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Using the average action, defined with a continuum analog of the block spin transforma-
tion, we demonstrate the presence of a gauge symmetry along the Wilsonian renormalization
group flow. As a reflection of this gauge symmetry, the average action satisfies the quantum
master equation (QME). We show that the quantum part of the master equation can be
naturally understood, once the measure contribution under the BRS transformation is taken
into account. Furthermore, an effective BRS transformation acting on macroscopic fields
may be defined from the QME. The average action is explicitly evaluated in terms of the
saddle point approximation up to one-loop order. It is confirmed that the action satisfies
the QME and the flow equation.

§1. Introduction

For the definition of the Wilsonian effective action, 1) - 3) one needs to introduce
some regularization. Therefore, it is a nontrivial problem if symmetries such as chiral
or gauge symmetry can survive along the renormalization group (RG) flow, and if
so how they can be realized in the effective theory.

An important contribution to see a (modified or broken) gauge symmetry along
the RG flow was made by Ellwanger. 4) He showed that there exists the broken Ward-
Takahashi (WT) or Slavnov-Taylor identity along the flow expressed as Σk = 0 in his
notation,∗) where k denotes an IR cutoff. Once we find a theory on the hypersurface
defined by Σk = 0 in the coupling space, it remains on the surface along the RG
flow, and in the limit of k → 0 the identity reduces to the Zinn-Justin equation.
The broken WT identity is, in this sense, connected to the usual WT identity. This
viewpoint suggests that we could modify the gauge symmetry broken due to the
regularization in such a way that it could be connected smoothly to the usual gauge
symmetry.

It had been long believed that the realization of a chiral symmetry on the lattice
was impossible. 5) However Lüscher 6) took an important step by finding an exact
chiral symmetry on the lattice a decade after the Ginsparg-Wilson paper. 7) His
chiral symmetry has a different form than the continuum chiral symmetry.

The above example may suggest the possibility that a symmetry in a field theory
could survive even after regularization and that its form after regularization could be
generally different from its familiar form. In an earlier publication, 8) we pursued this
possibility in the context of Wilsonian RG. We defined a procedure to give an effective

∗) We use the same notation, Σk, for the corresponding quantity in our formulation.
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field theory with an IR cutoff. In this setting it was shown that we may define a
quantity similar to Ellwanger’s Σk: the equation Σk = 0 is found to be the quantum
master equation (QME). We also explicitly constructed the symmetry transformation
on the macroscopic fields, which was called the renormalized transformation. With
this result we claimed that a symmetry survives the regularization and is maintained
along the RG flow. We emphasize that the symmetry along the flow is exact and
is not “modified” or “broken”. The free Maxwell theory and the chiral symmetry
were the two examples studied in Ref. 8). For the latter, we obtained continuum
analogs of the Ginsparg-Wilson relation and the Lüscher symmetry. In these specific
examples, the average actions are invariant under the renormalized transformations,
and the QME reduces to the classical master equation. This is, however, not the
case for more general interacting theories.

In the present paper we show that our procedure may be naturally extended
to an interacting gauge theory, typically the non-Abelian gauge theory coupled to
matter fields. A major difference from the earlier examples considered previously
is the presence of the quantum part in the master equation. Although this had
been regarded as a “breaking” term of the symmetry, we will see that its presence
is necessary to maintain the symmetry. The renormalized BRS transformation is
given as in our previous paper. To see more explicitly how our formulation works,
we evaluate the average action with the saddle point approximation up to one-loop
order. It is shown that this action satisfies both the master equation and the flow
equation.

This paper is organized as follows. In §2, after a brief explanation of Batalin-
Vilkovisky (BV) antifield formalism, 9),∗) the average action is introduced and shown
to satisfy the QME and the RG flow equation. For the BRS invariance of the
average action, the quantum part of the master equation naturally emerges. This is
the subject of §3. The renormalized BRS transformation is also given there. In §4 we
evaluate the average action with the saddle point approximation. The last section is
devoted to summary and further discussion of the average action. An explanation of
our notation is given in Appendix A. Some relations in §4 are proved in Appendices
B and C.

Owing to the presence of Grassmann odd fields, we have to keep track of signs
carefully. In order to make equations correct and, at the same time, as simple as
possible, we introduce abbreviations whenever possible.

§2. The average action and its properties

The average action was introduced by Wetterich 11) to realize a continuum analog
of the block spin transformation. Before presenting it, let us describe the microscopic
action and its properties in the antifield formalism.

∗) For reviews, see Ref. 10)
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2.1. The antifield formalism

In the following, φa denote all the fields in the system under consideration: e.g.,
gauge, ghosts, antighosts, B-fields and matters for the non-Abelian theory. Further,
we introduce their antifields, denoted by φ∗a. For the gauge fixing, we perform the
canonical transformation φa → φa, φ∗a → φ∗a + ∂Ψ/∂φa, where Ψ is the gauge
fermion, a function only of the fields. This gauge-fixed basis is convenient, since it
retains the antifields. Let S0[φ] be a BRS invariant gauge-fixed action in the new
basis. We then consider an extended action, linear in the antifields,

S[φ, φ∗] ≡ S0[φ] + φ∗δφ. (2.1)

Here δφa is the BRS transformation of φa. The full expression of the second term is
given in Eq. (A.2).

Under the set of BRS transformations

δφa =
−→
∂ S

∂φ∗a
= (−1)εa+1

←−
∂ S

∂φ∗a
,

δφ∗a = −
−→
∂ S

∂φa
= (−1)εa+1

←−
∂ S

∂φa
, (2.2)

the extended action S[φ, φ∗] is invariant:

δS[φ, φ∗] = δS0[φ] + φ∗δ2φ+ (−1)εa+1δφ∗aδφa = 0. (2.3)

Here εa is the Grassmann parity of the field φa. The sign factor in the third term
of Eq. (2.3) appears since we have chosen the BRS transformation to act from the
right. Another important sign factor appears in changing a right derivative to a left
derivative and vice versa, as in (2.2). (See (A.1) for a general formula.)

With the antibracket

(F,G)φ ≡ F
←−
∂

∂φ

−→
∂ G

∂φ∗
− F
←−
∂

∂φ∗

−→
∂ G

∂φ
, (2.4)

the BRS transformation may be written as δF ≡ (F, S)φ. In terms of the antibracket,
the gauge invariance of the action is nicely expressed as the classical master equation:
(S, S)φ = 0. In Eq. (2.4), the summation over indices and the momentum integration
are implicit.

For the following discussion, the action (2.1) is our starting point. Thus we
assume that the action is linear in the antifield φ∗. This includes the Yang-Mills
fields coupled to matter fields as a typical and important example. Actually, we
can extend our consideration to the case of an action with nonlinear φ∗ dependence.
This will be discussed in Ref. 13).

2.2. The average action

The average action Γk, with IR cutoff k, can be written in terms of macroscopic
fields Φ after integrating out the high frequency modes (see also (3.3)) as

e−Γk[Φ,φ∗]/h̄ =
∫
Dφe−Sk[φ,Φ,φ∗]/h̄, (2.5)
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Sk[φ, Φ, φ∗] = S0[φ] + φ∗δφ+
1
2
(Φ− fkφ) Rk (Φ− fkφ). (2.6)

The third term on the rhs of Eq. (2.6) represents our abbreviated notation for the
full expression given in Eq. (A.3). The functions fk(p) and Rk(p) should be chosen
appropriately, so that the macroscopic fields carry momentum whose magnitude is
less than k. Though we do not need their explicit forms in this paper, it would be
instructive to see how the high-frequency modes are integrated out in the above path
integral.

To realize a continuum analog of the block spin transformation, Wetterich spec-
ified some conditions on the functions. For example,

fk(p) = exp


−α

(
p2

k2

)β

 ,

[Rk(p)]ab = (1− f2
k (p))

−1 × [Rk(p)]ab,

with positive α and β are functions that satisfy these conditions. (See Ref. 11) for
details.) The components of the matrix [Rk(p)]ab are at most polynomials in p.

Note the following: 1) the function fk(p) is close to 1 for the momentum lower
than k and decreases rapidly as the momentum increases, and 2) consequently the
factor (1−f2

k (p))
−1 in Rk(p) is almost constant for high momenta and is very large for

momenta lower than k. The p dependence of [Rk(p)]ab adds only minor modulation
to this behavior. This implies that Φ(p) ∼ φ(p) for p < k, while Φ(p) with p > k
does not carry any information of the microscopic dynamics and appears in a simple
quadratic form in the average action. In the remainder of the paper, we do not need
the explicit forms of the functions, and we only assume the following properties:
fk(−p) = fk(p) and [Rk(p)]ab = (−)εaεb [Rk(−p)]ba, while the components of Rk

vanish for mixed Grassmann parity indices.

2.3. The quantum master equation

An important question is how the gauge symmetry at the microscopic level is
reflected in Γk[Φ, φ∗]. The answer was given in our earlier paper: 8) the macroscopic
action satisfies the QME.

Let us consider the identity∫
Dφe−Sk[φ+δφλ,Φ,φ∗]/h̄ −

∫
Dφe−Sk[φ,Φ,φ∗]/h̄ = 0, (2.7)

with the Grassmann odd parameter λ. We have assumed here the BRS invariance
of the measure Dφ, and thus anomalies are not consider here. Because of the BRS
invariance of the microscopic action, Eq. (2.7) is proportional to the path integral
average of (Φ− fkφ)Rkfkδφ. It is expressed as ∆Φe

−Γk/h̄ = 0, where

∆Φ ≡
∑
a

(−)εa+1
∫

dpfk(p)
∂r

∂Φa(−p)
∂r

∂φ∗a(p)
.

We thus obtain the QME,

Σk[Φ, φ∗] ≡ h̄2eΓk/h̄∆Φe
−Γk/h̄
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Exact BRS Symmetry Realized along the Renormalization Group Flow 1057

=
1
2
(Γk[Φ, φ∗], Γk[Φ, φ∗])Φ − h̄∆ΦΓk[Φ, φ∗] = 0, (2.8)

where the bracket is defined in terms of Φ and φ∗:

(F,G)Φ ≡
∫

d4pfk(p)[
F
←−
∂

∂Φa(−p)
−→
∂ G

∂φ∗a(p)
− F

←−
∂

∂φ∗a(−p)
−→
∂ G

∂Φa(p)
]. (2.9)

A comparison of Eqs. (2.4) and (2.9) suggests that φ∗/fk may be regarded as the
antifield associated with Φ.

2.4. The flow equation for the average action

A straightforward calculation leads us to the flow equation:

h̄∂ke
−Γk[Φ,φ∗]/h̄ = −

[
X +

h̄

2
Str(R−1

k ∂kRk) + h̄ Str(∂k(ln fk))
]
e−Γk[Φ,φ∗]/h̄, (2.10)

X ≡ − h̄
2

2
∂l

∂Φ
(∂kR

−1
k )

∂r

∂Φ
+ ∂k(ln fk)

[
h̄2 ∂

l

∂Φ
R−1

k

∂r

∂Φ
+ h̄Φ

∂l

∂Φ

]
. (2.11)

Here we have used the fact that (Rk)even odd = (Rk)odd even = 0, in our choice for
Rk.

An interesting property of the quantity Σk[Φ, φ∗] was found by Ellwanger: 4)

using the flow equation (2.10), it can be shown that

h̄∂kΣk = (eΓk/h̄Xe−Γk/h̄)Σk − eΓk/h̄X (e−Γk/h̄Σk). (2.12)

Therefore, once we are on the hypersurface Σk = 0 in the space of couplings in Γk,
the same condition will continue to hold, even if we change the IR cutoff k. Note
that the rhs vanishes when Σk = 0, since the QME Σk = 0 for a given k is the
identity for any Φ and φ∗, so that its functional derivatives should vanish.

§3. The QME and the renormalized BRS transformation

In earlier works it had been generally understood that the momentum cutoff
breaks gauge invariance; we only have the condition 14) so that the gauge invariance is
recovered when the IR cutoff is removed. The condition was beautifully summarized
in Ref. 4), and its connection to the QME was clarified in our earlier paper. 8) The
commonly shared view is that terms corresponding to ∆ΦΓk represent the breaking
of the gauge invariance.∗) Here we show that the BRS invariance is maintained,
including ∆ΦΓk term.

In the following we first explain how a QME is related to the BRS invariance
of a generic gauge-invariant system. We find the variation of the path integral
measure is exactly the ∆ΦΓk term. Based on this understanding, we may define the
renormalized BRS transformation for the macroscopic fields.

∗) If one uses the average action, the condition is written in a very simple form as the QME.

Of course, in other formalisms it looks completely different, and the “breaking terms” have very

different forms.
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3.1. A generic gauge system

Let us consider a generic gauge system with the action A[η, η∗], where (η, η∗)
could be the microscopic fields (φ, φ∗) or the macroscopic fields (Φ, φ∗). In order to
formulate the BRS invariance of this quantum system, we consider the identity∫

Dηe−A[η,η∗]/h̄ =
∫
Dη′e−A[η′,η∗]/h̄,

with the new variables given by the transformation

η′ = η + δηλ,

δη = (η,A)η =
−→
∂ A
∂η∗

,

where λ is the transformation parameter. Then, the BRS invariance of the path
integral including the measure may be written as δ(A[η, η∗]− h̄lnDη) = 0. We will
presently see that this is nothing but a QME and that its quantum part is due to
the variation of the measure.

Let us look at the first term in the above-mentioned equation,

δA[η, η∗] = A
←−
∂

∂η
δη =

A←−∂
∂η

−→
∂ A
∂η∗

=
1
2
(A,A)η.

If we assume that the path integral measure is flat, Dη =
∏

a dηa, the logarithm of
the measure transforms as lnDη′ = lnDη + (δlnDη)λ:∗)

(δlnDη)λ = ln Sdet
∂r

∂ηa
(η +

∂lA
∂η∗

λ)b ∼
−→
∂

∂η∗a
A[η, η∗]

←−
∂

∂ηa
λ. (3.1)

Therefore, including the contribution from the measure, we obtain the QME,

1
2
(A[η, η∗],A[η, η∗])η − h̄

−→
∂

∂η∗a
A[η, η∗]

←−
∂

∂ηa
= 0. (3.2)

3.2. The average action

Consider the path integral∫
Dφe−S[φ,φ∗]/h̄

=
∫
DΦDφ e−Sk[φ,Φ,φ∗]/h̄ =

∫
DΦe−Γk[Φ,φ∗]/h̄. (3.3)

To the original path integral, we insert the gaussian integration with respect to Φ
and reverse the order of the integrations. Then we find the path integral over the
average action with a flat measure for the Φ-integration. The gauge symmetry of the
original system is expressed as the classical master equation. The path integral of the
average action carries the same information. As evident from our general argument,
the symmetry can be expressed as the QME, with its quantum part ∆ΦΓk coming
from the transformation of the path integral measure.

∗) The argument leading to Eq. (3.1) is taken from Ref. 12).
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3.3. The renormalized BRS transformation

From the above argument, we see that the renormalized BRS transformation
may be read off from the classical part of the QME: 8)

δrΦ ≡ fk

−→
∂ Γk

∂φ∗
= fk〈δφ〉φ, (3.4)

δrφ
∗ ≡ −fk

−→
∂ Γk

∂Φ
= −〈fkRk(Φ− fkφ)〉φ. (3.5)

Here we have used the definition

〈O〉φ ≡
∫
Dφ O e−Sk/h̄

/∫
Dφ e−Sk/h̄. (3.6)

In Ref. 14), the cutoff-dependent BRS transformation was considered in a different
approach.

Some comments are in order. First, let us emphasize that the quantum part had
long been understood to suggest the breaking of the gauge symmetry, which is not
the correct understanding from our viewpoint. Second, as far as we know, this is the
second example in which the quantum part of a QME plays an important role. (The
first example is the string field theory (SFT). 12)) It is probably very important to
keep in mind that the QME is deeply related to the unitarity of the SFT.

§4. The average action in the saddle point approximation

It is usually unfeasible to fully evaluate the path integral (2.5) to construct an
average action. In order to understand the formalism in more concrete terms, a
systematic evaluation of the average action in (2.5) is quite instructive. The loop
expansion with the saddle point method suits our purpose: it provides a way to
integrate out high frequency modes systematically. In this section we calculate the
average action up to one-loop order.

The saddle point, φ(p) = φ0(p), is determined by the equation

−fkRk(Φ− fkφ0) +
−→
∂ (φ∗aPa[φ0] + S0[φ0])

∂φ0
= 0, (4.1)

where Pa[φ] denotes the BRS transformation of φa: Pa[φ] ≡ δφa. Note that in
Eq. (4.1) we have omitted the indices and the momentum dependence for simplicity.
The left derivative, −→∂ /∂φ0, in the second term is taken with φ∗ fixed. The saddle
point equation gives an implicit function, φ0 = φ0[Φ, φ∗].

Now the average action at the tree level is given as

Γ
(0)
k [Φ, φ∗] ≡ Sk[φ0[Φ, φ∗], Φ, φ∗], (4.2)

and the one-loop correction is the superdeterminant,

Γ
(1)
k [Φ, φ∗] =

h̄

2
ln Sdet(A[φ0, φ

∗]), (4.3)
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of the matrix A:

Aab[φ0, φ
∗] = f2

k [Rk]ab +
−→
∂

∂φa
0

(φ∗cPc[φ0] + S0[φ0])
←−
∂

∂φb
0

. (4.4)

We next show that the one-loop average action, Γ (0)
k + Γ

(1)
k , satisfies both the

QME and the flow equation.

4.1. The one-loop QME

The QME to be proved may be rewritten as

(Γ (0)
k , Γ

(0)
k )Φ = 0, (4.5)

(Γ (0)
k , Γ

(1)
k )Φ − h̄∆ΦΓ

(0)
k = 0, (4.6)

where we have used the fact that 1
2(Γ

(0)
k , Γ

(1)
k )Φ = 1

2(Γ
(1)
k , Γ

(0)
k )Φ, which is easily seen

by using −→∂ Γ (0)
k /∂Φa = (−1)εaΓ

(0)
k
←−
∂ /∂Φa, etc.

The validity of the tree level master equation (4.5) may be confirmed by using
the tree level renormalized BRS transformations for Φ and φ∗:

δ(0)
r Φ = (Φ, Γ (0)

k )Φ = fkP [φ0], (4.7)

δ(0)
r φ∗ = (φ∗, Γ (0)

k )Φ = −fkRk(Φ− fkφ0)

= −
−→
∂ (φ∗aPa[φ0] + S0[φ0])

∂φ0
. (4.8)

The final expression in Eq. (4.8) follows from the saddle point equation (4.1). Fur-
ther, using Eqs. (4.7) and (4.8), we may obtain the transformation of the implicit
function φa

0[Φ, φ
∗]:

δ(0)
r φa

0[Φ, φ
∗] = (φ0

←−
∂ /∂Φ)abδ

(0)
r Φb + (φ0

←−
∂ /∂φ∗)abδ

(0)
r φ∗b

= Pa[φ0]. (4.9)

This is shown in Appendix B. From (4.2) we see that Γ (0)
k may be written as the

rhs of (2.6), with φ replaced by φ0. It is easy to see that the first and second terms
of that expression are invariant under Eqs. (4.8) and (4.9). Also, its third term is
invariant under Eqs. (4.7) and (4.9). Therefore Γ (0)

k is invariant under (4.7), (4.8)
and (4.9). This proves the tree level master equation (4.5).

In Appendix C, we show that the lhs of (4.6) reduces to

(Γ (0)
k , Γ

(1)
k )Φ − h̄∆ΦΓ

(0)
k

=
h̄

2
(A−1)ab

−→
∂

∂φb
0

[(φ∗dPd + S0)
←−
∂

∂φc
0

Pc]
←−
∂

∂φa
0

− h̄
−→
∂

∂φ∗a
S[φ0, φ

∗]
←−
∂

∂φa
0

, (4.10)

where S[φ0, φ
∗] is the extended action (2.1) evaluated at the saddle point. The first

term of Eq. (4.10) vanishes, owing to the relations

S0[φ0]
←−
∂

∂φa
0

Pa[φ0] = 0, (4.11)
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Pa[φ0]
←−
∂

∂φb
0

Pb[φ0] = 0. (4.12)

These respectively come from the BRS invariance of the action S0 and the nilpotency
of the BRS transformation at the microscopic level. Similarly, it is easy to observe
that the second term of Eq. (4.10) is nothing but the quantum part of the QME for
S[φ, φ∗]. It vanishes, since we assumed that the measure Dφ is BRS invariant.

4.2. The flow equation for the one-loop average action

Let us now show that the one-loop average action satisfies the flow equation as
well. This is a consistency check of our calculation. We have

−∂kΓk + eΓk/h̄[X +
h̄

2
Str(R−1

k ∂kRk) + h̄Str(∂k(lnfk))]e−Γk/h̄

∼ −Γ
(1)
k
←−
∂

∂φ0
∂kφ0 − Γ

(1)
k
←−
∂

∂Φ
[(∂kR

−1
k )Rk(Φ− fkφ0)− ∂k(lnfk)(Φ− 2fkφ0)].

(4.13)

The cancellation of O(h̄0) terms follows trivially. Thus here on the rhs we have
included only O(h̄) terms. Remember that Γ (1)

k depends on Φ only through its φ0

dependence. Therefore we can rewrite the Φ derivative of (4.13) as a φ0 derivative.
Then, using (B.1) and the relation

−∂kfkRk(Φ− 2fkφ0)− fk∂kRk(Φ− fkφ0) +A∂kφ0 = 0, (4.14)

the vanishing of the rhs of (4.13) follows. The relation (4.14) is obtained by differ-
entiating the saddle point equation.

§5. Summary and discussion

By using the average action formalism, we have shown that the claim we made
in an earlier publication 8) may be justified even for an interacting gauge theory: i.e.,
a gauge symmetry survives even in the presence of a cutoff, and the corresponding
renormalized BRS transformation may be constructed from the QME.

The average action satisfies the QME if the original classical action is gauge
invariant. At this point we have found that the antifield formalism is very convenient
to describe the symmetry properties of the average action. The flow equation also
follows. This also implies that once the system satisfies the WT identity with some
IR cutoff, it will continue to satisfy this identity along the RG flow.

The saddle point evaluation was performed for the average action up to the one-
loop order. The QME and the flow equation were confirmed explicitly. As we have
seen above, there is no essential difficulty to extend our analysis to higher orders. It
is worth pointing out that the construction of an action satisfying both equations
had not been done until this time. However, there is a related calculation due to
Ellwanger. 4) In that calculation the gauge mass term was obtained from the master
and flow equations independently, and these results were found to coincide.
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The quantum part of a QME had been regarded as an obstacle for the gauge
symmetry. We have shown, contrastingly, that it is necessary for the symmetry,
since the measure is not invariant under the renormalized BRS transformation: the
jacobian under the transformation is exactly the quantum part of the QME. This
argument implies also that we may read off the renormalized BRS transformation
as we did earlier for free field theories. The transformation for the averaged field is
particularly simple: δrΦ = fk〈δφ〉φ. Similarly, the quantity Σk defined referring to
the cutoff scale k can also be expressed as a path integral average. Let us briefly
explain this in the following.

As seen below, our argument is applicable even for a microscopic action with
symmetry breaking terms or anomalies. For this reason, let us consider for the
moment the average action Γk[Φ, Φ∗] defined with Eq. (2.5), but with an action
S[φ, φ∗] which is not necessarily BRS invariant. For the microscopic fields, we
define the quantity Σ as

Σ[φ, φ∗] ≡ 1
2
(S, S)φ − h̄∆φS = h̄2 exp(S/h̄)∆φ exp(−S/h̄).

The functional average of this quantity can be rewritten as

〈Σ[φ, φ∗]〉φ = h̄2eΓk/h̄
∫
Dφ e(S−Sk)/h̄

(
∆φe

−S/h̄
)

= h̄2eΓk/h̄∆Φe
−Γk/h̄ ≡ Σk[Φ, φ∗]. (5.1)

For S[φ, φ∗], which does satisfy the (classical) master equation, Eq. (5.1) tells us
that the average action satisfies the QME, Σk[Φ, φ∗] = 0. This is an important
result: the QME for the average action is obtained from the master equation for the
microscopic action. Note that the relation (5.1) holds even in the case that Σ does
not vanish. This fact must have further implications. For example, it tells us how a
symmetry-breaking term changes along the RG flow.

In our formulation, there remain a couple of questions to be clarified. Among
others, the following two are particularly important: 1) whether our QME reduces
to the usual Zinn-Justin equation in the limit of k → 0; 2) how we prepare the
UV theory. In a forthcoming paper 13) we will show that the approach presented
here can be extended to most general gauge theories. 9), 10) The relations to other
approaches 14) - 17) will be given as well. At the same time, it will be explained how
the Zinn-Justin equation is realized in the limit of k → 0. 18) The second question
will be discussed by introducing an UV cutoff Λ and imposing appropriate boundary
conditions on the average action.
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Appendix A
On Notation

The left and right derivatives are written as

−→
∂ F

∂φ
≡ ∂lF

∂φ
,

F
←−
∂

∂φ
≡ ∂rF

∂φ
.

We find that the notation on the lhs of these expressions provide us with simpler
expressions for many equations. However, for the purpose of avoiding possible con-
fusion, we use those on the rhs also.

The sign associated with the change from a right derivative to a left derivative
or vice versa is very important:

F
←−
∂

∂χ
= (−1)εχ(εF +1)

−→
∂ F

∂χ
. (A.1)

Here we explain our abbreviated notation for some examples. The second term
of S[φ, φ∗] ≡ S0[φ] + φ∗δφ is defined as

φ∗δφ ≡
∑
a

∫
d4pφ∗a(−p)δφa(p). (A.2)

In the multiplication on the lhs, the summation over the index a and the momen-
tum integration are implicit. Similarly, in the block spin transformation we use the
following:

(Φ − fkφ)Rk(Φ− fkφ)

≡
∫
d4p(Φ(−p)− fk(−p)φ(−p))a[Rk(p)]ab(Φ(p)− fk(p)φ(p))b. (A.3)

Appendix B
A Proof of Eq. (4.9): δ(0)

r φ0 = P [φ0]

Here we prove the equation

P [φ0] = (∂rφ0/∂Φ)δ(0)
r Φ+ (∂rφ0/∂φ

∗)δ(0)
r φ∗.

By differentiating the saddle point equation (4.1) with respect to Φ and φ∗, we
obtain the relations

fkRk = A(∂rφ0/∂Φ), (B.1)
−→
∂

∂φ0
(φ∗aPa)

←−
∂

∂φ∗

∣∣∣∣
φ0

+ A(∂rφ0/∂φ
∗) = 0, (B.2)

where Aab[φ0, φ
∗] is defined in Eq. (4.4). In Eq. (B.2), the φ∗ derivative in the first

term is taken with φ0 fixed, which is denoted by the subscript φ0.
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Using Eqs. (B·1) and (B·2), and the tree level renormalized BRS transformation,
the equation to be proved may be rewritten as

P = A−1f2
kRkP +A−1

[ −→
∂

∂φ0
(φ∗aPa)

←−
∂

∂φ∗

∣∣∣∣
φ0

] −→
∂

∂φ0
(φ∗bPb + S0).

We now demonstrate the vanishing of the difference of lhs and rhs multiplied by A:

(A−f2
kRk)abPb −

[ −→
∂

∂φ0
(φ∗cPc)

←−
∂

∂φ∗

∣∣∣∣
φ0

]
ab

−→
∂

∂φb
0

(φ∗dPd + S0)

=

[ −→
∂

∂φ0
(φ∗cPc + S0)

←−
∂

∂φ0

]
ab

Pb −
[ −→
∂

∂φ0
(φ∗cPc)

←−
∂

∂φ∗

∣∣∣∣
φ0

]
ab

−→
∂

∂φb
0

(φ∗dPd + S0). (B.3)

Here we have used Eq. (4.4) to make a substitution on the rhs. Applying the φ∗-
differentiation, we rewrite the second term as

−
[ −→
∂

∂φ0
(φ∗cPc)

←−
∂

∂φ∗

∣∣∣∣
φ0

]
ab

−→
∂

∂φb
0

(φ∗dPd + S0)

= −
( −→

∂

∂φa
0

Pb(−)εb+1

) −→
∂

∂φb
0

(φ∗dPd + S0)

=

(−→
∂ Pb

∂φa
0

)[
(φ∗dPd + S0)

←−
∂

∂φb
0

]
= (−)εaεb

[
(φ∗dPd + S0)

←−
∂

∂φb
0

](−→
∂ Pb

∂φa
0

)
.

Thus the rhs of Eq. (B.3) may be rewritten as

−→
∂

∂φa
0

(
[φ∗cPc + S0]

←−
∂

∂φb
0

Pb

)
,

which vanishes, owing to Eqs. (4.11) and (4.12).

Appendix C
A Proof of Eq. (4.10): the QME to One-Loop Order

In (4.10), the first term is the variation of Γ (1)
k under the tree level BRS trans-

formation given in (4.7) and (4.8):

(Γ (0)
k , Γ

(1)
k )Φ − h̄∆ΦΓ

(0)
k

=
h̄

2
StrA−1

((
A
←−
∂

∂φ∗a

∣∣∣∣
φ0

)
δ(0)
r φ∗a +

(
A
←−
∂

∂φa
0

)
δ(0)
r φa

0

)
− h̄tr(fk∂

rP/∂Φ). (C.1)

Since the matrix A is a function of φ0 and φ∗, the variation under the tree level BRS
transformation is taken with respect to these variables. The derivatives in the first
term of (C.1) should be understood accordingly. The second term is the trace (not
the supertrace) of the matrix ∂rPa/∂Φb, which may be rewritten by using Eqs. (4.4)
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and (B.1) as

∆ΦΓ
(0)
k = tr(fk∂

rP/∂φ0 · ∂rφ0/∂Φ))
= tr(∂rP/∂φ0A

−1f2
kRk)

= tr

(
∂rP/∂φ0A

−1[A−
−→
∂

∂φ0
(φ∗cPc + S0)

←−
∂

∂φ0
]

)
.

Therefore Eq. (C.1) becomes

(Γ (0)
k , Γ

(1)
k )Φ − h̄∆ΦΓ

(0)
k

=− h̄tr(∂rP/∂φ0) +
h̄

2
StrA−1

(
−
(
A
←−
∂

∂φ∗a

∣∣∣∣
φ0

) −→
∂

∂φa
0

(φ∗cPc + S0) +

(
A
←−
∂

∂φa
0

)
Pa

)

+ h̄ tr

[
A−1

( −→
∂

∂φ0
(φ∗cPc + S0)

←−
∂

∂φ0

)
∂rP/∂φ0

]
.

We may write the rhs more explicitly. After the φ∗-differentiation, the second and
third terms can be written as

h̄

2
(−)εaA−1

ab

(
−(−)(εc+1)(εa+1)

( −→
∂

∂φb
0

Pc

←−
∂

∂φa
0

) −→
∂

∂φc
0

(φ∗dPd + S0) +

(
Aba
←−
∂

∂φc
0

)
Pc

)

+ h̄A−1
ab

( −→
∂

∂φb
0

(φ∗dPd + S0)
←−
∂

∂φc
0

)(
Pc
←−
∂

∂φa
0

)
.

An easy calculation then leads us to Eq. (4.10). In this calculation, one must treat
signs carefully, in particular those coming from Eq. (A.1).
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