) for which the twist condition 

dfJ.l(I) i- 0 for v I 
dI 

(1·3) 

fails at I = 0 for any value of J-l in the integrable limit (K = 0) and for which the 
parameter J-l itself represents the maximum value of fJ.l(I). 

This paper is organized as follows. In §2, we derive the location of the indicator 
points which play an important role in studying the reconnect ion processes in the 
QTM and give a review of the previous results on the transition to global chaos. 
In §3, the reconnect ion processes of even-periodic twin-chains are studied by using 
the indicator points. The reconnect ion thresholds are analytically derived, and a 
new type of reconnect ion process is analyzed. In §4, we focus on the reconnection 
processes of odd-periodic twin-chains, and a new numerical method to determine the 
reconnection thresholds is proposed. Section 5 contains a summary and discussion. 

§2. The indicator points of the QTM 

By reversibility, the QTM can be rewritten as T = M2M1 , where Ml and M2 
are given by 

()' = -(), 
I' = 1- K sin(()), 

()' = -() + 27rJ-l- 12
, 

I' = I, 

(2·1) 

(2·2) 

and they satisfy Mr = Mi, = 1. Moreover, the mapping T commutes with the 
mapping S (i.e., ST = TS) defined by 

S . { ()' = ()+7r, (2.3) 
. I' = -I. 

Previously, 6) we showed that when there exists only one shearless curve in the phase 
space, it is an invariant set of both the mapping T and the mapping S. As shown 
in Appendix A, the invariant sets are given by the following sets I j (j = 1,2): 

00 

I j = U {Tnx)m)}~=o, (j = 1,2) (2·4) 
m=-oo 

where x~m) and x~m) are the solutions of 

Aftx = RmSx (2·5) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/100/2/219/1852725 by guest on 20 April 2024



Indicators in Nontwist Maps 221 

and 

(2·6) 

respectively. Here m represents an arbitrary integer, and R represents the linear 
transformation defined by 

(2·7) 

The solutions of Eqs. (2·5) and (2·6) are as follows: 

(m) I 271" 2m - 1 [() (m)] [I ( ) ] 
Xl = I}m) = (_l)m+1 ~K ' (2·8) 

(m) _ [()~m)]_ [71"JL + ~71"(2m - 1)] 
x 2 - l(m) - 0 . 

2 

(2·9) 

Note that x~m) depends only on K, while x~m) depends only on JL. If we use the 
271"-periodicity of the variable () in the interval (-71",71"], it is sufficient to consider 

only two terms (m = 0 and m = 1) in Eq. (2·4). We shall call these points, xjm) 
(j = 1,2), the "indicator points" in the present paper. As will be shown in what 
follows, we can detect the occurrence of the transition to global chaos and of the 
reconnect ion of twin-chains by investigating the iterates of the indicator points. 

When the iterates of the indicator points xjm) are confined in a bounded region, 
the following two cases are possible: i) they are confined on a shearless curve (see 
Fig. l(a)), or ii) they are not confined on a certain KAM curve, but several robust 
KAM curves surrounding them prevent global chaotic motion (see Fig. l(b)). In 

either case, one can say that the bounded motion of the iterates of X)m) ensures the 
existence of KAM curves. On the other hand, the unbounded motion of the iterates 
of xjm) guarantees the non-existence of KAM curves. 

As reported in Ref. 6), we have numerically determined whether the iterates of 

X)m) are bounded or not for each set of JL and K. The phase diagram so obtained 

is shown in Fig. 2, where the iterates of xjm) are bounded in the gray region, but 
unbounded in the white region. Thus, the boundary between the gray and the white 
regions displayed in Fig. 2 determines the critical boundary, where the transition to 
global chaos occurs. In numerical calculations, we consider iterates to be bounded 
when the absolute values of their I components do not exceed 2 during 105 steps of 
iteration (i.e., IInl < 2 for 'in :s: 105 ). These conditions are sufficient to detect the 
bounded motion, because the robust KAM curves are always localized around the 
indicator points xjm) , as shown in Figs. l(a) and (b). 
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(a) (b) 

-11 11 -1t 11 

9 

Fig. 1. Two types of bounded motions. (a) (/1-, K) = (-0.366328694,0.80), (b) (/1-, K) = 
(0.089259,0.28). In both figures, 50 successive iterates of X~l) and x~O) under the mapping 
T are plotted by solid circles (.) and crosses (x), respectively. 

§3. Annihilation and reconnect ion of even-periodic twin-chains 

In this section, we consider the case where either xim
) or x~m) is an even-periodic 

point with rotation number PI Q, i.e., 

(3·1) 

where P and Q are relatively prime integers and let Q be even. By the symmetry of 
the mapping, Eq. (3·1) is reduced to more simple forms (see Appendix B): 

and 

T Q/2 (m) _ (m+P) 
xl - Xl (3·2) 

T -Q/2 (m) _ (m-P) (3.3) 
x2 - x 2 . 

By solving Eqs. (3·2) and (3·3), one can obtain two independent relations between f..t 
and K parametrized by P and Q. Note that these relations do not depend on m at 
all. The exact iterates of xim

) and x~m) are given for Q = 2,4,6 and 8 in Appendix 
C. The obtained f..t-K relations are summarized in Table I, where we put 

(3·4) 

and 

(3·5) 
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Indicators in Nontwist Maps 223 

K 

Fig. 2. Phase diagram of the quadratic twist map. The iterates of the indicator points x;m) are 
bounded in the gray region but unbounded in the white region. The boundary between the gray 
and the white regions corresponds to the critical boundary, where the transition to global chaos 
occurs. The solid lines represent the (P/Q)-curves for even-periodic twin-chains with period 
Q :S 8 and the reconnect ion thresholds for odd-periodic twin-chains with period Q :S 9. 

Table I. The I-£-K relations derived from Eqs. (3·2) and (3·3). 

Q P The I-£-K relation obtained from The I-£-K relation obtained from 
RPTQxim) = xim

) RPTQx~m) = x~m) 
2 -1 87r(1-£ - P/Q) = K"2 1-£ = -1/2 
4 ±1 87r(1-£ - P/Q) = K2 47r(1-£ - P/Q) = K2 cos2 (7rI-£) 
6 ±1 247r(J.! - P/Q) = K2(2 + ~(J.!, K)2) 37r(1-£ - P/Q) = K2 cos2 (7rI-£) 
8 ±3,±1 167r(J.! - P/Q) = K2(1 + ~(J.!, K?) 87r(1-£ - P/Q) = K2 cos2 (7rI-£)(2 + 1](1-£, K?) 

Let us denote the J.t-K relations derived from Eqs. (3·2) and (3·3) by E~PIQ) and 
E~PIQ) respectively; i.e., 

(3·6) 
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where m is an arbitrary integer and 

, P Q 
Tp,Q = R T . (3·7) 

In the fL-K parameter space, the two sets E~P/Q) and E~P/Q) are described by two 
different curves which pass through the trivial point (fL, K) = (P/Q, 0). These curves 
are shown by solid lines in Fig. 2 for several values of P/Q (those for Q ~ 8). There 
are two types of characteristic fL-K curves given for each value of P/Q. We shall 
call these curves the right (P/Q)-curve or the left (P/Q)-curve, depending on their 
relative positions, corresponding to the right-hand side or the left-hand side in Fig. 2. 
For (P/Q)-curves that have a crossing point, we only apply the notion of right and 
left below the crossing point. Some of the right and the left (P/Q)-curves are sum
marized in Table II. 

Table II. The relative location of the two 
curves corresponding to EiP

/
Q ) and 

EY/Q)· 

Q p left right 
2 -1 E2 El 
4 -1 El E2 

+1 E2 El 
6 -1 E2 El 

+1 E2 El 
8 -3 El E2 

-1 El E2 

Note that the (P/Q)-curves are 
quite similar to the (P/Q)-bifurcation 
curve introduced by del-Castillo-Negrete 
et al.,4) where the (P/Q)-bifurcation 
curve is defined as the fL-K locus which 
represents the creation/annihilation 
points of the twin-chains with rotation 
number P/Q. It will be shown later that 
either the right or the left (P / Q )-curve 
which we have introduced here coincides 
well with the P/Q-bifurcation curve. 

From numerical calculations, we 
can find the following general charac
teristics of the iterates of the indicator 

points X)m) and the characteristic EjP/Q) curves defined by Eq. (3·6): 

+1 E2 El 
+3 E2 El 

(i) For the fL-K parameter values given by E~P/Q)(or E~P/Q»), successive iterates of 

x~m)(or Xlm ») converge to a periodic point with rotation number P/Q under the 

mapping Tp,Q' 

(ii) For the fL-K parameter region between the right and the left (P/Q)-curves, 

successive iterates of both Xlm
) and x~m) converge to an unstable periodic point 

with rotation number P/Q under the mapping Tp,Q . 

These properties are numerically illustrated in Fig. 3 for the case of P/Q = -1/2. 
It is found in many cases that twin-chains with rotation number P/Q (hereafter 

referred to as (P /Q)-twin-chains) are created or annihilated at param~ter values 
on the left (P/Q)-curve, and that the reconnect ion of the (P/Q)-twin-chains takes 
place at parameter values on the right (P/Q)-curve. Thus, the left (P/Q)-curve and 
the right (P/Q)-curve correspond to the annihilation threshold and the reconnect ion 
threshold, respectively. In Fig. 2, we can see nice agreement of the critical boundary 
and the right (P/Q)-curves for many P/Q. This is more clearly shown in Fig. 4 for 
the case of P/Q = -1/4. However, this correspondence does not always hold for 
all P/Q. For instance, in the cases of P/Q = -1/6 and P/Q = -1/8, it is the left 
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Fig. 3, Phase space portraits and successive iterates of xii) and x~l) under the mapping 7'-1,2 = 
R- 1T 2

, where solid circles (.) represent the iterates of xi!), and crosses (x) represent those 
of X~l). (a) At (/-t, K) = (-0.5,0.5) E EtIQ), X~l) is a marginally stable periodic point, 

and successive iterates of xi!) converge to X~I) under the mapping 1'-1,2. (b) At (/-t, K) = 

(-0,490052816,0,5) E EiP1Q
), xii) is an unstable periodic point, and successive iterates of X~I) 

converge to xii) under the mapping 7'-1,2. (c) At (/-t,K) = (-0.495,0.5), successive iterates of 
both xii) and X~I) converge to an unstable periodic point under the mapping 7'-1,2. 

{P/Q)-curve that coincides with the critical boundary. This is more clearly shown in 
Fig. 5 for the case of P/Q = -1/8. This exceptional correspondence occurs when the 
left (P/Q)-curve changes to correspond to the reconnection threshold at a certain 
point on the curve. 

Let us illustrate this for the left (-1/8)-curve. Figures 6(a) rv (e) display phase 
space portraits for various values of K, where K increases along the left (-1/8)-curve. 
At K = 0.5, marginally stable periodic points with rotation number -1/8 exist in 
the phase space, as shown in Fig. 6(a). At K = Kl ~ 0.519, the periodic point 
becomes unstable and gives birth to two elliptic points, as shown in Fig. 6(b). We 
refer to the chain ofthese periodic points as the primary chain. At K = K2 c::::' 0.5492, 
another pair of periodic points with rotation number -1/8 is created on both sides 
of the primary chain via a saddle-node (SN) bifurcation. Figure 6(c) exhibits the 
phase space portrait at K = 0.552, where two chains of SN pairs appear, in addition 
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·0.25 -0.24 -0.23 -0.22 -0.21 -0.2 -0.19 -0.18 -0.17 -0.16 ·0.15 

Fig. 4. Magnification of the phase diagram and the right and left (-1/4)-curves. 

K 
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Jl 

Fig. 5. Magnification of the phase diagram and the right and left (-1/8)-curves. 
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-1t e 1t 

Fig. 6. The reconnect ion process of the primary and secondary chains with rotation number F/Q 
= -1/8. The values of It and K increase along the left (-1/8)-curve as follows: (a) (It,K) 
= (-0.084975,0.50), (b) (It, K) = (-0.079063,0.53), (c) (It, K) = (-0.074355,0.552), (d) (It, K) 
= (-0.072334,0.561), (e) (It, K) = (-0.070258,0.57). 

to the primary chain mentioned above. We refer to these chains of SN pairs as the 
secondary chains. Moreover, at K = K3 ~ 0.561, the two separatrices of the primary 
chain and those of the secondary chains merge, as shown in Fig. 6(d). As a result 
of the reconnect ion process induced by the merging of the primary and secondary 
chains, vortex pairs and two Poincare-Birkhoff chains come to appear, as shown in 
Fig. 6(e). 

To summarize, the left (-1/8)-curve corresponds to the annihilation threshold 
of the primary chain for K < Kl. While, for K > K 3 , it corresponds to the 
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Fig. 7. (a) Phase space portraits of the 
(-1/3)-twin-chains at a reconnect ion 
threshold (M, K) = (-0.32681945,0.4). (b) 
Magnification of the box in Fig. 7(a). 90 
successive iterates of xiO) and T X~l) under 
the mapping T- 1 ,3 are also shown as solid 
circles (.) and crosses (x), respectively. 

-1.5 
-1t e 1t 

(brO.2 

-0.4 

-0.6 

-0.8 

-1.0 
-1.8 -1.6 -1.4 -1.2 

e 

Fig. 8. (a) Phase space portraits of the 
( -1 /3)-twin-chains at a reconnection 
threshold (M, K) = (-0.30159859,0.85). 
(b) Magnification of the box in Fig. 8(a). 
12 successive iterates of xiO) and T x~l) 
under the mapping T- 1,3 are also shown 
as solid circles (.) and crosses (x), respec
tively. 

reconnect ion threshold of the vortex pairs that are formed via the reconnect ion 
process of the primary and secondary chains. 

§4. Reconnection of odd-periodic twin-chains 

In this section we characterize the reconnect ion of odd-periodic twin-chains by 
using the indicator points. At a reconnect ion threshold of the (P/Q)-twin-chains, 

successive iterates of both xim+P
) and T~x~m) approach the same hyperbolic 

periodic point of the reconnecting twin-chains under the mapping Tp,Q. Figure 7(a) 
corresponds to the case of the (-1/3)-twin-chains at the reconnection threshold. 
Figure 7(b) is the magnification of the phase space near the lower hyperbolic periodic 
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Indicators in Nontwist Maps 229 

point of the (-1/3)-twin-chains, where 
Tn x(O) and Tn Tlx(l) approach the -1,3 1 -1,3 2 
same hyperbolic periodic point as n in-
creases. We have numerically confirmed 
this property for all odd-periodic twin
chains with period Q ::; 9. This property 
seems to hold even at a large K-value, 
as shown in Fig. 8, where we can still 
observe monotonic convergence in spite 
of strong chaos around a hyperbolic pe
riodic point. 

Consider the quantity oXn given by 

~ II rim (m+P) uXn = ip,Q Xl 

TAn T9.=l (m)11 
- P,Q 2 X 2 , (4·1) 

0 

'2 
-5 

~ 
E 

-10 

-15 o 

-- K=O.4 
---<0 K=0.6 
.-------.. K=0.85 

i 

~I 

20 40 60 80 100 
n 

Fig. 9. Numerical evidence for the exponen
tial decrease of oXn at a reconnection 
threshold for K ::: 0.4, K = 0.6 and 
K = 0.85. 

where m is an arbitrary integer and II . II represents the Euclidian norm. At the 
reconnect ion threshold, 5Xn is expected to decrease exponentially as 

(4·2) 

where .\ represents the smaller (stable) eigenvalue of the tangent map of the mapping 
TQ evaluated at the hyperbolic periodic point of the (P/Q)-twin-chains. Numerical 
evidence for the exponential scaling regime of Eq. (4·2) at the reconnect ion threshold 
of the (-1/3)-twin-chains is shown in Fig. 9 for various K-values. There appear 
large deviations from the scaling regime when the number of iterations n becomes 
extremely large, because the monotonic convergence of oXn is violated by heteroclinic 
chaos near the hyperbolic periodic point. However, as shown in Table III, the decay 
rates in the scaling regime are in good agreement with the theoretically estimated 
values of In(.\). 

On the basis of the remarkable 
convergent property mentioned above, 
the determination of the reconnect ion 
threshold is reduced to the problem 
of finding the parameter values where 
5XN ::; E holds for a given small value E 

with a certain large N. The merit of 
this computational criterion is that it 
does not require any additional knowl-

Table III. Slopes of the scaling regime in 
Fig. 9 and theoretically estimated values of 
In(>.). 

K 
0.40 
0.60 
0.85 

slope In(>') 
-0.140 -0.142 
-0.320 -0.325 
-0.640 -0.668 

edge about the detailed structure of twin-chains, such as the location of the periodic 
point and its stability. Applying this criterion, we numerically determined the re
connection thresholds for odd-periodic twin-chains with the period Q ::; 9, which 
are indicated by solid lines for Q = odd in Fig. 2. The results based on the above 
technique seem to reproduce the reconnect ion thresholds. This is illustrated more 
clearly in Fig. 10 for the case of the (-1/3)-twin-chains. 
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-0.34 -0.33 -0.32 -0.31 -0.3 -0.29 -0.28 -0.27 -0.26 

Fig. 10. Magnification of the phase diagram and the reconnect ion threshold for the (-1/3)-twin
chains. 

§5. Summary and discussion 

We have studied in detail the reconnect ion processes of twin-chains in the QTM 
by investigating the iterates of the indicator points xJm

) which belong to the invari
ant sets of both the mapping T and the mapping S. For the case of even-periodic 
twin-chains, we introduced (P/Q)-curves in the parameter space, on which either the 
annihilation or the reconnection of the (P/Q)-twin-chains occurs. We succeeded in 
deriving the (P/Q)-curves analytically for Q :s: 8. One can also derive (P/Q)-curves 
with larger value of Q by solving Eqs. (3·2) and (3.3). On the other hand, for the 
case of odd-periodic twin-chains, we propose a numerical method to determine the 
reconnect ion threshold. The method is based on the observation that the successive 
iterates of the indicator points converge to the same hyperbolic periodic point at the 
reconnection threshold. Numerical results clearly show that the critical boundary is 
described well by the reconnect ion thresholds of twin-chains. 

Finally, we briefly discuss the reconnect ion process between the primary and the 
secondary twin-chains which was found for the (-1/8)-twin-chains. The variety of 
reconnecting twin-chains has been studied in cubic and quartic twist maps. 3) For 
example, cubic twist maps exhibit the reconnect ion of three island chains with the 
same rotation number. This is a natural consequence of the fact that the cubic 
twist function generically has two extrema and that each extremum generates an 
inherent reconnect ion process. However, it is surprising that multiple reconnect ion 
processes occur simultaneously even in the QTM whose twist function has only one 
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Indicators in Nontwist Maps 231 

extremum. The occurrence of the secondary twin-chains inevitably ensures the exis· 
tence of multiple shearless curves in the phase space, neither of which passes through 
the indicator points XJm

) (see Figs. 6(c) and (e)). Our result suggests that shearless 
curves can be created by nonintegrable nonlinear perturbations. This problem will 
be discussed elsewhere. 

Appendix A 
The Invariant Sets I j (j = 1,2) --

It is trivial to show that I j (j = 1,2) given by Eq. (2·4) is an invariant set of T. 
Here we show that I j is invariant under the transformation S, i.e., SIj = I j (j = 

1,2). In order to do this, we show that STnx;m) is also an element of I j as follows: 

STn (m) _ TnS (m) _ TnR-mM (m) _ TnM (3m) 
Xl - Xl - IX I - IXI 

_ rnn-IM (3m) _ rnn (I-3m) 
- -'- 2XI - -'- Xl , (A·l) 

STn (m) _ TnS (m) _ TnR-mM (m) _ TnM (3m) 
X 2 - X 2 - 2X 2 - 2X 2 

_ Tn+IM (3m) _ Tn (I-3m) 
- IX2 - X2 , (A·2) 

where we have used the relation ST = TS in the first equalities, and Eqs. (2·5) and 
(2·6) in the second equalities. Moreover, we use the following relations in the last 
equalities: 

(A·3) 

M (m) T-I (I-m) 
IX2 == x 2 . (A·4) 

Appendix B 
Derivation of Eqs. (3·2) and (3·3) --

Assume that xJm
) (j = 1,2; m E Z) given by Eqs. (2·8) and (2·9) are even

periodic points with rotation number PjQ; i.e., 

(B·l) 

The property of the involutions MI and M2 implies 

MITQ/2 = T-Q/2 M I , M2 T - Q/ 2 = TQ/2 M2. (B·2) 

Therefore we have 

MITQ/2x~m) = T-Q/2 M1Xlm ) = T--Q/2 RmSxlm ) = R m ST-Q/2 xl
m) (B·3) 

and 
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where we have used Eqs. (2·5) and (2·6) in the second equalities and the relation 
ST = TS in the third equalities. 

On the other hand, Eq. (B·1) implies 

(B·5) 

TQ/2X)m) = R-PT-Q/2 x )m). (j = 1,2) (B·6) 

Substituting (B·5) and (B·6) into (B·3) and (B·4), respectively, we have 

MITQ/2x~m) = Rm+P STQ/2x~m) (B·7) 

and 
M T -Q/2 (rn) _ Rm-PST-Q/2 (m) 

2 X 2 - X 2 . (B·8) 

Since these equations are equivalent to Eqs. (2·5) and (2·6), the solutions are given 
by 

T Q/2 (rn) _ (m+P) 
xl - Xl , 

T -Q/2 (m) _ (m-P) x 2 - x 2 , 

respectively. 

Appendix C 
Exact Iterations of x~m) and x~m) --

The exact expressions for Tnx~rn) (n = 0, ±1, ±2) are given by 

(B·9) 

(B· 10) 

-2 (m) [ ~(2m - 1) - 47l'fJ + t K2 (1 + ~(fJ, K)2) ] C 
T xl = (-1)m+I~K {~(fJ, K) + 2cos(47l'fJ- tK2(1 + ~(fJ, K)2))} ,( ·1) 

-1 (m) _ [~(2m - 1) - 27l'fJ + t K2
] (C.2) 

T xl - (-1)m+I~K~(fJ, K) , 

(m) _ [ ~(2m - 1) ] (C.3) 
Xl - (_l)m+I~K ' 

Tx(m) = [~(2m - 1) + 27l'fJ-- tK2] 
1 (-l)m~K' (C·4) 

2 (m) _ [~(2m - 1) + 47l'fJ- t K2 (1 + ~(fJ, K)2)] (C.5) 
T xl - (-l)m~K~(fJ, K) , 

where ~(fJ, K) is given by Eq. (3·4). 
While the exact expressions for Tnx~m) (n = 0, ±1, ±2) are given by 

(C·6) 
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T- 1 (m) [~(2m - 1) - ITJt ] 
x 2 = (_I)m+lKcos(ITJt) , (C·7) 

x~m) = [~(2m -01) + ITlt] , (C-8) 

Tx(m) = [~(2m - 1) + 3ITJt - K2 COs2(ITJt)] 
2 (-I)mKcos(ITJt) ' 

(C-g) 

T 2x(m) = [~(2m - 1) + 5ITJt - K2 COS2(ITJt) (1 + rJ(Jt, K?)] 
2 (-l)mKcos(ITJt)rJ(Jt,K) , 

(C·lO) 

where rJ(Jt, K) is given by Eq. (3·5). 
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