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Recently we made a proposal for realization of an effective BRS symmetry along the
Wilsonian renormalization group flow. In this paper we show that the idea can be naturally
extended to the most general gauge theories. Extensive use of the antifield formalism is
made to reveal some remarkable structure of the effective BRS symmetry. The average action,
defined with a continuum analog of the block spin transformation, obeys the quantum master
equation (QME), provided that a UV action does so. We show that the RG flow described
by the exact flow equations is generated by canonical transformations in the field-antifield
space. Using the relation between the average action and the Legendre effective action, we
establish the equivalence between the QME for the average action and the modified Ward-
Takahashi identity for the Legendre action. The QME remains intact when the regularization
is removed.

§1. Introduction

The Wilsonian renormalization group (RG) 1) is formulated in such a way that
modes with frequencies higher than a reference scale k are integrated out to yield an
effective action for lower momentum modes. The resulting action has been shown to
obey the exact RG flow equations, 2) - 5) an invaluable tool in study of field theories.
In realizing gauge symmetries, however, one needs to deal with all the momentum
scales on an equal footing, and this conflicts with the introduction of such a cut-
off. The reconciliation of regularizations and gauge symmetries is a long-standing
problem in the RG approach.

In recent years, there has been considerable effort made in investigating this
problem. 6) - 17) Becchi showed in his seminal paper 7) that symmetry breaking due
to regularization can be compensated for by gauge non-invariant counter terms. The
compensation called the “fine-tuning condition” has been analyzed in detail within
a perturbative framework. 9) Further, Ellwanger made an important observation. 11)

He showed that once the “modified Ward-Takahashi (WT) or Slavnov-Taylor (ST)
identity” is satisfied at a fixed IR cutoff k, it holds everywhere along the RG flow.
A perturbative formulation for solving the identities is given in Ref. 12).

The studies in the last decade suggest the possibility that there exists a cutoff-
dependent effective gauge symmetry the deformation caused by regularization. This
expectation has been made more plausible by a recent breakthrough for the real-
ization of a chiral symmetry on the lattice: Lüscher constructed an exact chiral
symmetry transformation for lattice fermions, 18) based on the Ginsparg-Wilson re-
lation. 19) The transformation depends on the Dirac operator as well as the lattice
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spacing.
In our previous publications, 20), 21) we took a step further for the realization of

effective symmetries. We showed that the WT identities for a Wilsonian effective ac-
tion take the form of the quantum master equation (QME) in the Batalin-Vilkovisky
(BV) antifield formalism, 22) and thereby formulated renormalized symmetries real-
ized along the RG flow. Our formalism is quite general and it applies to BRS as well
as other global symmetries. We constructed our formalism based on the concepts
introduced by Wetterich in a continuum analog of the block spin transformation: 5)

the average action of the macroscopic or IR fields, which are obtained through the
coarse-graining of microscopic or UV fields.∗) It should be noted in this connec-
tion that Ginsparg and Wilson also used the block spin transformation for lattice
fermions in their pioneering work. 19) Thus it is natural to ask if the QME and the
renormalized transformation formulated for the chiral symmetry actually produce
the continuum counterparts of the Ginsparg-Wilson relation and the Lüscher’s chi-
ral transformation. We showed in Ref. 20) that this is indeed the case. This result
is certainly encouraging and considered as a nontrivial check of our formalism.

In the specific examples discussed in Ref. 20), the average actions have exact
renormalized symmetries. However, this is not the case for more general interact-
ing theories. In these, the non-vanishing variation of the average action should be
canceled by some other contributions, which have been recognized as “symmetry
breaking terms” in the literature. However, this does not necessarily imply the
breakdown of the symmetry, because one should take account not only of the trans-
formation of the action but also of the Jacobian factor associated with a change of
the functional measure. Cancellation of these two effects makes it possible to define
an exact symmetry for the quantum system under consideration. This is what the
QME tells us.

Although the above summarized results may be considered as progress in the
conceptual sense, there remain the following questions to be clarified. (1) How can
we specify the symmetry of the UV action in the presence of a BRS non-invariant
UV regularization? (2) Can the antifield formalism give new insights into the RG
approach? (3) Does the QME reduce to the standard WT identity when the regu-
larization is removed? (4) How is the QME related to other WT identities given to
this time for the Wilsonian or the Legendre effective actions?

In this paper, we develop our formalism further for the purpose of answering
these questions. To address question (1), we arrange a regularization in such a way
that the integration of the UV fields is performed for those modes with momenta
between k and a UV cutoff Λ. Our basic assumption regarding the UV action is
that it is a solution of the QME. Justification of this assumption will be given in
a forthcoming paper. 23) With this assumption, we show that the resulting average
action obeys the QME expressed with the IR fields. This demonstrates the presence
of an exact BRS symmetry along the RG flow, which constitutes a generalization of
our previous result, derived by assuming that the UV action satisfies the classical
master equation.

∗) A similar attempt, which introduces two kinds of the fields, is made in Ref. 10).
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Concerning question (2), we will discuss the following two points in this paper.
First, we treat the most general gauge theories with an open and/or reducible gauge
algebra. It is straightforward to make this extension, once a local UV action for such
a theory is given in the antifield formalism. Second, we show that a change of the
average action along the RG flow can be described by a canonical transformation in
the space of the IR fields and their antifields. It is known that a change in the Wilso-
nian effective action along the RG flow can be interpreted as a reparametrization of
the fields. 13) The antifield formalism provides its natural extension. We note that
the Jacobian factor of the canonical transformation should be added to the action.
The action with this correction then satisfies the QME again.

In order to investigate questions (3) and (4), we define a subtracted average
action, which is the generating functional of the connected cutoff Green functions
for the UV fields. The subtracted average action is well-defined in the IR limit, while
the average action has a regulator that diverges in the limit k → 0. The Legendre
effective action obtained from the subtracted action is also well-defined in the IR
limit. There is a simple relation 24) between the average action for the IR fields and
the Legendre effective action for the UV fields. Using this, we show that the QME
for the average action is equivalent to the “modified WT identity” for the Legendre
effective action. For the specific case of a pure Yang-Mills theory, it reduces to the
“modified ST identity” given by Ellwanger. 11) The “symmetry breaking terms” in
the “modified WT identity” are thus identified with those coming from the Jacobian
factor in the path integral of the IR fields. 21) The boundary conditions on the cutoff
functions imply the validity of the “modified WT identity” in the IR limit. As
for the UV cutoff, one can take the UV limit Λ → ∞ in renormalizable theories.
We conclude, therefore, that the QME for the average action remains intact, and
becomes equivalent to the Zinn-Justin equation for the Legendre effective action in
the limit that the regulator is removed by taking k → 0, Λ→ ∞.

This paper is organized as follows. The next section gives a brief summary of
the antifield formalism and the construction of the average action. We show that the
QME for the IR fields is obtained from the functional average of the QME for the UV
fields. In §3, the exact RG flow equation is given for the average action. The evolution
equation of the WT functional is obtained as well. We also construct the canonical
transformation that generates the RG flow. Section 4 discusses the relation between
the average action and the Legendre effective action. The equivalence between the
QME and the “modified WT identity” is shown. The final section contains our
conclusions and a short discussion of the outlook. Our notation and some notes
concerning our computations are given in the appendices.

§2. The average action in the antifield formalism

2.1. The antifield formalism

To make this paper self-contained, we first briefly summarize the Batalin-
Vilkovisky (BV) antifield formalism,∗) and then use it to construct the average

∗) See Ref. 25) for reviews of this subject.
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action. Our formulation applies to the most general gauge theories. Their gauge
algebra can be open and/or reducible.

Let us consider a gauge theory in d-dimensional Euclidean space. It consists of
gauge and matter fields denoted collectively by φi

0, as well as ghosts, antighosts and
B-fields. If the gauge algebra is reducible, we should further add ghosts for ghosts,
their antighosts and B-fields. Let φA = {φi

0, · · ·} be all the fields introduced and let
φ∗A be their antifields. The index A represents the Lorentz indices of tensor fields,
the spinor indices of the fermions, and/or indices distinguishing different types of
generic fields. The Grassmann parities for φA and φ∗A are expressed as ε(φA) = εA
and ε(φ∗A) = εA + 1. The antibracket in the space of {φ, φ∗} is then defined as

(F, G)φ ≡ ∂rF

∂φA

∂lG

∂φ∗A
− ∂

rF

∂φ∗A

∂lG

∂φA

=
∫
ddp

(2π)d

[
∂rF

∂φA(−p)
∂lG

∂φ∗A(p)
− ∂rF

∂φ∗A(−p)
∂lG

∂φA(p)

]
. (2.1)

To make our equations simple, we use matrix notation in the momentum space, as
given in Appendix A.

We begin with a gauge invariant action S0[φ0]. The first step in the antifield
formalism is to construct a classical extended action S̃cl[φ, φ∗] as a power series
expansion of the antifields:

S̃cl[φ, φ∗] = S0[φ0] + φ∗AP
A[φ] + φ∗Aφ

∗
BQ

AB[φ] + · · · . (2.2)

The coefficient functions, such as PA and QAB, should be fixed by the requirement
that the S̃cl satisfy the (classical) master equation, 22)

(
S̃cl, S̃cl

)
φ
= 0. (2.3)

This master equation incorporates all the information of the underlying gauge alge-
bra.

The next step is the gauge fixing. To accomplish this, one introduces the gauge
fixing fermion Ψ(φA), a function which does not depend on the antifields. A possible
way of gauge fixing is to eliminate the antifields by imposing the conditions φ∗A =
∂Ψ/∂φA. Alternatively, one may perform the canonical transformation in the space of
fields and antifields, as φA → φA, φ∗A → φ∗A+∂Ψ/∂φA, where Ψ acts as the generator
of the canonical transformation. This choice of coordinates, called the gauge-fixed
basis, allows us to retain antifields until the end of the calculations. In the following,
we employ this basis and use the notation Scl[φ, φ∗] ≡ S̃cl[φ, φ∗+∂Ψ/∂φ]. In the new
basis, the classical master equation still holds, because an antibracket is invariant
under a canonical transformation.

In the BV quantization, the classical action Scl[φ, φ∗] should be replaced by
the quantum action S[φ, φ∗], on which one imposes the quantum master equation
(QME) 22) in place of (2.3):

Σ[φ, φ∗] ≡ h̄2 exp(S/h̄)∆φ exp(−S/h̄) = 1
2
(S, S)φ − h̄∆φS = 0. (2.4)
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The functional Σ is called the WT functional in this paper. The ∆φ derivative is
defined as

∆φ ≡ (−)εA+1 ∂
r

∂φA

∂r

∂φ∗A
= (−)εA+1

∫
ddp

(2π)d
∂r

∂φA(−p)
∂r

∂φ∗A(p)
. (2.5)

It is a nilpotent operator:

(∆φ)
2 = 0. (2.6)

The QME ensures the BRS invariance of the quantum system.

2.2. The IR fields and the average action

In this subsection, we construct a Wilsonian effective action, the average action.
Let us begin with the path integral representation of the generating functional for a
local quantum action S in the presence of sources JA:

Z[J ] =
∫

Dφ∗
∏
A

δ(φ∗A)Z[J, φ∗],

Z[J, φ∗] =
∫

Dφ exp 1
h̄

(
−S[φ, φ∗] + JAφ

A
)
. (2.7)

In this path integral, the antifields φ∗A are integrated out for the gauge fixing. As
seen below, this is important also for the study of the canonical structure in the space
of fields and antifields. For the fields φA, the quantum modes with arbitrary momenta
are to be integrated simultaneously. The main idea of the Wilsonian RG is to perform
the integration successively: one integrates the high frequency modes of the fields
φA to obtain an effective theory for the low frequency modes. For the division of
momenta, one introduces an IR cutoff k. Furthermore, in order for the integration of
the higher frequencies to be well-defined, the presence of a UV regulator is assumed.
We consider here a regularization in which a UV cutoff Λ is introduced together with
the IR cutoff k in a same regulator, regarding the frequencies between k and Λ as
generating the “block spin action” for the frequencies lower than k. We construct this
effective action, called the average action, slightly modifying Wetterich’s method. 5)

This formalism uses two kinds of fields, the microscopic or UV fields φA in (2.7), and
the macroscopic or IR fields ΦA identified roughly with the average fields obtained
through the coarse-graining of the UV fields. In order to realize this formalism, we
take the following steps. Consider a Gaussian integral

1 = NkΛ

∫
DΦDΦ∗∏

A

δ
(
Φ∗

A − f−1
kΛ φ

∗
A

)
exp−1

h̄


1
2

(
ΦA − fkΛφ

A − f−1
kΛ JC(R−1

kΛ)CA
)

×RkΛ
AB

(
ΦB − fkΛφ

B − (R−1
kΛ)

BDf−1
kΛ JD

), (2.8)

where we have used matrix notation and NkΛ is the normalization function. Shortly
we describe the properties of the invertible matrix (RkΛ)AB and the function fkΛ.
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Let us insert (2.8) into (2.7) and rewrite it as

Z[J ] = ZkΛ[J ] exp−1
h̄

(
1
2
JAf

−2
kΛ (R−1

kΛ)ABJB

)
. (2.9)

Here the cutoff-dependent partition function is given by a functional integral of the
IR fields ΦA:

ZkΛ[J ] =
∫

DΦ∗∏
A

δ (Φ∗
A)ZkΛ[J, Φ∗],

ZkΛ[J, Φ∗] =
∫

DΦ exp
1
h̄

(
−WkΛ[Φ, Φ∗] + JAf

−1
kΛΦ

A
)
. (2.10)

The Wilsonian effective action WkΛ has the path integral representation∗)

exp (−WkΛ[Φ, Φ∗]/h̄) = NkΛ

∫
DφDφ∗

∏
A

δ (fkΛΦ
∗
A − φ∗A)

× exp−SkΛ[φ, Φ, φ∗]/h̄, (2.11)

where

SkΛ[φ, Φ, φ∗] = S[φ, φ∗] +
1
2
(Φ− fkΛφ)A(RkΛ)AB(Φ− fkΛφ)B . (2.12)

The action given in (2.11) is the average action, which was introduced by Wetterich 5)

to realize a continuum analog of the block spin transformation. The average action
describes the dynamics below the IR cutoff. Obviously, the path integral (2.10) over
the IR fields must be the same as the original partition function (2.7). The relation
is given in (2.9): there is a factor depending on the source J , which produces a trivial
IR cutoff dependence for ZkΛ.

Let us discuss some properties of the functions appearing in the definition of the
average action in (2.11) and (2.12). The function fkΛ(p2) is for the coarse-graining
of the UV fields. For the analysis given in this paper, we do not need its concrete
form, but require it to behave as fkΛ(p2) ≈ 0 for k2 < p2 < Λ2 and fkΛ(p2) ≈ 1
outside of this interval. The cutoff functions (RkΛ)AB are introduced to relate the
IR fields with the UV fields. The IR fields are roughly equated with the average
fields, ΦA(p) ≈ fkΛ(p2)φA(p). Because of this relation for the fields, we impose the
constraints Φ∗

A = f−1
kΛ φ

∗
A for the antifields in (2.8) and (2.11) to keep the canonical

structure in the space of fields and antifields. We may choose the cutoff functions as

(RkΛ)AB(p,−q) = (RkΛ)AB(p)(2π)dδ(p− q),
(RkΛ)AB(p) =

R̄AB(p)
fkΛ(1− fkΛ)

. (2.13)

The invertible matrix (RkΛ)AB has the signature ε((RkΛ)AB) = εA+εB. This matrix
and its inverse satisfy

∗) In our previous papers, Γk was used to represent the average action, but it is reserved here

to denote the Legendre effective action.
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(RkΛ)BA = (−)εA+εB+εAεB (RkΛ)AB,(
R−1

kΛ

)BA
= (−)εAεB

(
R−1

kΛ

)AB
. (2.14)

All non-vanishing components of R̄AB(p) are assumed to be polynomials in p. As a
possible choice, it may be identified with D−1

AB, the inverse (free) propagator for the
fields φA and φB .

In (2.12), we find that the terms φAf2
kΛ(R

kΛ)ABφ
B can be regarded as a regulator

and that the integration of the UV fields is performed for those modes with momenta
between k and Λ. The terms fkΛΦ

B(RkΛ)BA act as sources for the UV fields φA

in place of JA in (2.7). In order for this replacement to be realized, we included
J dependent contributions in the Gaussian integral (2.8). The remaining terms
ΦA(RkΛ)ABΦ

B in the exponential do not affect the path integral of the UV fields.
We may therefore define a subtracted average action by removing these terms from
WkΛ:

ŴkΛ[Φ, Φ∗] =WkΛ[Φ, Φ∗]− 1
2
ΦA

(
RkΛ

)
AB
ΦB. (2.15)

It should be noted that ŴkΛ is the generating functional of the connected cutoff
Green functions of the UV fields.

We now discuss the behavior of the average action when the cutoff k reaches the
IR and UV boundary values, 0 and Λ. At the UV scale, k → Λ, we have

lim
k→Λ

fkΛ(p2) = 1,

lim
k→Λ

(RkΛ)AB(p) = ∞. (2.16)

Then,

lim
k→Λ

WkΛ[Φ, Φ∗] = S[φ, φ∗]. (ΦA → φA) (2.17)

This formally implies that the UV action S[φ, φ∗] is defined at the UV scale Λ. For
the IR limit k → 0, we have

lim
k→0

fkΛ(p2) = 0,

lim
k→0

(RkΛ)AB(p) = ∞. (2.18)

In this limit, we find in (2.12) that the sources fkΛΦ
B(RkΛ)BA become finite as

limk→0 fkΛ(RkΛ)AB = R̄AB, and the regulator contributions φAf2
kΛ(R

kΛ)ABφ
B van-

ish. However, the remaining terms ΦA(RkΛ)ABΦ
B become divergent, and act as

infinite “mass terms” for the average action WkΛ. The subtracted average action
given in (2.15) thus suits the study of the IR limit.

2.3. The quantum master equation for the UV and IR fields

Now we show that an exact gauge (BRS) symmetry is realized along the RG
flow, though it is deformed due to the regularization. This symmetry is inherited
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156 Y. Igarashi, K. Itoh and H. So

from the original symmetry of the UV action, S[φ, φ∗]. Our basic assumption to
specify the symmetry is that the UV action is a solution of the QME, Σ[φ, φ∗] = 0.
For a given classical action, such a solution is known to exist at least in perturbation
theory, 25) when gauge anomaly is absent. It is a nontrivial problem to fix BRS non-
invariant counter terms for a given regularization scheme. We will discuss this issue
in a forthcoming paper 23) and assume here that the UV action solves the QME.

Let us consider the WT functional Σ for the IR fields,

ΣkΛ[Φ, Φ∗] ≡ h̄2 exp(WkΛ/h̄)∆Φ exp(−WkΛ/h̄)

=
1
2
(WkΛ, WkΛ)Φ − h̄∆ΦWkΛ, (2.19)

where ( , )Φ and ∆Φ are the antibracket and ∆ derivative for the IR fields. In order
to relate the WT operator for the UV action (2.4) to that for the average action, we
take the functional average of the former with respect to the regularized UV action.
In the formulation given in this paper, the path integral of the UV fields includes
integration over the antifields. This requires a slight modification of our previous
treatment, given in Ref. 21). After some calculation, we find that

〈Σ[φ, φ∗]〉φ:fΦR = h̄2 exp(WkΛ/h̄)NkΛ

∫
DφDφ∗

∏
A

δ (fkΛΦ
∗
A − φ∗A)

× exp [(S − SkΛ)/h̄] [∆φ exp(−S/h̄)]
= h̄2 exp(WkΛ/h̄)∆Φ exp(−WkΛ/h̄) = ΣkΛ[Φ, Φ∗]. (2.20)

Here 〈F 〉φ:J denotes the functional average of F with respect to the fields φA in the
presence of sources JA.

Because Σ[φ, φ∗] = 0, the average action automatically obeys the QME,
ΣkΛ[Φ, Φ∗] = 0, for any k. This clearly demonstrates the presence of an exact BRS
symmetry along the RG flow. We call it the renormalized BRS (rBRS) symmetry.
The result given here generalizes our previous results, 20), 21) where we assumed that
the UV action is linear in the antifields and satisfies the classical master equation.

The QME is understood as follows. Let us consider a set of rBRS transforma-
tions:

ΦA → ΦA + δrΦAλ, δrΦ
A =

(
ΦA, WkΛ

)
Φ
. (2.21)

Here λ is an anti-commuting constant. In general, the average action cannot remain
invariant under (2.21). It transforms as

WkΛ →WkΛ +
1
2
(WkΛ, WkΛ)Φ λ. (2.22)

At the same time, the functional measure∗) transforms as

DΦ→ DΦ (1 +∆ΦWkΛλ) . (2.23)

∗) Note that the functional measure for the IR fields is flat in (2.8).
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BRS Symmetry, the Quantum Master Equation and the Wilsonian RG 157

If the QME is satisfied, these two contributions cancel, leaving the functional integral
DΦ exp(−WkΛ/h̄) invariant. The importance of the contribution from the Jacobian
factor in the QME was noted already in Refs. 26) and 27).

Because of the presence of the ∆ΦWkΛ term, one may introduce another effective
transformation, called the quantum BRS transformation 26) (see also Ref. 25)). For
any operator F [Φ, Φ∗], it is defined by

δQF ≡ (F, WkΛ)Φ − h̄∆ΦF. (2.24)

The quantum BRS transformation δQ is nilpotent,

(δQ)2 F = (F, ΣkΛ)Φ = 0, (2.25)

if the QME is satisfied. It is, however, no longer a graded derivation:

δQ(FH) = F (δQH) + (−)εH (δQF )H − h̄(−)εH (F, H)Φ. (2.26)

One may define the cohomology using the quantum BRS transformation δQ. Ob-
servables can be specified as elements of the cohomology. A violation of the QME
may induce a violation of the nilpotency condition for δQ, and it corresponds to a
gauge anomaly.

§3. The exact RG flow equations and canonical transformation

3.1. The exact RG flow equations

The change in the average action resulting from lowering k is described by the
exact RG flow equations. 2) - 5) It is obtained by differentiating (2.12) with respect
to k. We find

∂k exp (−WkΛ[Φ,Φ∗]/h̄) =
∫

DφDφ∗∂k

[
NkΛ

∏
A

δ
(
fkΛΦ

∗
A − φ∗A

)

× exp−
(
SkΛ[φ, Φ, φ∗]/h̄

)]
, (3.1)

where the normalization function is given by NkΛ = exp[Str(lnRkΛ)/2]. This yields

∂k exp (−WkΛ[Φ,Φ∗]/h̄) = − (X + Str [∂k(ln fkΛ)]) exp (−WkΛ[Φ,Φ∗]/h̄) , (3.2)

where

X = (−)εA+εB+1 h̄

2
∂r

∂ΦA
MAB ∂r

∂ΦB
+ ∂k(ln fk)

[
ΦA ∂l

∂ΦA
− Φ∗

A

∂l

∂Φ∗
A

]
, (3.3)

MAB ≡ f2
kΛ∂k

[
f−2

kΛ (R−1
kΛ)

AB
]
.

The operator X is the fundamental operator that characterizes the RG flow. The
first term in X originates from the k dependence of f2

kΛR
kΛ
AB. The second corresponds
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to the effects of a scale transformation on ΦA and Φ∗
A. The scale transformation on

the antifields appears in (3.3) because of the constraints Φ∗
A = f−1

kΛ φ
∗
A.

We showed in the previous section that the QME, ΣkΛ[Φ, Φ∗] = 0, at an arbi-
trary scale k (< Λ) results from the QME Σ[φ, φ∗] = 0. The same conclusion
may be obtained from the flow equation for ΣkΛ. 11) The exact RG flow equation
(3.2) and the functional ΣkΛ in (2.19) are characterized by differential operators, X
and ∆Φ, respectively. Since X contains a term related to the scale transformation
on Φ∗,∗) it commutes with ∆Φ:

[∆Φ, X] = 0. (3.4)

It follows from (3.2), (2.19) and (3.4) that

∂kΣkΛ = exp(WkΛ/h̄) [X exp(−WkΛ/h̄)]ΣkΛ − exp(WkΛ/h̄)X [exp(−WkΛ/h̄)ΣkΛ] .
(3.5)

The rhs of this equation consists of terms proportional to functional derivatives
of ΣkΛ. Suppose that the QME, ΣkΛ[Φ, Φ∗] = 0, holds for some k. This is an
identity for any Φ and Φ∗, so that all functional derivatives of ΣkΛ should also
vanish. Therefore, if ΣkΛ = 0 at some k, then Σ(k+dk)Λ = 0 (dk < 0). Thus, the flow
equation for the WT functional Σ ensures that the rBRS invariance of the quantum
system persists along the RG flow.

3.2. The canonical transformation generating the RG flow

Let us discuss the BRS invariance realized along the RG flow from a new per-
spective. In the antifield formalism, we may consider the canonical transformations,
which leave the classical master equation invariant, since it is written in the form of
the antibracket. However, the transformations do change the QME or the operator
∆, since a canonical transformation in the field-antifield space induces a nontrivial
Jacobian factor (see Appendix B). In order for a canonical transformation to make
the QME invariant, the associated Jacobian factor must be taken into account: the
action should be transformed suitably to cancel the Jacobian factor as shown in
Appendix B.

Now, take two actions on a RG flow, WkΛ[Φ, Φ∗] andW(k+dk)Λ[Φ, Φ∗] (dk < 0),
which satisfy the QME. An interesting question is whether there is a canonical trans-
formation which relates these actions. Below we show that such a transformation
does exist.

As shown in Appendix B, under the canonical transformation with the generator
G,

ΦA → Φ̄A = ΦA + (ΦA, G)Φ,
Φ∗

A → Φ̄∗
A = Φ∗

A + (Φ∗
A, G)Φ, (3.6)

the action changes by an amount −δQG. For the generator

G[Φ, Φ∗] = (−)εB+1 1
2
Φ∗

AMAB ∂
rWkΛ

∂ΦB
dk − Φ∗

A∂k (ln fk)ΦAdk, (3.7)

∗) In Ref. 21), such a term was not included in X, so that there, [∆Φ, X] �= 0.
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we obtain, up to O((dk)2),

−δQG = ∂kWkΛ[Φ, Φ∗]dk +
1
2
Φ∗

BMBC ∂r

∂ΦC
ΣkΛ[Φ,Φ∗]dk. (3.8)

The second term on the rhs of (3.8) vanishes for an average action WkΛ satisfying
the QME. However, Eq. (3.8) itself holds for any average action defined as (2.11),
which does not necessarily satisfy the QME. A few more comments are in order. 1)
The second term on the rhs of (3.8) is proportional to the antifields other than the
WT operator Σ. This term is zero for the BRS invariant system due to the gauge
fixing condition, Φ∗

A = 0. 2) Note that the canonical transformation (3.6) with (3.7)
does not affect the gauge fixing conditions Φ∗

A = 0 in (2.10), as the new antifields
Φ̄∗

A are proportional to Φ∗
A.

Equation (3.8) may be rewritten as

W(k+dk)Λ[Φ, Φ
∗] =WkΛ[Φ, Φ∗]− δQG. (3.9)

As discussed in Appendix B, this is exactly the change of the action which makes
the QME invariant.

Thus there exists a canonical transformation that generates the infinitesimal
change of the action along the RG flow, keeping the QME intact. The entire RG
flow is generated by a successive series of canonical transformations in the space of
fields and antifields. Reaching the physical limit k → 0 is equivalent to finding the
corresponding finite canonical transformation.

It has been pointed out that the RG flow for the effective action can be regarded
as reparametrizations of the fields. 13) The antifield formalism provides us with its
extension in the form of canonical transformations. It is certainly intriguing to realize
this new perspective of the RG flow for gauge theories.

§4. The average action and the Legendre effective action

We have given in previous sections a general formulation of the renormalized
symmetry realized on the RG flow. The concept of the average action is of crucial
importance to reveal the structure of the symmetry. In the literature, however, the
RG flow has been discussed often by using the Legendre effective action rather than
the average action. These two kinds of effective actions may play complementary
roles. Construction of the Legendre effective action for the classical UV fields is the
subject of this section. It allows us to make clear the relation between our approach
and others.

We begin with the effective action

exp−ŴkΛ[Φ, Φ∗]/h̄ = NkΛ

∫
DφDφ∗

∏
A

δ (fkΛΦ
∗
A − φ∗A)

× exp−1
h̄

(
S[φ, φ∗] +

1
2
φAf2

kΛR
kΛ
ABφ

B − ΦAfkΛR
kΛ
ABφ

B
)
. (4.1)

This action is the generating functional of the connected cutoff Green functions of the
UV fields, and it is related to the average action by (2.15). In (4.1), the background
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IR fields act as the sources for the UV fields in the combinations

jA = ΦBfkΛR
kΛ
BA. (4.2)

We may perform the Legendre transformation

Γ̂kΛ[ϕ, ϕ∗] = ŴkΛ[Φ, Φ∗] + jAϕA, (4.3)

where the classical UV fields ϕA are defined as the expectation values of the UV
fields φA in the presence of the sources jA:

ϕA = −∂
lŴkΛ

∂jA
,

jA =
∂rΓ̂kΛ

∂ϕA
. (4.4)

The antifields are related as

ϕ∗A = φ∗A = fkΛΦ
∗
A. (4.5)

The above equations (4.2), (4.4) and (4.5) give the functional relations ϕA = ϕA[Φ,Φ∗].
Using

∂rŴkΛ

∂ΦA
= −ϕBfkΛR

kΛ
BA, (4.6)

Eqs. (2.15), (4.2) and (4.4) we further obtain

∂rWkΛ

∂ΦA
= f−1

kΛ

∂rΓkΛ

∂ϕA
, (4.7)

where the Legendre effective action is defined by

ΓkΛ[ϕ, ϕ∗] ≡ Γ̂kΛ[ϕ, ϕ∗]− 1
2
ϕAf2

kΛR
kΛ
ABϕ

B

=WkΛ[Φ, Φ∗]− 1
2

(
ΦA − fkΛϕ

A
)
RkΛ

AB

(
ΦB − fkΛϕ

B
)
. (4.8)

From (4.8), we find the relations

∂lŴkΛ

∂Φ∗
A

∣∣∣∣∣∣
Φ fixed

=
∂lWkΛ

∂Φ∗
A

∣∣∣∣∣∣
Φ fixed

= fkΛ
∂lΓ̂kΛ

∂ϕ∗A

∣∣∣∣∣∣
ϕ fixed

= fkΛ
∂lΓkΛ

∂ϕ∗A

∣∣∣∣∣∣
ϕ fixed

. (4.9)

The identity ∂ϕA/∂ϕB = δAB leads to(
∂l∂rΓ̂kΛ

∂ϕ∂ϕ

)−1

AC

≡ (−)εC+1

(
∂l∂rŴkΛ

∂jA∂jC

)
. (4.10)

Using (4.1), (4.3) and (4.10), we derive the flow equation for the Legendre effective
action,

∂kΓkΛ =
h̄

2
(−)εA

[
∂k

(
f2

kΛR
kΛ
AB

)](∂l∂rΓ̂kΛ

∂ϕ∂ϕ

)−1

BA

− h̄
2
∂kStr(lnRkΛ). (4.11)
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The WT identity for the Legendre effective action can be obtained from the
QME for the average action. We find from (4.7) and (4.9) that

1
2
(WkΛ, WkΛ)Φ =

∂rWkΛ

∂ΦA

∂lWkΛ

∂Φ∗
A

=
∂rΓkΛ

∂ϕA

∂lΓkΛ

∂ϕ∗A
=

1
2
(ΓkΛ, ΓkΛ)ϕ , (4.12)

and from (4.4) and (4.10) that

∆ΦWkΛ =
∂r∂lWkΛ

∂ΦA∂Φ∗
A

=

(
fkΛ

∂r∂lΓkΛ

∂ϕB∂ϕ∗A

)
∂rϕB

∂ΦA

= (−)1+εA(1+εC)

(
∂l∂rΓkΛ

∂ϕ∗A∂ϕB

)(
∂l∂rŴkΛ

∂jB∂jC

)
f2

kΛR
kΛ
AC

=

(
∂l∂rΓkΛ

∂ϕ∗A∂ϕB

)(
∂l∂rΓ̂kΛ

∂ϕ∂ϕ

)−1

BC

f2
kΛR

kΛ
CA. (4.13)

Therefore, the QME takes the form

ΣkΛ[Φ, Φ∗] =
∂rΓkΛ

∂ϕA

∂lΓkΛ

∂ϕ∗A
− h̄

(
∂l∂rΓkΛ

∂ϕ∗A∂ϕB

)(
∂l∂rΓ̂kΛ

∂ϕ∂ϕ

)−1

BC

f2
kΛR

kΛ
CA = 0.

(4.14)

When applied to the pure Yang-Mills theory, (4.14) reduces to the “modified ST
identity” obtained by Ellwanger. 11) This result can be understood as follows. The
first term of (4.14) is equal to the antibrackets (ΓkΛ, ΓkΛ)ϕ/2 = (WkΛ, WkΛ)Φ/2,
which cannot vanish, because the symmetry is violated by the regularization. It
should be compensated for by the remaining “symmetry breaking terms.” This is the
reason that (4.14) has been called as the broken or modified WT identity. From our
point of view, the origin of this symmetry breaking terms becomes more transparent.
They are nothing but the ∆ΦWkΛ term arising from the nontrivial Jacobian factor
associated with the non-invariance of the functional measure for the IR fields ΦA

under the rBRS transformation. It is necessary, therefore, for the quantum system
under consideration to be BRS invariant. Note that this interpretation becomes
possible only when we consider the average action WkΛ[Φ,Φ∗]. On the other hand,
the RG flow equations are shown to take a simpler form when expressed in terms of
the ΓkΛ[ϕ, ϕ∗]. This is because the Legendre effective action consists only of the one-
particle irreducible (1PI) cutoff vertex functions. In this sense, the average action
and the Legendre effective action play complementary roles.

We close this section with the following remarks.
(1) Let us consider the IR limit, k → 0. In the path integral (4.1), the regulator
terms proportional to f2

kΛRkΛ
AB are removed in this limit. Thus limk→0 ŴkΛ and

limk→0 Γ̂kΛ = limk→0 ΓkΛ are found to be free of any singularities and well-defined.
They are the generating functionals of the connected Green function and 1PI vertex
function, respectively. In the WT identity (4.14), “the symmetry breaking terms”
are again proportional to f2

kΛRkΛ
AB and vanish in the IR limit. Thus, we conclude

that limk→0ΣkΛ[Φ, Φ∗] = limk→0(WkΛ, WkΛ)Φ/2 = limk→0(ΓkΛ, ΓkΛ)ϕ/2 = 0: all
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the quantum fluctuations of the UV fields are integrated out to yield the Zinn-Justin
equation.
(2) There is another way to obtain the Zinn-Justin equation. We may consider the
standard Legendre effective action based on the path integral (2.10) for the IR fields,

ΓkΛ[Φcl, Φ
∗] = −h̄ lnZkΛ[J, Φ∗] + f−1

kΛ JAΦcl
A, (4.15)

where

f−1
kΛΦ

A
cl ≡ h̄

∂llnZkΛ

∂JA
. (4.16)

In the construction of this effective action, all the quantum fluctuations of the UV
fields are integrated out. Therefore, the action should obey the Zinn-Justin equation.
Actually, one obtains

1
2
(ΓkΛ, ΓkΛ)Φcl

=
∂rΓkΛ

∂ΦA
cl

∂lΓkΛ

∂Φ∗
A

= 〈ΣkΛ[Φ, Φ∗]〉Φ:f−1
kΛ

J . (4.17)

Thus, the QME ΣkΛ = 0 yields the Zinn-Justin equation for the Legendre effective
action, (ΓkΛ, ΓkΛ)Φcl

= 0.

§5. Conclusions

We have shown here that symmetries are not violated but only deformed by
regularizations. This conclusion emerges from a careful study of the WT identities
for the effective theory. It is actually a nontrivial problem to derive them in the
RG approach. Our observation is that, when applied to a Wilsonian effective action
called the average action, they take the form of the QME in the antifield formalism.
It makes it conceptually clear that there exist exact renormalized symmetries realized
along the RG flow.

Because of the generic interactions among the UV fields, neither the IR action
nor the functional measure of the IR fields can remain BRS invariant. The QME
ensures the cancellation of these contributions. We have used the relation between
the average and the Legendre effective action to show that the QME for the former
is equivalent to the “modified WT or ST identity” for the latter. This leads to the
identification of the “symmetry breaking terms” with the Jacobian factor mentioned
above.

The use of the antifield formalism allows us not only to deal with most general
gauge theories with open and/or reducible gauge algebras, but also to reveal the in-
teresting structure of the RG flow and associated renormalized BRS symmetry. First,
we may define the quantum BRS transformation for the symmetry. This transfor-
mation is nilpotent, and does not obey the Leibniz rule. Second any two average
actions on the RG flow are shown to be connected via a canonical transformation.

Our arguments on the renormalized BRS symmetry given here are based on
the assumption that the UV action or the average action at some IR cutoff k = k0
obeys the QME. In perturbation theory, imposing the QME or the WT identities at
some value of k is called the “fine-tuning.” This is discussed extensively in Refs. 7),
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9), 10) and 12). There, a regularization is used in which the IR and UV cutoffs
are incorporated in the same regulator, and the boundary conditions are imposed
on the relevant and irrelevant operators separately. This procedure makes solving
the QME rather complicated. In a forthcoming paper, 23) we discuss an alternative
method using the Pauli-Villars UV regularization. It allows us to directly confirm
that the QME holds at one-loop level for a given anomaly-free UV action.

It has been recognized that the QME plays an important role in the investigation
of unitarity in string field theory. 27) The formalism for the renormalized symmetry
given here provides another example for which the QME plays a crucial role. It is
difficult but highly desirable to solve the QME using a non-perturbative truncation
of the average action.
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Appendix A
A Matrix Notation

In this work we use matrix notation which corresponds to DeWitt’s condensed
notation in the d-dimensional Euclidean momentum space. In this notation, the
discrete indices A, B, · · ·, indicates the momentum variables as well. We also use
a generalized summation convention, in which a repeated index implies not only a
summation over various quantum numbers but also a momentum integration. For
example,

fA
B = gA

C h
C
B (A.1)

is a shorthand expression of

fA
B(p,−q) =

∑
C

∫
ddk

(2π)d
gA

C(p,−k) hC
B(k,−q). (A.2)

The functional derivative is normalized as

∂φA

∂φB
= δAB ≡ δAB(2π)dδ(p− q). (A.3)

We often use

φAM
(1)
AB · · ·M (n)

CDφ
D =

∫
ddp1
(2π)d

· · ·
∫
ddpn+1

(2π)d
φA(−p1)

×M (1)
AB(p1,−p2) · · ·M (n)

CD(pn,−pn+1)φD(pn+1),

∂r

∂φA
M (1)AB · · ·M (n)CD ∂l

∂φ∗D
=
∫
ddp1
(2π)d

· · ·
∫
ddpn+1

(2π)d
∂r

∂φA(p1)
M (1)AB(p1,−p2) · · ·
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×M (n)CD(pn,−pn+1)
∂l

∂φ∗D(−pn+1)
, (A.4)

where ∂r/∂φA (∂l/∂φA) denotes a right (left) derivative with respect to φA. These
derivatives are related as

∂rF

∂φA
= (−)εA(εF +1) ∂

lF

∂φA
. (A.5)

Appendix B
The Canonical Transformation for the RG Flow

Consider a generic actionW [Φ,Φ∗] and an infinitesimal canonical transformation
with generator G[Φ, Φ∗]:

Φ̄A = ΦA + (ΦA, G)Φ,
Φ̄∗

A = Φ∗
A + (Φ∗

A, G)Φ. (B.1)

The path integral identity∫
DΦ̄∗δ(Φ̄∗)DΦ̄ exp(−W [Φ̄, Φ̄∗]/h̄)

=
∫

DΦ∗δ(Φ∗)DΦ exp

[
−W [Φ̄, Φ̄∗]/h̄+ ln Sdet

(
DΦ̄
DΦ

)]
(B.2)

implies that the infinitesimal transformation of the action is −δQG ≡ −(G, W )Φ +
h̄∆ΦG:

W [Φ̄, Φ̄∗]− h̄ ln Sdet
DΦ̄
DΦ

=W [Φ+ (Φ,G), Φ∗ + (Φ∗, G)]− h̄ ln
(
1 + (−)εA

∂r

∂ΦA

∂l

∂Φ∗
A

G

)

=W [Φ, Φ∗]− (G, W )Φ + h̄∆ΦG =W [Φ, Φ∗]− δQG. (B.3)

A comment is in order here. In writing (B.2), we assumed that the generator G
itself is proportional to Φ∗, so that the canonical transformation does not change the
gauge fixing condition. The generator in (3.7) is of this type. However, the change
of the action obtained above is correct for a more generic situation (see, for example,
Ref. 25)).

Now choose the generator G[Φ,Φ∗] in the form of (3.7) with WkΛ replaced by
W . Let us consider the contribution from the first term of (3.7),

G1[Φ,Φ∗] = (−)1+εB
1
2
Φ∗

AMAB ∂
rW

∂ΦB
dk. (B.4)

The IR fields transform as

Φ̄A = ΦA +
(
ΦA, G1

)
Φ
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= ΦA − 1
2
(−)εBMAB ∂

rW

∂ΦB
dk − 1

2
(−)εC+(εA+1)(εC+1)Φ∗

BMBC ∂
l∂rW

∂Φ∗
AΦ

C
dk,

Φ̄∗
A = Φ∗

A + (Φ∗
A, G1)Φ

= Φ∗
A +

1
2
(−)εC+εA(εC+1)Φ∗

BMBC ∂
l∂rW

∂ΦAΦC
dk, (B.5)

which yield

W [Φ + (Φ,G1)Φ , Φ
∗ + (Φ∗, G1)Φ]−W [Φ,Φ∗]

= −1
2
∂rW

∂ΦA

[
(−)εBMAB ∂

rW

∂ΦB
+ (−)εC+(εA+1)(εC+1)Φ∗

BMBC ∂
l∂rW

∂Φ∗
AΦ

C

]
dk

+
1
2
(−)εC+εA(εC+1)∂

rW

∂Φ∗
A

Φ∗
BMBC ∂l∂rW

∂ΦA∂ΦC
dk

= −1
2
(−)εA+εBMBA∂

rW

∂ΦA

∂rW

∂ΦB
dk +

1
4
Φ∗

BMBC ∂r

∂ΦC

[
(W,W )Φ

]
dk. (B.6)

The ∆ derivative of the generator reads

∆ΦG1 = −1
2
(−)εA+εB+1 ∂

r

∂ΦA

∂r

∂Φ∗
A

(
Φ∗

CMCB ∂
rW

∂ΦB

)
dk

=
1
2
(−)εA+εB

∂r

∂ΦA
MAB ∂

rW

∂ΦB
dk − 1

2
Φ∗

BMBC ∂r

∂ΦC
∆ΦWdk. (B.7)

From (B.6) and (B.7) we obtain the change of the action −δQG1 as

−δQG1 =W [Φ+ (Φ,G1)Φ , Φ
∗ + (Φ∗, G1)Φ]−W [Φ,Φ∗] + h̄∆ΦG1

=
1
2
(−)εA+εB+1

(
MAB ∂

rW

∂ΦB

∂rW

∂ΦA
− h̄ ∂

r

∂ΦA
MAB ∂

rW

∂ΦB

)
dk

+
1
2
Φ∗

BMBC ∂r

∂ΦC


1
2
(W,W )Φ − h̄∆ΦW


dk. (B.8)

Similarly, for the second term of the generator G[Φ,Φ∗],

G2[Φ,Φ∗] = −Φ∗A [∂k(ln fkΛ)]ΦAdk, (B.9)

we obtain

−δQG2 = −∂k(ln fkΛ)

(
ΦA∂

lW

∂ΦA
− Φ∗

A

∂lW

∂Φ∗
A

)
dk + h̄ Str[∂k(ln fkΛ)]dk. (B.10)

Equations (B.8) and (B.10) are combined to give

−δQG = (−)εA+εB+1 1
2

(
MAB ∂

rW

∂ΦB

∂rW

∂ΦA
− h̄ ∂

r

∂ΦA
MAB ∂

rW

∂ΦB

)
dk

+h̄ Str [∂k(ln fkΛ)] dk − ∂k (ln fkΛ)

(
ΦA∂

lW

∂ΦA
− Φ∗

A∂k
∂lW

∂Φ∗
A

)
dk

+
1
2
Φ∗

BMBC ∂r

∂ΦC
Σ[Φ,Φ∗]dk. (B.11)
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When the action W [Φ,Φ∗] is the average action defined in (2.11), Eq. (B.11)
may be written

−δQG = ∂kW [Φ, Φ∗]dk +
1
2
Φ∗

BMBC ∂r

∂ΦC
Σ[Φ,Φ∗]dk. (B.12)

Here we have used the flow equation for the average action which may be obtained
from (3.2).
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