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We propose an uncertainty relation of space-time. This relation is characterized by
G~T . δV , where T and δV denote a characteristic time scale and a spatial volume, respec-
tively. Using this uncertainty relation, we give qualitative estimations for the entropies of a
black hole and our universe. We obtain qualitative agreements with the known results. The
holographic principle of ’t Hooft and Susskind is reproduced. We also discuss cosmology and
give a relation to the cosmic holographic principle of Fischler and Susskind. However, as for

the maximal entropy of a system with an energy E, we obtain the formula
p

EV/G~2, with
V denoting the volume of the system, which is distinct from the Bekenstein entropy formula
ER/~ with R denoting the length scale of the system.

§1. Introduction

Despite various noteworthy attempts, the cosmological constant problem re-
mains as one of the major mysteries in physics. 1) If we believe the locality of our
world, the fundamental degrees of freedom of a system should be the degrees of
freedom at a sufficiently small scale, because, understanding these, we can make a
prediction at any scale larger than this small scale. The natural small scale asso-
ciated with gravity is the Planck length. The fundamental degrees of freedom of
gravity are believed to be somehow associated with this Planck length. Our general
knowledge of quantum field theory tells us that the vacuum quantum fluctuations of
these degrees of freedom induce a cosmological constant on the huge order (Planck
length)−4, since a cosmological constant can exist in general relativity, which is well
established as the theory of gravity for macroscopic phenomena.

On the other hand, turning to the matter sector, QCD is well established as a
quantum field theory of SU(3) non-abelian gauge fields (and quark fields). QCD is
an asymptotically free field theory, and non-abelian gauge fields are weakly inter-
acting at a sufficiently small scale. On such a small scale, the non-abelian gauge
field behaves like a classical field, and we may safely assume that the fundamental
degrees of freedom of QCD are the (classical) non-abelian gauge field. However, in
quantum gravity, we have a conflict between the locality and the weakness of the in-
teractions. Although the metric tensor field describes macroscopic phenomena quite
well, the interaction becomes stronger on a smaller scale. If we impose the locality
of our world, the fundamental degrees of freedom of gravity should have quantum
mechanical properties as their basic properties. The quantum mechanical properties
may be incorporated by an uncertainty relation of space-time.

In this paper, we propose a space-time uncertainty relation and question whether
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170 N. Sasakura

the fundamental scale associated with gravity is really the Planck length. Our pro-
posal looks quite unusual at first sight, but it turns out to be consistent with known
results. In §2, we explain the motivation for our proposal. Based on the space-time
uncertainty relation, we find that the density of the degrees of freedom vanishes in
an infinitely stretching space-time. This might be a nice property to solve the cos-
mological constant problem. In §3, we evaluate the entropy in a spatial region as a
function of the volume and the energy of the region and compare it with the pre-
viously obtained results. In §4, we discuss thermodynamics. In §5, we evaluate the
entropy and the energy density originating from the space-time itself in our universe.
In §6, we summarize our results and give some discussion. In the Appendix, we give
the derivation of the entropy formula used in §3. Throughout this paper, we use a
unit system in which c = 1.

§2. A space-time uncertainty relation

The fundamental degrees of freedom of general relativity are the metric tensor
field, which is associated with each point in the (3+1)-dimensional space-time. It
is implicitly assumed that we can construct a coordinate system and measure the
values of the metric tensor field. This process seems to have no difficulties in classical
mechanics. We could arrange “clocks” in an appropriate way and measure the metric
field by interchanging light or some particles among them. As one arranges more
“clocks” in a spatial region, the measurement becomes finer. One might worry
about the influence from the masses of the “clocks” themselves when the density of
the “clocks” becomes large. But it would not contradict the principles of classical
mechanics to make a “clock” with an arbitrarily small mass, though it would become
an unlimitedly difficult engineering problem.

However, in quantum mechanics, one notices a serious difficulty in the above
process. 13) As the mass of each “clock” becomes smaller, the coordinate system
decays in a shorter time. To see this, let us consider the construction of a coordinate
system for a time interval T and with a spatial fineness δx in a Minkowski space-
time. Since a “clock” must be localized in a region with the scale δx, the “clock”
inevitably has a momentum of the order p ∼ �/δx, obtained from the uncertainty
relation of quantum mechanics. Thus the “clocks” move with a finite velocity of
order v ∼ �/mδx, where m denotes the masses of the “clocks”. This implies that
the coordinate system will be destroyed by the quantum effect in a finite period
δx/v ∼ m(δx)2/�. This period must be larger than the time interval T of the
coordinate. Hence we obtain

T � m(δx)2/�. (2.1)

This gives a lower bound for the “clock” mass m for given T and δx.
From (2.1), we need “clocks” with a larger mass to construct a finer coordinate

system. However we also have a maximum value of a “clock” mass, because no
“clock” should become a black hole. To measure the gravitational field, it should be
possible to interchange light or particles among “clocks”. Thus the Schwarzschild
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radius should not exceed the uncertainty δx of each “clock”:

Gm � δx. (2.2)

The “clock” mass can be chosen arbitrary if it satisfies (2.1) and (2.2). Thus the
condition for the existence of such a “clock” mass is

G�T � (δx)3. (2.3)

Since we cannot construct an appropriate coordinate system unless the inequality
(2.3) is satisfied, it would be natural to propose that the inequality (2.3) is the
property of a space-time itself with T and δx denoting the time scale and the spatial
uncertainty of the space-time, respectively. Regarding (δx)3 as the volume associated
with each “clock”, (2.3) would be rewritten in the form

G�T � δV, (2.4)

where δV denotes a volume uncertainty.
A flaw in the above derivation is that we neglected the dynamical effect caused

by the gravitational field generated by the “clocks”. One easily finds from (2.1) that
a coordinate system is destroyed in a much shorter time by the gravitational effects
among the “clocks” themselves than by the quantum effects. To justify neglect-
ing this effect, we should consider the case in which the distances among “clocks”
are much larger than the fineness δx. In this case, the fineness δx represents the
uncertainty of the coordinate associated to each “clock”.

An unusual point of the inequality (2.3) is that the minimal spatial length δx
has a positive correlation with the time interval T . Although it seems as if the
left-hand side of (2.3) can be made arbitrarily small, we cannot detect an arbitrarily
small spatial length scale. To show this, let us suppose a test particle is injected into
a system to detect a structure with a length scale δx of the system by a collision
experiment. Since the speed of the particle is smaller than the speed of light, the
collision experiment needs a time longer than δx. Thus, from (2.3), we have

G�δx < G�T � (δx)3, (2.5)

which dictates that the minimal length detectable is indeed the Planck length
√
G�.

When we take the time scale T very large, the inequality (2.3) tells us quite an
unusual thing for a space-time. If the time scale T diverges, the fineness δx also
diverges. This means that a space-time with an infinite characteristic time scale has
a vanishing density of degrees of freedom. We will use this property in the discussion
of the cosmological constant problem in §5.

From (2.4), it would be natural to propose that a fundamental degree of freedom
of quantum gravity is associated with a finite spatial volume determined by

δV = cbtG�T, (2.6)

where cbt is a numerical constant. We discuss the value of this constant in §5, but
for the time being we simply leave it undetermined. We call each such fundamental
space-time region a “space-time bit” in this paper.
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§3. The number of bits in a region with a given energy

In this section, we discuss the maximal number of the space-time bits in a spatial
region with a total volume V and a total energy E, and give a formula for the entropy
associated with the region.

Suppose a spatial region is composed of bits labeled by an integer i = 1, · · · , N .
We assume the total spatial volume V is partitioned by the bits

V =
N∑

i=1

δVi. (3.1)

We now use the uncertainty inequality for energy, δE ≥ �/T . We assume also that
the total energy is partitioned by the bits. Then we have

E =
N∑

i=1

δEi �
N∑

i=1

�

Ti
∼

N∑
i=1

G�
2

δVi
. (3.2)

In the last relation, we have used (2.6). Under the constraint (3.1), the quantity∑N
i=1

G~
2

δVi
in (3.2) takes its minimum value when the volume of each bit, δVi, takes

the same value V/N . Thus we obtain an inequality

E � G�
2N2

V
, (3.3)

or

N �
√

EV

G�2
. (3.4)

There is no reason to believe that the maximum value of the number of the bits in a
region agrees with the entropy associated with it. However, in the Appendix, we give
discussion that illustrates that the right-hand side of (3.4) is in fact approximately
proportional to the entropy:∗)

S(E, V ) ∼ c0

√
EV

G�2
, (3.5)

where c0 is a proportionality factor that is a constant in the leading approximation.
The right-hand side of (3.4) becomes

√
ER3/G�2 for a system with a charac-

teristic scale R. Thus Eq. (3.4) has an extra factor
√
R/EG, compared with the

so-called Bekenstein entropy bound ER/�. 2), 3) In the case that the Schwarzschild
bound GE < R is satisfied, the bound (3.4) is larger than the Bekenstein entropy
bound. Thus (3.4) is distinct from the Bekenstein entropy bound but does not con-
tradict it. In the case GE > R, the entropy formula (3.5) gives a value smaller than
the Bekenstein bound. This plays an important role in explaining the entropy of our
universe in §5.

∗) The entropy in this paper is dimensionless.
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Substituting (3.4) with the Schwarzschild bound GE < R, we obtain

N � R2

G�
. (3.6)

This is the basic inequality of the holographic principle of ’t Hooft and Susskind 4)

that the world can be described by the degrees of freedom on a two-dimensional
surface. In the case of a black hole, the Schwarzschild bound is saturated. Regarding
R2 as the area of the black hole, we obtain qualitative agreement with the Bekenstein-
Hawking entropy formula. 5), 3)

§4. Thermodynamics

In this section we discuss thermodynamics based on the entropy formula (3.5).
Using the first law of the thermodynamics dE = TdS − PdV , we find

T =
(
∂S

∂E

)−1

=
2
c0

√
G�2E

V
, (4.1)

and

P = T

(
∂S

∂V

)
=

E

V
. (4.2)

If we assume that the energy distribution is uniform, from (4.2) we obtain

P = ρ, (4.3)

where ρ denotes the energy density. If we regard R as V 1/3, we instead obtain
P = E/3V = ρ/3 from the Bekenstein entropy formula S ∼ ER. This is the same
relation between the energy density and the pressure as that of radiation, while we
obtain a distinct relation (4.3). The relation (4.3) describes the most incompressible
fluid that is consistent with special relativity. In this fluid, “sound” propagates at
the velocity of light. This light speed propagation might be understood as that of
a graviton. Equation (4.3) is distinct from the relation P = −ρ = −Λ, also, which
we would have if the cosmological constant term were interpreted as an energy-
momentum tensor.

The pressure (4.3) should also play important roles in black hole physics and
cosmology.

§5. Cosmological implications

In this section, we discuss the entropy of our universe and then discuss the
cosmological constant problem.

The total entropy of our universe would be accurately estimated by the entropy
produced at the Planckian time tP = lP =

√
G� from the big bang. Substituting

T = tP into (2.6), the volume δVP of a bit at the Planckian time is

δVP ∼ G�tP = (lP )3. (5.1)
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Thus the total number of the bits in the universe at the Planckian time is estimated
as

NP ∼ R3
P

δVP
∼
(
RP

lP

)3

, (5.2)

where RP denotes the size of the observable part of our universe at the Planckian
time. Thus, using (3.5) and E ∼ NP �/tP , we obtain the entropy of our universe as

SU ∼
√
NPV

tpG�
∼ NP ∼

(
RP

lP

)3

∼ 1090. (5.3)

Here we have used RP ∼ 1030lP obtained from the Friedman-Robertson-Walker
(FRW) cosmological model with the epoch of matter-radiation density equality teq ∼
1011 sec. The value (5.3) is very near the entropy obtained from the 2.7 K cosmic
microwave background.

This value (5.3) of the entropy of our universe has been recently discussed from
the point of view of the cosmic holographic principle, 6) - 8) Fischler and Susskind 6)

have shown that the cosmic holographic principle gives a bound on the expansion
rate and that it can be translated into a bound on the equation of state. The bound
is saturated by the most incompressible perfect fluid, which we discussed in §4. We
can obtain the same bound by imposing the second law of thermodynamics, namely
that the entropy of our universe should not decrease with time. To show this, let us
assume a(t) ∼ tp, where a(t) is the scale factor of the FRW metric. Then, δV (t) ∼ t
from (2.6) and V (t) ∼ t3p. Thus, by a similar argument as that used in deriving
(5.3), we find the behavior of entropy to be described by

S(t) ∼ N(t) ∼ t3p−1. (5.4)

Thus, for the second law to be satisfied, we must have

p ≥ 1
3
, (5.5)

which can be translated into the bound γ ≤ 1 for the equation of state P = γρ.
Relations between the generalized second law and the cosmic holographic principle
are discussed in Ref. 8).

As discussed in §2, the notion of a space-time bit seems to seriously contradict
the classical notion of the (3+1)-dimensional space-time, if the range of time is
infinite. This suggests that the space-time volume “operator”

∫
d4x

√−g does not
exist in “quantum gravity”. Since the cosmological constant is the coupling constant
associated with this “operator”, the suggestion indicates that we cannot introduce
the cosmological constant into “quantum gravity”. However, our universe does not
have an infinite range of time, so we expect there to be a term analogous to the
cosmological constant. We can estimate this as follows. We choose the age of the
universe TU as the characteristic time scale. Then, from (2.6), the volume of a
space-time bit of our universe is

δVU ∼ cbtG�TU . (5.6)
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Each bit will have an energy �/TU , from the uncertainty relation. Thus the energy
density of our universe originating from the space-time itself is obtained as

ρst ∼ �

TUδVU
∼ 1

cbtGT
2
U

. (5.7)

This is on the same order as the critical density ρc = 3H2/8πG, where H is the
Hubble constant, and so might be large enough to change significantly the evolution
scenario of our universe.

We now give an argument to estimate the numerical constant cbt in (2.6). Let us
consider an FRW cosmological model with a vanishing spatial curvature, and, as a
matter, consider a perfect fluid with the thermodynamic property given in §4. The
conservation law of the stress-energy tensor, ρ̇ + 3(ρ + P )ȧ/a = 0, determines the
density as

ρ =
C

a6
, (5.8)

where C is a numerical constant. Substituting (5.8) into the evolution equation
3ȧ2/a2 = 8πGρ, we obtain a3 =

√
24πGCt, and hence

ρ =
1

24πGt2
. (5.9)

Since general relativity gives a perfect description, at least for a macroscopic object,
it would be natural to demand that the result (5.9) agree with (5.7) for TU = t.
Moreover, since a(t) ∼ t1/3, this evolution is an adiabatic process, as can be seen
from (5.4), and is consistent with the conservation of the stress-energy tensor used
in the derivation of (5.8). Thus we obtain

cbt ∼ 24π. (5.10)

An important comment is that the perfect fluid with the thermodynamic prop-
erties in §4 does not fully represent the properties of space-time bits. As an example
in the FRW model of a flat spatial curvature, let us consider the case in which there
exists dust. Since the energy density of dust behaves as 1/a3 and decreases more
slowly than (5.8), the evolution of the universe is dominated by dust after a suffi-
ciently long time. Then the scale factor behaves as a ∼ t2/3 in this regime, and,
substituting this into (5.8), we obtain ρ ∼ 1/t4. This contradicts (5.7), which was
derived simply from the uncertainty relation of energy and time. We propose that
the thermodynamic properties change somehow in the regime and (5.7) is the cor-
rect answer. Substituting (5.10) into (5.7), the ratio of the energy density originating
from the space-time itself to the critical density becomes

Ωst =
ρst

ρc
∼ 1

9(HTU )2
. (5.11)

Comparing this with the observational data, since HTU ∼ 1, we see that a good
portion of the total energy density of our universe originates from the space-time
itself.
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Since the time scale of our universe is very large, it would be interesting to
estimate the length scale of a space-time bit. We obtain

(cbtG�TU )1/3 ∼ 10−14 m ∼ (10 MeV)−1, (5.12)

where we have taken TU = 1010 year. Although this energy scale is much lower than
the Planck energy and is within the range of high energy experiments, it is not clear
whether or how this length scale can be observed in a high energy experiment or an
astrophysical observation.

§6. Summary and discussion

In this paper, we have proposed an uncertainty relation for space-time and have
estimated some quantities in quantum gravity. An interesting point is that, although
the proposed uncertainty relation is very different from the usually expected relations
such as δtδx � l2P or δx � lP , we have obtained results qualitatively consistent
with the known results, and have not found any serious deviations from them. The
purpose of this paper is merely to show the surprise of the consistencies, but not to
give a concrete way to calculate quantities in quantum gravity.

Of course we hope that the uncertainty relation we have proposed turns out to be
an intermediate notion which catches an essential property of quantum gravity. The
most peculiar point is that our space-time uncertainty relation is not consistent with
the cosmological constant term. Presently the most promising approach to quantum
gravity is string theory. The microscopic derivation of the entropy formula for a
BPS black hole from D-brane dynamics is impressive. 9) The uncertainty relations
in string theory are of the form δtδx � l2s and δx � lmin, 10) which work evidently
as an ultraviolet cutoff. The reduction of the degrees of freedom in the infrared
limit is realized through a duality which interchanges small scale and large scale
dynamics. 11), 10) Thus there is the possibility for an uncertainty relation similar to
ours to be derived from string theory. We hope this as well as our space-time
uncertainty relation will be helpful in constructing a new theory describing quantum
gravity.

Finally, in lattice approaches to quantum gravity, an uncertainty relation of the
kind δx, δt � lmin seems to be assumed implicitly. 12) Our uncertainty relation may
provide a new direction for such approaches.
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Appendix

In this appendix, we evaluate a quantity which is similar to entropy in statistical
mechanics to illustrate that the right-hand side of (3.4) can be regarded as a quantity
proportional to the entropy of space-time. What we consider here is just an example.
It is not a proof, because we do not have any reliable microscopic theory of quantum
gravity.

Let us consider a space-time with a total number of bits N , a total volume V
and a total energy E. The quantity we evaluate is the phase volume of energies and
volumes with the constraint (2.4):

Ω(N,V,E) =
N∏

i=1

(∫ ∞

0

∫ ∞

0

dVidEi

G�2
θ
(
ViEi −G�

2
))

× δ

(
N∑

i=1

Vi − V

)
δ

(
N∑

i=1

Ei − E

)
, (A.1)

where θ(y) denotes the step function: θ(y) = 1 for y ≥ 0 and otherwise vanishing.
The Laplace transform of (A.1) is evaluated as

Ω(N,α, β) =
∫ ∞

0

∫ ∞

0

dV dE

G�2
e−αV −βEΩ(N,V,E)

=
N∏

i=1

∫ ∞

0

∫ ∞

0

dVidEi

G�2
e−αVi−βEiθ

(
ViEi −G�

2
)

=
[∫ ∞

0

dV

G�2β
e−G~

2β/V −αV

]N

=

[
2√

G�2αβ
K1(2

√
G�2αβ)

]N

=
[ √

π

(G�2αβ)3/4
exp

(
−2
√
G�2αβ

)
h
(
2
√
G�2αβ

)]N

, (A.2)

where K1(z) is a Bessel function of imaginary argument, and h(z) is a function with
the following asymptotic series for large z:

h(z) =
∞∑

n=0

Γ (3/2 + n)
n!Γ (3/2− n)(2z)n

. (A.3)

The function h(z) can be approximated as 1 if z is sufficiently large. In the calculation
below, we neglect h(z). The consistency of this simplification is checked later.

The quantity Ω(N,V,E) is obtained by the inverse Laplace transform of (A.2):

Ω(N,V,E) =
∫ i∞

−i∞

∫ i∞

−i∞
dαdβ Ω(N,α, β) exp (αV + βE) . (A.4)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/1/169/1841273 by guest on 23 April 2024



178 N. Sasakura

The integration can be approximated by the saddle point method. The saddle point
is determined by

S(N,α, β) ≡ N

(
1
2
ln(π)− 3

4
ln(G�

2αβ)− 2
√
G�2αβ

)
+ αV + βE,

∂S(N,α, β)
∂α

=
∂S(N,α, β)

∂β
= 0. (A.5)

The solution is

α0 =
3N

4V (1−√G�2N2/V E)
,

β0 =
3N

4E(1−√G�2N2/V E)
. (A.6)

Substituting this back, we obtain

ln(Ω(N,V,E)) ∼ S(N,α0, β0) = N0f

(
N

N0

)
, (A.7)

f(z) =
(
1
2
ln(π)− 3

2
ln
(
3
4

)
+
3
2

)
z − 3

2
z ln

(
z

1− z

)
,

N0 =

√
EV

G�2
. (A.8)

For given E and V , the maximum value of (A.7) with respect to N will give its
total entropy. The function f(z) takes its maximum value f(z0) ∼ 1.3 at z0 ∼ 0.5.
The error introduced by neglecting h(z) is just z0 ln(h(z0)) ∼ 0.1, and hence is of
next higher order. Thus we obtain

S(V,E) ∼ 1.4

√
EV

G�2
. (A.9)
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