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SU(N) gauge theories with fundamental representation fermions are studied at high
temperature. The possibility of ZN metastable states has been discussed previously. We
reconsider a partition function with internal symmetries. It is shown that these states are
not metastable, and there is a single vacuum.

§1. Introduction

SU(N) gauge theories are expected to undergo a phase transition at some tem-
perature Tc. The order parameter is the expectation value of the Polyakov loop,

L(x) =
1
N
TrP exp

[
ig

∫ β

0
dtA0(t,x)

]
, (1.1)

where β = 1
T is the inverse temperature, and P denotes path ordering. The theories

are in a confined phase specified by 〈L〉 = 0 under Tc, and they are in a deconfined
phase specified by 〈L〉 �= 0 above Tc. 1)

When fermions in the fundamental representation are absent, there is a ZN

symmetry, which is a center symmetry of SU(N). Above Tc, it is expected that 〈L〉
takes one of the values of ZN , i.e.

〈L〉 ∝ e
2πin

N . (n = 0, 1, · · · , N − 1)

N -fold degenerate vacua are specified by these ZN values. 2), 3) It is interesting to
consider cosmological processes in which the domains of these degenerate ZN vacua
exist. Their interface tension has been calculated. 4) (However, there is a claim that
there is one unique vacuum and that physical ZN domains do not exist, because the
true symmetry is not SU(N) but SU(N)/ZN . 5))

If fermions in the fundamental representation are added, the ZN symmetry is
broken. The reason for this is that, although the Lagrangian density

L = 1
4
F 2
µν + ψ̄γµDµψ (1.2)

and the periodic boundary condition for the gauge fields

Aµ(β,x) = Aµ(0,x) (1.3)

∗) E-mail: sawa@ippan.kushiro-ct.ac.jp

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/2/373/1850845 by guest on 24 April 2024



374 H. Sawayanagi

are invariant under the ZN transformation

ψ → Uψ, Aµ → UAµU
−1 − i

g
U∂µU

−1,

U(t) = exp
[
iφ

t

β
diag(1, · · · , 1,−N + 1)

]

with φ = 2πn
N , the antiperiodic boundary condition for fermions

ψ(β,x) = −ψ(0,x) (1.4)

changes to
ψ(β,x) = −znψ(0,x), zn = e

2πin
N . (1.5)

Thus the above-mentioned degeneracy is lifted, and the state with arg〈L〉 = 0 is the
absolute minimum. However, if the number of fermions is not so large, the states
with arg〈L〉 �= 0 may become local minima, i.e. metastable states. 6) The role of
these metastable states in cosmology has been discussed. 6) Metastable states in the
standard model were also studied. 7)

Although these are interesting states, they have unacceptable thermodynamic
behaviour. 8), 9) We review two of the relevant problems: (a) positive free energy and
(b) complex fermion number density.

(a) Positive free energy
To describe the ZN vacua, it is convenient to introduce a constant part of A0

with the parametrization

aq =
2πq
gβN

diag(1, · · · , 1,−N + 1). (1.6)

Substituting (1.6) into (1.1), and choosing q = n = 0, 1, · · · , N − 1, we find
L ∝ e

2πin
N .

It is not difficult to calculate the free energy density in the one-loop approximation.
The result is 8)

F (q) = π2T 4[Vb(q) +NfVf (q) + Vbase], (1.7)

where Nf is the number of fermions in the fundamental representation. The con-
tribution from gauge fields (and ghosts) Vb and that from fermions Vf are given
by

Vb(q) =
4
3
(N − 1)h(q), (1.8)

Vf (q) =
4
3

[
N

16
− (N − 1)h

(
q

N
+
1
2

)
− h

(
q

N
− q +

1
2

)]
, (1.9)

h(q) = (qmod1)2(1− qmod1)2. (1.10)

The constant term
Vbase = − 1

45

[
(N2 − 1) + 7

4
NNf

]
(1.11)
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Fig. 1. Free energy density f(q) = F (q)/(π2T 4) for N = 3. Nf is the number of fermions in the

fundamental representation.

is required to reproduce the free energy density of an ideal gas of these particles. 8)

The function F (q) has an absolute minimum at q = 0 and may have local minima
at q = 1, 2, · · · , N −1. These local minima may become metastable states. In Fig. 1,
f(q) = F (q)/(π2T 4) is plotted for N = 3, Nf = 0, 3, 4 as an example.

However, as in the Nf = 4 case, these local minima may have positive free
energy:

F = γT 4, γ > 0. (1.12)

Equation (1.12) results in a negative pressure p = −γT 4, negative entropy density
S = −4γT 3, negative internal energy density U = −3γT 4, and negative specific heat
c = −12γT 3. 8)

(b) Complex fermion number density
Let us consider the Lagrangian density ψ̄γµDµψ with Dµ = ∂µ + igAµ. If the

gauge field A0 contains the constant part aq, the fermionic Lagrangian density gives
the term

ψ†igaqψ. (1.13)

Thus igaq plays the role of an imaginary chemical potential. From the free fermion
propagator with (1.13), we find that the expectation value of the particle number
density for a particular fermion flavor is 9)

〈ψ†ψ〉 =
∫

d3p

(2π)3
4N

(
1

eβEpe2πiq/N + 1
− 1

eβEpe−2πiq/N + 1

)
. (1.14)
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376 H. Sawayanagi

Although ψ†ψ is a Hermitian operator, its expectation value (1.14) is imaginary for
q �= 0, N/2. 9)

From these problems, it was concluded that “although the ZN domains are
important in the Euclidean theory, they cannot be interpreted as physical domains
in Minkowski space”. 8), 9) However, the relation between the ZN domains in the
Euclidean theory and those in the Minkowski theory is not clear. In particular, it is
not clear if the domains actually survive in the Euclidean theory. Furthermore, the
origin of these problems is not known. We will study these points.

In general, the inequality F (q) ≥ F (0) holds. In the next section, we give a
definition of a partition function with the background A0. Based on this partition
function, we review the essence of this inequality. In §3, the case with fundamental
representation fermions is considered. We show that since fermions have a global
U(1) symmetry, the ZN metastable states become unstable in this direction. Hence
there is one vacuum and no metastable state. The necessity to take the U(1) symme-
try into account is discussed in §4. Section 5 is devoted to summary. In Appendix A,
when the U(1) symmetry is absent, we show that the partition function appearing
in this article and that appearing in Ref. 10) are equivalent. The inequality used in
the text is proved in Appendix B.

§2. Inequality with background A0

Let us consider a system described by a Hamiltonian H with a global symmetry
G. If the rank of G is r, there are mutually commuting charges Qa (a = 1, · · · , r)
satisfying

[H,Qa] = 0, [Qa, Qb] = 0.

A general generating function is defined by 11)

Ẑ(λ̃1, · · · , λ̃r) = Tr exp

(
−βH + i

r∑
a=1

λ̃aQa

)
. (2.1)

Particular partition functions, e.g. a partition function for a specific representation,
that for chargeless states, etc., are obtained from Ẑ. 11)

In the case of the SU(N) gauge theory without fermions, the Hamiltonian in
the A0 = 0 gauge is

H =
∫

d3x
1
2
[(Ea

i )
2 + (Ba

i )
2], (2.2)

where Ea
i is a conjugate momentum of Aa

i . As H possesses the global SU(N)
symmetry Ai(x) → ΩAi(x)Ω−1, Ẑ contains the element of the Cartan subalge-
bra G(λ̃) =

∑N−1
a=1 λ̃aQa. In addition, (2.2) has the local SU(N) symmetry Ai(x)→

AΩ
i (x) = Ω(x)[Ai(x)− i

g∂i]Ω
−1(x). To make transition amplitudes gauge invariant,

external states must be invariant under this transformation. For this purpose, we
introduce a projection operator P0 defined by

P0|Ai(x)〉 =
∫
Ω(∞)=1

Dµ(Ω(x))|AΩ
i (x)〉,
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Illusory ZN Metastable States in Hot Gauge Theories 377

where dµ(Ω) is the Haar measure of SU(N), and Ω(∞) = lim|x|→∞Ω(x).∗) Some
properties of P0 are discussed in Appendix A. By inserting P0, Ẑ becomes

Ẑ(λ̃) = Tr(e−βH+iG(λ̃)P0)

=
∫

DAi(x)〈Ai(x)|e−βH+iG(λ̃)P0|Ai(x)〉. (2.3)

Here we used the trace formula

TrΞ =
∫
〈ξ|Ξ|(−1)ζξ〉dξ, (2.4)

where |ξ〉 is a state in the coherent representation, and ζ is the Grassmann parity of
ξ.

It is easy to show that (2.3) becomes

Ẑ(λ̃) =
∫

DAi(x)〈(Ai)inv|e−βH+iG(λ̃)|(Ai)inv〉 (2.5)

with |(Ψ)inv〉 = P0|Ψ〉. Furthermore, we can show that (2.3) is derived from the
partition function ∫

Γ
DAµ(x)δgf∆ghe

−Sδ

(
λ̃− 1

V

∫
d3xλ(x)

)
, (2.6)

where Γ, δgf and ∆gh are explained in Appendix A, and λ(x) =
∑N−1

a=1 λa(x)T a with
diagonal and traceless N × N matrices T a. Although fermions are included, these
results are proved in Appendix A. The relation between λ̃ and aq, which is (A.15),
is also discussed there. Equation (2.6) is the partition function studied in Ref. 10).
However, to see the essential point clearly, we use (2.5).

Now we show F (q) ≥ F (0). For convenience in this explanation, following
Ref. 13) we introduce a complete set of the energy eigenstates |k, να〉 ofH (H |k, να〉 =
Ek|k, να〉), where α labels irreducible representations of SU(N), να = (ν1

α, · · · , νN−1
α )

labels the values of SU(N) charges Qa (a = 1, · · · , N − 1) of the states, and the α-
dependence of Ek is included in the label k for simplicity. For the gauge invariant
energy eigenfunctionals Φ(k,να)(Ai) = 〈Ai|P0|k, να〉, the normalization∫

DAiΦ
∗
(k,να)(Ai)Φ(l,ζε)(Ai) = δklδναζε (2.7)

is assumed. 13) Then (2.5) becomes

Ẑ(λ̃) =
∑
k

∑
να

e−βEk〈k, να|eiG(λ̃)|k, να〉.

∗) The restriction Ω(∞) = 1 12) is important. To keep Ai(x) absolutely integrable, i.e. to insure

the inequality
∫

d3x|Ai(x)| < ∞, Ω(∞) must be constant. Furthermore, unless Ω(∞) = 1, P0 does

not satisfy P 2
0 = P0. If the projection operator P in (A.16), which does not have this restriction, is

used, there is a problem (see §5).
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378 H. Sawayanagi

Using (B.3), we find

〈k, να|eiG(λ̃)|k, να〉 =
〈
k, να|ei

∑N−1

a=1
λ̃aνa

α |k, να
〉

≤ 〈k, να|k, να〉 = 1,
where, from (B.4), the equality holds iff

eiG(λ̃)|k, να〉 = |k, να〉. (2.8)

Since there is now ZN symmetry, this condition is satisfied for all states only when
eiG(λ̃) generates the ZN transformation.∗) Thus

Ẑ(λ̃) ≤ Ẑ(λ̃n) =
∑
k

∑
να

e−βEk ,

where λ̃n (n = 0, 1, · · · , N − 1) satisfies eiλ̃n ∈ ZN . Using the relation Ẑ(λ̃) =
e−βV F (λ̃), we find 10)

F (0) = F (λ̃n) ≤ F (λ̃).

We thus see that, because of the phase factor eiG(λ̃), states with aq �= 0 are unfavor-
able.

We note that, although the ZN vacua are shown to be the absolute minima, this
argument does not exclude the possibility of local minima (metastable states).

§3. The case with fermions

The argument of §2 is applicable to the case with fermions in the fundamen-
tal representation. However, as the function Ẑ(λ̃), which is defined by (A.1) and
is equivalent to (A.2), now has no ZN symmetry, (2.8) holds only when λ̃ = 0.
Therefore

Ẑ(λ̃) ≤ Ẑ(0).

Although this expression implies that λ̃0 = 0 gives an absolute minimum, lo-
cal minima (metastable states) may exist. In fact, as we saw in §1, the values
λ̃1, · · · , λ̃(N−1) may give the ZN local minima at the one-loop level, though they may
have unacceptable thermodynamical properties.

To understand the meaning of problem (b) raised in §1, we reconsider a partition
function with fermions. The Hamiltonian in the A0 = 0 gauge,

H =
∫

d3x

{
1
2
[(Ea

i )
2 + (Ba

i )
2] + ψ̄γiDiψ

}
, (3.1)

possesses global and local SU(N) symmetries. The former introduces the factor

eiG(λ̃) = ei
∑N−1

a=1
λ̃aQa

, and the latter introduces the projection operator P0 into

∗) Equation (2.5) shows this result clearly. It realizes maxima if eiG(λ̃)|(Ai)inv〉 = |(AΛ̃
i )inv〉 =

|(Ai)inv〉, where AΛ̃
i = Λ̃AiΛ̃

−1 with Λ̃ = eiλ̃. As in (B.5), this condition is satisfied when Λ̃ ∈ ZN .
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Illusory ZN Metastable States in Hot Gauge Theories 379

the partition function. In addition, the fermionic part has a global U(1) symmetry
(fermion number), 14) which we call Uf (1). It introduces the factor eiθQf into Ẑ,
where Qf is the charge of Uf (1). Thus it is natural to consider the function

Ẑ(λ̃, θ) = Tr(e−βH+iG(λ̃)+iθQfP0)

=
∫

DAiDψDψ̄〈Ai, ψ, ψ̄|e−βH+iG(λ̃)+iθQfP0|Ai,−ψ,−ψ̄〉. (3.2)

Now using eiθQf |ψ〉 = |e−iθψ〉, we can show that (3.2) can be written in the form

Ẑ(λ̃, θ) =
∫
Γθ

DAµ(x)Dψ(x)Dψ̄(x)δgf∆ghe
−Sδ

(
λ̃− 1

V

∫
d3xλ(x)

)
, (3.3)

where the boundary condition Γθ implies (1.3) for Aµ and

ψ(β,x) = −eiθψ(0,x) (3.4)

for fermions. In addition to the usual minus sign, which is a result of the trace
formula (2.4), eiθQf introduces the factor eiθ.

From (3.3), we can calculate the free energy density F (q, s) = − T
V ln Ẑ(λ̃, θ) in

the one-loop approximation as

F (q, s) = π2T 4[Vb(q) +NfVf (q, s) + Vbase], (3.5)

where s = θ
2π , and Vb(q) and Vbase are given in (1.8) and (1.11), respectively. The

fermionic part becomes

Vf (q, s) =
4
3

[
N

16
− (N − 1)h

(
q

N
− s+

1
2

)
− h

(
q

N
− q − s+

1
2

)]
, (3.6)

which coincides with (1.9) if s = 0 (mod 1).
Now let us consider

T

V

∂ ln Ẑ
∂θ

(λ̃, θ = 0) = i〈ψ†ψ〉.

At the one-loop level, this expression becomes

2π
∂F

∂s
(q, s = 0) = −i〈ψ†ψ〉

with 〈ψ†ψ〉 in (1.14). The implication of problem (b) here is that 〈ψ†ψ〉 is purely
imaginary at (λ̃, θ) = (λ̃n, 0), except for n = 0, N/2. Thus ∂F

∂θ (n, 0) is real and
nonzero for n �= 0, N/2. This implies that F is unstable in the θ-direction at these
points.

Furthermore, from (3.5), we can show

∂2F

∂s2

(
N

2
, 0
)
< 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/2/373/1850845 by guest on 24 April 2024



380 H. Sawayanagi

f(q,s)

0
0.5

1
1.5

2
2.5

3 0

0.5

1
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

q

s

f

Fig. 2. Free energy density f(q, s) = F (q, s)/(π2T 4) for N = 3, Nf = 3.

Namely, although ∂F
∂s = 0 at (λ̃N/2, 0), this position is not a local minimum but

a local maximum in the θ-direction. As an example, f(q, s) = F (q, s)/(π2T 4) is
plotted for N = 3, Nf = 3 in Fig. 2.

The minima of F (q, s) are found easily. The function h(q) has minima at q = k
and maxima at q = k + 1

2 with integer k. Therefore the bosonic part Vb(q) has
minima at q = n = 0, 1, · · · , N − 1 (mod N). Inserting q = n, the fermionic part
Vf (q, s) has minima at s = n

N . Thus the free energy density F (q, s) has degenerate
minima at

q = n, s =
n

N
, n = 0, 1, · · · , N − 1 (mod N), (3.7)

and the minimum value is F (n, n
N ) = π2T 4Vbase. There is no local minimum with

F (q, s) > π2T 4Vbase. We note that (3.4) with (3.7) becomes (1.5). This means
that the minima with n �= 0 are related to the minimum with n = 0 by the ZN

transformation. In other words, they are gauge equivalent, and there is one vacuum
with n = 0 essentially.

We note that the above minima, i.e. the maxima of Ẑ(λ̃, θ), are determined
without using the one-loop potential. From (3.2), it is evident that Ẑ(λ̃, θ) realizes
maxima if eiG(λ̃)eiθQf |Ai,−ψ,−ψ̄〉 = |Ai,−ψ,−ψ̄〉. As in (B.7), this condition is
satisfied by the values in (3.7).

§4. The necessity of θ

In the previous section, we showed that the positions specified by the values
(q, s) = (n, 0) with n �= 0 are not metastable in the θ-direction. The usual partition
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Illusory ZN Metastable States in Hot Gauge Theories 381

function Z(λ̃) in (A.2) is the case with θ = 0 in Ẑ(λ̃, θ). Our insistence is that,
although θ yields the unfamiliar boundary condition (3.4), θ = 0 should not be
assumed from the outset.

Usually an antiperiodic boundary condition is imposed. This follows from the
partition function

Z =
∑
k

e−βEk , (4.1)

which is written, by using a complete set of energy eigenstates (H |k〉 = Ek|k〉), as
Z =

∑
k

〈k|e−βH |k〉

= Tre−βH . (4.2)

Since fermions possess the anticommuting property, there is a minus sign in the
trace formula (2.4) for fermions. This minus sign is the origin of the antiperiodic
boundary condition. In other words, an antiperiodic boundary condition is required
to reproduce (4.1).

If H has a global symmetry G, states with energy Ek are degenerate, because
U(g)|k〉, where U(g) is the unitary representation of g ∈ G, have the same energy
as |k〉. Hence the general transition amplitude with energy Ek is 〈k|e−βHU(g)|k〉.
We should take all the possible transition amplitudes into account, and a vacuum
should be determined from them. Thus it is natural to consider the function

Ẑ(g) = Tr[e−βHU(g)].

Since H and U(g) are simultaneously diagonalizable, this form of Ẑ(g) can be rewrit-
ten as (2.1). 11)

We can treat U(g) in two ways. One way is to put it into an action, which
introduces the constant mode of A0. The other way is to operate with it on external
states, which changes the usual (anti)periodic boundary conditions. In the present
case, there are the global symmetries SU(N) and Uf (1). The contribution of the
former is put into the action, and that of the latter gives the unusual boundary
condition (3.4).

In spite of the unfamiliar boundary condition, Ẑ(λ̃, θ) reproduces the original
partition function (4.1) at its extremum point (λ̃n, θn = 2πn

N ). Contrastingly, if we set
θ = 0 from the outset, there are “metastable” states with λ̃ = λ̃n (n = 1, · · · , N −1).
However, in spite of the antiperiodic boundary condition, the original form (4.1)
is not reproduced. Roughly speaking, we obtain

∑
k e

−βEk cos(tr(λ̃n)), which has
unacceptable thermodynamical properties.

This situation is understood as follows. For the energy eigenstate |k〉, there
is the degenerate state eiθQf |k〉. When the operator e−βH+iG(λ̃n) operates on |k〉,
the general transition amplitude with energy Ek is 〈k|eiθQf · e−βH+iG(λ̃n)|k〉. As
e−βH+iG(λ̃n)|k〉 = e−βEke−iθnQf |k〉, the diagonal element 〈k|e−βH+iG(λ̃n)|k〉 does not
have the largest transition probability. Instead, transition to the state 〈k|eiθnQf has
the largest probability 〈k|eiθnQf · e−βH+iG(λ̃n)|k〉 = 〈k|e−βH |k〉 = e−βEk . Summing
the largest amplitudes with respect to k, we obtain (4.1).
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382 H. Sawayanagi

Thus, θ is necessary to describe the degeneracy allowed by the symmetry. Its
value is determined from the minima of the free energy. At the minima, the original
partition function (4.1) is recovered.

§5. Summary

The possibility of ZN metastable states has been discussed in hot SU(N) gauge
theory with fundamental representation fermions. Although these states seem to be
local minima of the effective potential, they have unphysical properties.

To study the problem of the metastable states, we reconsidered the partition
function with the background A0. Although the function Z(λ̃) in (A.2) was used in
Ref. 10), functions based on (2.1) have also been used previously.∗) We showed that
Z(λ̃) is equivalent to Ẑ(λ̃) in (A.1). In Ẑ(λ̃), eiG(λ̃) is related to the global SU(N)
symmetry, and P0 makes external states gauge invariant.

Based on Ẑ(λ̃), the relation F (0) ≤ F (q) was reviewed. The origin of this
inequality was found to be the phase factor eiG(λ̃).

When fermions in the fundamental representation exist, there is the additional
U(1) symmetry related to the fermion number. Thus it is natural to put the factor
eiθQf into Ẑ, though it has not previously been taken into account. We showed that
the problem of the complex fermion number implies that the ZN “metastable” states
are unstable in the θ-direction. Since the transition from |k〉 to 〈k|eiθQf is possible,
it is unreasonable that these states remain metastable. By using Ẑ(λ̃, θ) in (3.2), we
showed that there is essentially one vacuum and no ZN metastable state.

Finally, we note the importance of using P0 in Ẑ. Instead of P0, one might insert
the operator P defined by

P |Ψ〉 =
∫

Dµ (Ω(x)) |ΨΩ〉.
Ω(x) in P0 is restricted as lim|x|→∞Ω(x) = 1, although that in P is not. In fact,
the function

Tr
(
e−βHU(g)P

)
(5.1)

with U(g) = eiG(λ̃) was discussed in Ref. 10). However this function is incorrect. As
eiG(λ̃)P = P , which is discussed in (A.17), (5.1) becomes

Tr(e−βHP ).

That is, λ̃ disappears from the partition function, and, as a result, the potential for
the Polyakov loop becomes trivial. 10)

Appendix A
The Relation of Partition Functions with Background A0

In this appendix, we derive

Ẑ(λ̃) = Tr(e−βH+iG(λ̃)P0), (A.1)
∗) See the references in Ref. 10).
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which is studied in the main text, from the partition function 5), 10)

Z(λ̃) =
∫
Γ
DAµ(x)Dψ(x)Dψ̄(x)δgf∆ghe

−Sδ

(
λ̃− 1

V

∫
d3xλ(x)

)
(A.2)

= e−βF(λ̃),

where S =
∫ Ldx with (1.2), and Γ represents the usual boundary conditions (1.3)

and (1.4). Also, δgf and ∆gh are a gauge-fixing term and a corresponding ghost term,
respectively. The element of the Cartan sub-algebra λ(x) is obtained by diagonaliz-
ing the Wilson line

W (x) = Peig
∫ β

0
A0(t,x)dt

as∗)

W (x) = U(x)Λ(x)U †(x), Λ(x) = eiλ(x).

A “constraint” effective potential is defined by V(λ̃) = F(λ̃)/V . When the spatial
volume V becomes infinity, V becomes the usual effective potential. 16) The limit
V → ∞ is assumed below.

Let us write a charged (off-diagonal) component of A0 as Ach
0 . In (A.2), the

gauge ∂0A0 = 0, Ach
0 = 0 is chosen, and A0 is transformed away from the action as

Ω̃
1− t

β (x)
(
A0(x)− i

g
∂0

)
Ω̃

t
β
−1(x) = 0.

This equation gives

A0 = − i

gβ
ln Ω̃. (A.3)

Substituting this into the definition of W , we find W = Ω̃. Since Ω̃ as well as A0 is
diagonal, this relation implies U(x) = 1 and

Ω̃(x) = Λ(x) (A.4)

in this gauge. Now we can show 13) that (A.2) can be rewritten as 10)

Z(λ̃) =
∫

Dµ̄ (Λ(x))
∫

DAi(x)Dψ(x)Dψ̄(x)

〈Ai, ψ, ψ̄|e−βH |AΛ
i ,−ψΛ,−ψ̄Λ〉δ

(
λ̃− 1

V

∫
d3xλ(x)

)
, (A.5)

where H is the Hamiltonian in the A0 = 0 gauge given in (3.1), dµ̄(Λ) is the reduced
Haar measure for the diagonal element Λ in the Cartan subgroup U(1)N−1 ∈ SU(N),
and

ψΛ = Λψ, AΛ
i = Λ

(
Ai − i

g
∂i

)
Λ†.

∗) U(x) may become singular at some points, where some eigenvalues of λ(x) are degenerate.

Since this is a variant of the maximal Abelian gauge, magnetic monopoles appear at these points. 15)

However, we do not consider such a case here, as we are interested in the vacuum at high T . For

the same reason, configurations with topological charges are not taken into account.
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384 H. Sawayanagi

The reduced Haar measure comes from the relation Dµ̄ (Λ(x)) = DA0(x)δgf∆gh in
this gauge. 13)

Under the constraint λ̃ = 1
V

∫
d3xλ(x) with V → ∞, we put lim|x|→∞ λ(x) =

λ̃, 10) and introduce U(x) ∈ SU(N)/U(1)N−1, which satisfies lim|x|→∞ U(x) = 1.
Using the invariance of H under the gauge transformation with U †, i.e.

〈Ψ |e−βH |ΨU†ΛU 〉 = 〈ΨU |e−βH |(ΨU )Λ〉,
and changing the integration variable as ΨU → Ψ(DΨ = DΨU ), we obtain 13)

∫
DU

∫
DΨ〈Ψ |e−βH |ΨU†ΛU 〉 = const

∫
DΨ〈Ψ |e−βH |ΨΛ〉, (A.6)

where the integration over the coset
∫
DU becomes trivial, yielding an irrelevant

constant. By using (A.6), (A.5) becomes

Z(λ̃) =
∫
Ω(∞)=Ω∞

Dµ (Ω(x))
∫

DAi(x)Dψ(x)Dψ̄(x)

〈Ai, ψ, ψ̄|e−βH |AΩ
i ,−ψΩ,−ψ̄Ω〉, (A.7)

where Ω = U †ΛU satisfies lim|x|→∞Ω(x) = Ω∞ with Ω∞ = eiλ̃, and dµ (Ω(x)) =
dµ̄ (Λ(x)) dU is the Haar measure of Ω ∈ SU(N).

We introduce ω as Ω(x) = eiω(x), and represent the SU(N) generator by the
fields as

G(ω) = −1
g

∫
d3x[Ea

i (Diω)a + gωaψ̄γ0T
aψ]. (A.8)

Then using
|AΩ

i ,−ψΩ,−ψ̄Ω〉 = eiG(ω)|Ai,−ψ,−ψ̄〉,
we find∫

Ω(∞)=Ω∞
Dµ (Ω(x)) |ΨΩ〉 = eiG(λ̃)

∫
Ω(∞)=Ω∞

Dµ (Ω(x)) e−iG(λ̃)eiG(ω)|Ψ〉

= eiG(λ̃)
∫
Ω(∞)=Ω∞

Dµ (Ω(x)) |ΨΩ−1∞ Ω〉

= eiG(λ̃)
∫
Ω′(∞)=1

Dµ
(
Ω′(x)

) |ΨΩ′〉,

where Ω′ = Ω−1∞ Ω satisfies lim|x|→∞Ω′(x) = 1, and the left invariance of the Haar
measure has been used. Thus we obtain∫

Ω(∞)=Ω∞
Dµ (Ω(x)) |ΨΩ〉 = eiG(λ̃)P0|Ψ〉, (A.9)

where, by neglecting the prime for Ω′,

P0|Ψ〉 =
∫
Ω(∞)=1

Dµ (Ω(x)) |ΨΩ〉 (A.10)

=
∫
Ω(∞)=1

Dµ (Ω(x)) eiG(ω)|Ψ〉. (A.11)
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Substituting (A.9) into (A.7), we find

Z(λ̃) =
∫

DAi(x)Dψ(x)Dψ̄(x)〈Ai, ψ, ψ̄|e−βHeiG(λ̃)P0|Ai,−ψ,−ψ̄〉. (A.12)

Using the trace formula (2.4), (A.12) becomes Tr(e−βH+iG(λ̃)P0). We thus see that
Z(λ̃) in (A.2) is tantamount to Ẑ(λ̃) in (A.1).

Finally, we define gauge invariant states and rewrite Z(λ̃). Since the left and
right invariant measures are equivalent for SU(N), dµ(Ω) = dµ(Ωλ̃) with Ωλ̃ =
Ω∞ΩΩ−1∞ holds. Integrating the identity

eiG(λ̃)eiG(ω) = eiG(ωλ̃)eiG(λ̃), eiG(ωλ̃) = eiG(λ̃)eiG(ω)e−iG(λ̃)

over Ω, we find

eiG(λ̃)
∫
Ω(∞)=1

Dµ (Ω(x)) eiG(ω) =
∫
Ω(∞)=1

Dµ (Ω(x)) eiG(ωλ̃)eiG(λ̃)

=
∫
Ωλ̃(∞)=1

Dµ
(
Ωλ̃(x)

)
eiG(ωλ̃)eiG(λ̃).

Therefore
eiG(λ̃)P0 = P0e

iG(λ̃). (A.13)

Using (A.13) and P 2
0 = P0, which is a property of the projection operator, (A.12)

becomes

Z(λ̃) =
∫

DAi(x)Dψ(x)Dψ̄(x)〈(Ai, ψ, ψ̄)inv|e−βH+iG(λ̃)|(Ai,−ψ,−ψ̄)inv〉,
(A.14)

where |(Ψ)inv〉 = P0|Ψ〉 is an invariant state under the gauge transformation eiG(α)

with lim|x|→∞ α(x) = 0. When fermions are absent, (A.14) is (2.5).
We make some comments here. First we note the relation between λ̃ and the

constant part aq in (1.6). From (A.3) with (A.4), we find

λ̃ = gβaq. (A.15)

Equation (A.15) holds to any loop order in the above gauge, which is equivalent to
the static background gauge in Ref. 10). In other gauges, (A.15) holds at leading
order. Thus we can apply (A.15) to the one-loop free energy density in the text.

The second comment is in regard to the projection operator. In (A.14), P0

operates on the external states to make them gauge invariant. As Ω(x) in P0 satisfies
Ω(∞) = 1, (A.13) holds. Contrastingly, let us consider the operator P defined by

P |Ψ〉 =
∫

Dµ (Ω(x)) |ΨΩ〉, (A.16)

where the restriction Ω(∞) = 1 is not imposed. This operator also satisfies P 2 = P ,
and makes external states gauge invariant. However, as

eiG(λ̃)P |Ψ〉 =
∫

Dµ (Ω(x)) |ΨΩ∞Ω〉

=
∫

Dµ (Ω∞Ω(x)) |ΨΩ∞Ω〉,
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386 H. Sawayanagi

P satisfies
eiG(λ̃)P = P (A.17)

instead of (A.13). The partition function with P is discussed in the Summary.

Appendix B
Proof of the Inequality

Let us consider the amplitude

〈Ψ |ΨU 〉,
where ΨU is obtained by performing a unitary transformation U on Ψ . From the
Schwarz inequality, we have ∣∣∣〈Ψ |ΨU 〉

∣∣∣ ≤ ‖Ψ‖‖ΨU‖. (B.1)

Since ‖ΨU‖2 := 〈ΨU |ΨU 〉 = 〈Ψ |Ψ〉 = ‖Ψ‖2, (B.1) becomes∣∣∣〈Ψ |ΨU 〉
∣∣∣ ≤ 〈Ψ |Ψ〉.

Using
〈Ψ |ΨU 〉 ≤

∣∣∣〈Ψ |ΨU 〉
∣∣∣ , (B.2)

we find
〈Ψ |ΨU 〉 ≤ 〈Ψ |Ψ〉. (B.3)

From (B.1) and (B.2), the equality holds if and only if

|ΨU 〉 = |Ψ〉. (B.4)

Now we consider examples used in the text. For the internal symmetry SU(N),
let us put U = eiλ̃, where λ̃ =

∑N−1
a=1 λ̃aT a with diagonal and traceless N × N

matrices T a. Since AU
i = UAiU

−1 = Ai for U = zn ∈ ZN and ψU = Uψ = ψ for
U = 1, we obtain

|AU
i 〉 = eiG(λ̃)|Ai〉 = |Ai〉 if eiλ̃ = zn ∈ ZN , (B.5)

|AU
i ,−ψU ,−ψ̄U 〉 = eiG(λ̃)|Ai,−ψ,−ψ̄〉

= |Ai,−ψ,−ψ̄〉 if eiλ̃ = 1. (B.6)

As another example, let us choose U = eiλ̃e−iθ. Since the U(1) phase e−iθ

does not change Ai, we have AU
i = UAiU

−1 = Ai for eiλ̃ = zn. With this value,
ψU = eiλ̃e−iθψ = ψ for e−iθ = z∗n. Therefore

|AU
i ,−ψU ,−ψ̄U 〉 = eiG(λ̃)eiθQf |Ai,−ψ,−ψ̄〉

= |Ai,−ψ,−ψ̄〉 if eiλ̃ = zn, e
−iθ = z∗n. (B.7)
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