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An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and
a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional
space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry
in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4
fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component
fields, while the latter consists of 8 (boson)+8 (fermion) component fields.

§1. Introduction

Long ago, Townsend, Pilch and van Nieuwenhuizen 1) discussed supersymmetry
multiplets containing rank 2k massive antisymmetric tensor fields Aµ1···µ2k

in odd
numbers of dimensions d = 4k+1 (and rank 2k− 1 fields in dimensions d = 4k− 1),
which satisfy a self-dual type equations of motion:

mAµ1···µ2k =
i

(2k)!
εµ1···µ2kν1ν2···ν2k+1∂ν1Aν2···ν2k+1

. (1.1)

With the recent renewed interest in supergravity in five dimensions, 2) in connection
with AdS/CFT dualities 3) and brane world scenarios, 4)– 6) Günaydin and Zager-
mann 7) introduced tensor multiplets in 5D gauged supergravity system, generalizing
the earlier work by Günayden, Sierra and Townsend 8) on 5D supergravity system
coupled to vector multiplets. They found that the presence of a tensor multiplet
gives a novel contribution to the scalar potential. Very recently, Bergshoeff et al. 9)

have given a yet more general form of tensor-vector multiplet couplings in a 5D
superconformal framework.

These works all give the so-called on-shell formulation for the massive tensor
multiplets, in which auxiliary fields are missing and the supersymmetry algebra
closes only on-shell in a particular system.

In a series of papers, 10) – 14) we have given a general off-shell formulation for 5D
supergravity — superconformal tensor calculus — and have discussed the general
supergravity system coupled to Yang-Mills vector multiplets and hypermultiplets in
the 5D bulk, 11) as well as its orbifold compactification on S1/Z2. 14)

The work presented in Refs. 10)–14) is, however, incomplete, because the tensor
multiplets are missing, and therefore, in particular, the scalar potential is not quite
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1144 T. Kugo and K. Ohashi

general. This is because until now there had been no off-shell formulation of the ten-
sor multiplet. The purpose of this paper is to present such an off-shell formulation.
We have actually found an off-shell formulation not only of massive (non-gauge)
tensor multiplets but also of massless tensor gauge multiplets, both containing rank
2 tensor fields. Although both multiplets have 4 bosonic and 4 fermionic on-shell
modes, the former consists of 16 (boson)+16 (fermion) component fields, while the
latter consists of 8 (boson)+8 (fermion) component fields. To make clear the distinc-
tion between the two tensor multiplets, we call the former the ‘large (or, ‘massive’)
tensor multiplet’ and the latter the ‘tensor gauge multiplet’ (or, the ‘small tensor
multiplet’).

In this paper we assume knowledge of 5D superconformal tensor calculus. We
refer the reader for the details to Ref. 12) (see also Ref. 15)).

The rest of this paper is organized as follows. We start in §2 by performing a
dimensional reduction of the known 6D superconformal tensor multiplet to 5D, and
find the small (8+8) tensor multiplet. The main purpose of that section is, however,
to motivate the form of the supersymmetry transformation rule of 5D (large or small)
tensor multiplets. It is actually easier to compute directly in five dimensions for the
purpose of determining the details of the multiplets. Therefore, in §3 we examine
directly in 5D the form of the supersymmetry transformation rule suggested by the
dimensional reduction in a slightly more general manner, and actually find a larger
16+16 multiplet, which we call the ‘large tensor multiplet’. Here, we incorporate
the point by Bergshoeff et al. 9) that the large tensor multiplets should be treated
collectively with vector multiplets. In §4, we impose a stronger constraint, which
reduces the large tensor multiplet to a smaller 8+8 multiplet, and show that it
coincides with the small (8+8) tensor multiplet obtained from the above mentioned
dimensional reduction. In this case, the original tensor field B̂ab is made subject
to the Bianchi-type constraint D̂νB̂

µν + · · · = 0, and it is shown to be essentially
expressed as a dual of the field strength ∂[λAµν] of a rank 2 tensor gauge field Aµν .
In §5 we present the general form of the large tensor multiplet action. An explicit
component form is given. It is shown that the mixing of the vector multiplets in the
Yang-Mills gauge transformation of the tensor multiplets can generally be eliminated
aside from the mixing of the central-charge vector multiplet which is effectively
induced by the vector-tensor mixing mass terms. Finally, in §6 we briefly discuss
the gauge invariant action for the small tensor multiplet. We also show there that
the tensor gauge multiplet action is in fact dual to the vector multiplet action. An
appendix is added to present the solution of an algebraic equation that appears when
B̂ab is rewritten in terms of the tensor gauge field Aµν .

§2. Dimensional reduction of a 6D tensor multiplet to 5D

A superconformal tensor multiplet is known in 6D, 16) but it is an on-shell mul-
tiplet; that is, the superconformal algebra closes only when the multiplet satisfies an
equation of motion. We can, however, convert it into an off-shell 5D multiplet by
making a dimensional reduction, in the same manner as we have done for the hy-
permultiplet. 10) When going down to 5D, we reinterpret the fifth spatial derivative
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Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity 1145

∂/∂x5 ≡ ∂/∂z as a central charge transformation Z, and then in 5D the constraint
equations in 6D are no longer the equations of motion but become the defining
equations of the central charge transformations of the relevant fields. The curved
index as well as the coordinate for the fifth spatial dimension is denoted z, in dis-
tinction from the tangent index 5; (xµ=0,1,2,3,4, xz = z). The U(1) gauge multiplet
V 0 = (M0≡α,W 0

µ , Ω
0i
, Y 0ij) which couples to this central charge is identified with

the fifth spatial components of the vielbein, Rarita-Schwinger and conformal SU(2)
gauge fields, ez

5, eµ
5, ψi

z
, V ij

z , as follows (in the gauge ez
a = 0): 12)

α−1 = ez
5, W 0

µ = αeµ
5, Ωi

0 = −α2ψi
z
, Y ij

0 = α2V ij
z − 3i

α
Ω̄i

0Ω
j
0. (2.1)

The underline here denotes the fields in 6D. Note that eaz = −ea
µW 0

µ , so that the
6D derivative with flat index ∂a = ea

µ∂µ + ea
z∂z indeed reduces to the Z-covariant

derivative ea
µ(∂µ −W 0

µZ) = ∂a −W 0
a Z in 5D.

The 6D tensor multiplet consists of a scalar σ, SU(2)-Majorana-Weyl spinor
τ i∗) (γ7τ

i = −τ i), and selfdual rank 3 tensor F+
abc, whose superconformal transfor-

mation rules and constraint equations were given by Bergshoeff, Sezgin and Van
Proeyen. 16) If we perform the dimensional reduction explained in Ref. 10) and use
the 5D supersymmetry transformation, which is identified with a certain linear com-
bination of the 6D superconformal transformations, 12) then we obtain a 5D tensor
multiplet (σ, τ i, B̂ab, X

ij , · · ·). The supersymmetry transformation laws of the first
two components are found to be

δQ(ε)σ = 2iε̄τ,

δQ(ε)τ i = − 1
4
γabB̂abε

i − 1
2
/̂Dσεi + 1

2
αZσεi +X i

jε
j , (2.2)

and the fields appearing here are identified with the following combinations of 6D
fields:

σ =
1
α
σ, τ i =

1
α

(τ i − σΩ0),

B̂ab =
1
α

(
F+

ab5 − 2ασvab − 1
2
σF̂ab(W 0) − 2iΩ̄0γabτ − i

α
Ω̄0γabΩ

0
)
,

X ij = − 1
α

(
σY ij

0 − 2iΩ̄0(iτ j)
)
. (2.3)

The powers of α have been multiplied such that σ, τ i and B̂ab carry Weyl weights
w = 1, 3/2 and 2, respectively.

We could continue this procedure of dimensional reduction to find the transfor-
mation rule of the B̂ab field and to rewrite the constraint equations

Gab ≡ D̂cF+
abc + · · · = 0, (2.4a)

Γ i ≡ /̂Dτ i + · · · = 0, (2.4b)
C ≡ D̂cD̂cσ + · · · = 0 (2.4c)

∗) Originally, in Ref. 16), this SU(2)-Majorana-Weyl spinor τ i was denoted by ψi. We prefer

τ i, since ψi is easily confused with the Rarita-Schwinger field ψi
µ.
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in terms of these 5D fields. With this we would obtain an off-shell tensor gauge
multiplet in 5D, since the (ab) = (a5) component of the constraints (2.4a) gives
the Bianchi identity D̂bB̂ab + · · · = 0, implying that B̂µν is the dual of the field
strength 3∂[µAνρ] of a rank 2 tensor gauge field Aµν . The other (ab) component
of Eq. (2.4a) defines the central charge transformation of Bab, ∂zF

+
ab5 ∼ ZB̂ab, and

the constraints (2.4b) and (2.4c) define the central charge transformations Zτ i and
Z(Zσ), respectively, of the fermion τ i and the auxiliary scalar Zσ ≡ Zσ. Thus this
tensor gauge multiplet consists of the 8 boson components 1(σ) + 6(Aµν) + 1(Zσ)
and 8 fermion components τ i. (Note that the rank r antisymmetric tensor field in d
dimensions has d−1Cr = (d− 1)!/r!(d− 1− r)! off-shell degrees of freedom while the
non-gauge tensor has dCr = d!/r!(d− r)! components.)

We find a concrete form of these results for this tensor gauge multiplet in §4,
working directly in 5D as a special case of the more general tensor multiplet, which
we discuss in the next section.

§3. Large tensor multiplet T α

Let V I = (M I , W I
µ , Ω

Ii, Y Iij) (I = 0, 1, 2, · · ·) be the vector multiplets 12) of the
system in which the zero-th multiplet V 0 denotes the U(1) vector multiplet coupling
to the central charge Z, and the other V I (I ≥ 1) are the Yang-Mills multiplets of
a gauge group G′. We write U(1)Z × G′ = G. We consider a set of scalar fields
{σα}α=1,2,···, which give a representation of the Yang-Mills group G′ and carry the
central charge Z as well. Let us start with the superconformal transformation law
δσα ≡ (δQ(ε) + δS(η))σα = 2iε̄iτα

i ≡ 2iε̄τα of the scalar fields σα with Weyl weight
w. This defines the SU(2)-Majorana fermion field τ i. Then the 5D superconformal
algebra presented in Ref. 12) generally determines the superconformal transformation
of τ i in the form

δτ i = − 1
4
γabB̂abε

i − 1
2
/̂Dσεi + 1

2
M∗σεi −X ijεj − Zij

a γ
aεj − wσ ηi, (3.1)

where B̂ab is an anti-symmetric tensor, and X ij and Zij
a are an SU(2)-triplet [i.e.,

(i, j)-symmetric] scalar and vector, respectively. We use Λ∗ϕ to denote the G =
U(1)Z ×G′ gauge transformation of the field ϕ with parameters ΛI :

Λ∗σ = δG(Λ)σ = Λ0Zσ + δG′(Λ)σ. (3.2)

We defer the presentation of the explicit form of the Yang-Mills G′-transformation
δG′(Λ)σ of the tensor multiplet to §5, since the following discussion in this section is
independent of it. Comparing this general form (3.1) with the previous δτ i given in
Eq. (2.2) for the tensor gauge multiplet, we see that the SU(2)-tensor vector term
Zij

a γ
aεj is missing in the latter. We are thus led to try the transformation rule (3.1)

with the Zij
a term omitted. Then, using the 5D superconformal algebra, 12) we find

the transformation rules

δσα = 2iε̄τα,

δταi = − 1
4
γabB̂α

abε
i − 1

2
/̂Dσαεi + 1

2
M∗σαεi −Xαijεj − σαηi,
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δB̂α
ab = 4iε̄γ[aD̂b]τ

α − 2iε̄γcd[aγb]τ
αvcd + 2iε̄R̂ab(Q)σα

+2iε̄γabΩ∗σα + 2iε̄γabM∗τα − 4iη̄γabτ
α,

δXαij = 2iε̄(i /̂Dταj) − iε̄(iγ ·vταj) − i
4
ε̄(iχj)σα

+4iε̄(iΩj)
∗ σα + 2iε̄(iM∗ταj) − 2iη̄(iταj), (3.3)

where we have fixed the Weyl weight value of σ to 1 for convenience. (We can
adjust it by multiplying by α = M0 if necessary.) A dot between two tensors
generally represents contraction; e.g., γ ·v = γabvab. Closure of the algebra requires
the constraints

0 = M∗B̂α
ab + F̂ab(W )∗σα + 4vabM∗σα + 2iΩ̄∗γabτ

α

− 1
2
εabcde

(
D̂cB̂αde + 2iτ̄αγcR̂de(Q)

)
, (3.4)

0 = M∗Xαij + Y ij
∗ σ

α − 2iΩ̄(i
∗ ταj) (3.5)

and the supersymmetry transformation descendants of (3.5), since it is not Q-inert.
Actually, we now see that the quantity on the RHS of Eq. (3.5) turns out to be the
first component of a linear multiplet. 12)

We should observe that this transformation rule (3.3) for the tensor multi-
plet Tα has exactly the same form as that 12) for the vector multiplet V I . The
only difference is hidden in the G-transformation ‘∗’ and its manifestation is that
the vector multiplets carry no central charge, ZV I = 0. Then, it is easy to see
that all the constraints in (3.4) and (3.5) are trivially satisfied when the com-
ponent fields of the tensor multiplets Tα = (σα, ταi, B̂α

ab, X
αij) are replaced by

those of vector multiplets, V I = (M I , ΩIi, F̂ I
ab, Y

Iij). In any case, since the trans-
formation rules take the same form, the embedding formula of the vector multi-
plets V I into a linear multiplet L(f(V )), 12) which applies to any homogeneous
quadratic function f(V ) = 1

2
fIJV

IV J , is valid even when the tensor multiplets
Tα are included, and the formula is generalized as follows. We write the vec-
tor and tensor multiplets collectively as T A ≡ (V I , Tα), and their components as
T A = (σA, τAi, B̂A

ab, X
Aij), following the notation for the tensor multiplet. For the

vector multiplet index A = I, of course, the components should be understood as
(σI , τ Ii, B̂I

ab, X
Iij) = (M I , ΩIi, F̂ I

ab(W ), Y Iij). Then, for any quadratic function
f(T ) = 1

2
fABT AT B = 1

2
fIJV

IV J + fIαV
ITα + 1

2
fαβT

αT β , we have the following
linear multiplet L(f(T )) = (Lij(f(T )), ϕi(f(T )), Ea(f(T )), N(f(T )) ):

Lij(f(T )) = fAX
Aij − iτ̄AiτBjfAB,

ϕi(f(T )) = − 1
4
χif + 2Ωi

∗f +
(

/̂D − 1
2
γ ·v +M∗

)
τAifA

+
(
− 1

4
γ ·B̂A + 1

2
/̂DσA − 1

2
M∗σA −XA

)
τBifAB ,

Ea(f(T )) = D̂b
(
4vabf + B̂A

abfA + iτ̄Aγabτ
BfAB

)
+ 1

8
εabcdeB̂

AbcB̂BdefAB

+
(
−D̂aM∗σA + D̂aσ

AM∗
)
fA

+
(
−2i(Ω̄∗γaτ)AσB + 2iτ̄Aγa(M∗τ)B + 4iτ̄Aγa(Ω∗σ)B

)
fAB,
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1148 T. Kugo and K. Ohashi

N(f(T )) = −D̂aD̂af +M∗M∗f − ( 1
2
D + 3v ·v)f + (−2B̂A ·v + iχ̄τA + 2iΩ̄∗τA)fA

+
(
− 1

4
B̂A ·B̂B + 1

2
D̂aσAD̂aσ

B + 2iτ̄A /̂DτB − iτ̄Aγ ·vτB +XA
ijX

Bij

− 3
2
M∗σAM∗σB + 4iτ̄AM∗τB + 4iτ̄AΩ∗σB

)
fAB, (3.6)

where

f ≡ f(σ) = 1
2
fABσ

AσB = 1
2
fIJM

IMJ + fIαM
Iσα + 1

2
fαβσ

ασβ,

fA =
∂f(σ)
∂σA

, fAB =
∂2f(σ)
∂σA∂σB

(3.7)

in this formula.
In view of the formula (3.6), we recognize that the RHS quantity of the constraint

(3.5) is just the first component Lij(f(T )) of the linear multiplet L(f(T )) for the
choice f(T ) = V∗Tα:

f(σ) = M∗σα = M0Zσα + δG′(M)σα. (3.8)

Thus, the complete set of constraint equations for the tensor multiplets Tα are given
by Eq. (3.4) and

L(V∗Tα) =
(
Lij(V∗Tα), ϕi(V∗Tα), Ea(V∗Tα), N(V∗Tα)

)
= 0. (3.9)

It is, however, easy to see that the vector component constraint Ea(V∗T ) = 0 here is
automatically satisfied if the constraint (3.4) is satisfied. In confirming this, we note
that the last two lines of Ea(f(T )) in Eq. (3.6) vanish for f(T ) = V ·T , with the dot
product ‘·’ satisfying Eq. (4.3) in the footnote appearing subsequently, and thus in
particular, for the simple product V T or ∗-product V∗T . We also need the equation

D̂[aB̂
α
bc] + 2iτ̄αγ[aR̂bc](Q) = e[a

µeb
νDc]B

α
µν − 2iψ̄[aγbc]Ω∗σα

− 2iψ̄[aγbc]M∗τα + 2iψ̄[aγbψc]M∗σα, (3.10)

where we have introduced BA
µν = {Bα

µν , F
I
µν(W )} without a hat, ‘ ˆ ’ , representing

B̂A
µν with supersymmetry covariantization terms subtracted:

BA
ab ≡ B̂A

ab − 4iψ̄[aγb]τ
A + 2iψ̄aψcσ

A. (3.11)

Equation (3.10) can be shown by using explicit expressions for R̂ab(Q) and su-
percovariant derivatives as well as the identity γdψ

i
[a(ψ̄bγ

dψc]) = ψi
[a(ψ̄bψc]) [See

Eq. (A·11) in Ref. 10).]. Thus the independent constraints are given by Eq. (3.4),
Lij(V∗T ) = 0, ϕi(V∗T ) = 0 and N(V∗T ) = 0, which are interpreted as defining equa-
tions of the central charge transformation of B̂ab, X

ij , Zτ i and Z2σ, respectively.
(Znφ represents the field Znφ obtained by performing central charge transformation
n times.) We thus finally see that this tensor multiplet consists of

Tα =
(
σα, ταi, B̂α

ab, X
αij , Zσα, Zταi, Z2σα

)
(3.12)
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Table I. Field content of the multiplets.

field type restrictions SU(2) Weyl-weight

large tensor multiplet T

σ boson real  1

τ i fermion SU(2)-Majorana  3
2

B̂ab boson real, antisymmetric  2

Xij boson Xij = Xji = (Xij)
∗  2

Zσ boson real  1

Zτ i fermion SU(2)-Majorana  3
2

Z2σ boson real  1

tensor gauge multiplet A

Aµν boson real, δAµν = 2∂[µΛν]  0

σ boson real  1

τ i fermion SU(2)-Majorana  3
2

Zσ boson real  1

for each α and contains 1(σ) + 10(B̂ab) + 3(X ij) + 1(Zσ) + 1(Z2σ) = 16 bose field
components and 8(τ i)+8(Zτ i) = 16 fermi field components. Note that B̂ab is a mere
tensor field, neither a field strength nor a gauge potential field. We call this 16+16
multiplet the ‘large tensor multiplet’, contrasting it with the smaller ‘tensor gauge
multiplet’. The components of this multiplet and their properties are listed in Table
I.

The superconformal transform action rules for the auxiliary fields Zσα, Zταi and
Z2σα are omitted, since they trivially follow from the stipulation that the central
charge transformation Z be central, i.e., that they commute with all transformations.

§4. Tensor gauge multiplet A

If the tensor multiplet carries no gauge group G′ charges other than the central
charge, that is, V∗T = V 0ZT , then we can derive a smaller tensor multiplet by
requiring

L(V 0T ) =
(
Lij(V 0T ), ϕi(V 0T ), Ea(V 0T ), N(V 0T )

)
= 0, (4.1)

which is a stronger constraint than the previous one, L(V∗T ) = 0, in Eq. (3.9).
Indeed, the latter follows from the former; L(V∗T ) = ZL(V 0T ) = 0, so that the
constraint (4.1) plus Eq. (3.4) gives a sufficient set of conditions for the multiplet to
exist. Note that the first component of this linear multiplet constraint (4.1) reads

Lij(V 0T ) = αXij + σY ij
0 − 2iΩ̄(i

0 τ
j) = 0, (4.2)

which can be solved with respect to Xij so that Xij is no longer an independent field!
This contrasts with the case of the large tensor multiplet, in which the constraint
Lij(V∗T ) = 0 merely defines the central charge transformation of X ij , ZX ij . We
here notice that Eq. (4.2) is the same relation as the last equation in Eq. (2.3) that we
obtained by dimensional reduction from the 6D tensor multiplet. We have therefore
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found that the relation (2.3) is the first component of the linear multiplet constraint
(4.1), and hence that the multiplet obtained by imposing the stronger constraints
L(V 0T ) = 0, (4.1), is nothing but the tensor gauge multiplet possessing 8 boson + 8
fermion components that we would get by dimensional reduction from the 6D tensor
multiplet.

Note that the constraints ϕi(V 0T ) = 0 and N(V 0T ) = 0 determine the central
charge transformations Zτ i and Z(Zσ), respectively. The additional constraint (3.4)
determines the the central charge transformation of B̂ab. As we now show in detail,
the final constraint Ea(V 0T ) = 0 corresponds to the (a5) components of the 6D
constraints (2.4a) and is the Bianchi identity D̂bB̂ab + · · · = 0.∗)

Generally, the linear multiplet (Lij , ϕi, Ea, N) satisfies the constraint

D̂aE
a + iϕ̄γ ·R̂(Q) +M∗N + 4iΩ̄∗ϕ+ 2Y ij

∗ Lij = 0, (4.5)

which can be rewritten in the form 12)

e−1∂λ(eEλ) + 2HV L = 0, (4.6)
with Eλ ≡ Eλ − 2iψ̄ργ

ρλϕ+ 2iψ̄ργ
λρσLψσ,

HV L ≡ Y ij
∗ Lij + 2iΩ̄∗ϕ+ 2iψ̄a

i γaΩj∗Lij − 1
2
Wa∗Ea

+ 1
2
M∗

(
N − 2iψ̄bγ

bϕ− 2iψ̄(i
a γ

abψ
j)
b Lij

)
. (4.7)

In the present case of the linear multiplet L(V 0T ), it isG′-neutral and the ∗-operation
is only the Z transformation. If we here use the constraints Lij(V 0T ) = ϕi(V 0T ) =
N(V 0T ) = 0 other than Eλ(V 0T ) = 0, this equation (4.6) is reduced to

e−1∂λ(eEλ(V 0T )) −W 0
λZEλ(V 0T ) = 0. (4.8)

But ZEλ(V 0T ) = Eλ(V∗T ), which vanishes automatically because of the constraint
(3.4), as remarked before. Thus we have ∂λ(eEλ(V 0T )) = 0, just as in the case
when L(V 0T ) is completely neutral. This implies that eEλ(V 0T ) can be written as
the divergence of a rank 2 antisymmetric tensor density Eλρ. Indeed, inspecting the
formula (3.6) for f(M) = ασ, we can show that Ea(V 0T ) can be written in the form

Eλ(V 0T ) = −e−1∂ρ(Eλρ(V 0T )), (4.9)

−Eλρ(V 0T ) = e
(
4vλρασ + αB̂λρ + F̂ λρ(W 0)σ + 2iΩ̄0γλρτ

)
+ 1

2
ελρσµν

{
W 0

σBµν + 2iψ̄µγσψνασ + 2iψ̄σγµν(ατ +Ω0σ)
}
. (4.10)

∗) Actually, this tensor gauge multiplet can be defined even if we replace the linear multiplet

constraint (4.2), L(V 0T ) = 0, defined with a simple product of V 0 and T , by a more general one,

L(V ·T ) = 0, defined with a dot product ‘ · ’ that satisfies the Jacobi-like identity

[V1, V2; T ] ≡ V1 · (V2∗T ) − V2 · (V1∗T ) − (V1∗V2) · T = 0 (4.3)

and invertibility. Then L(V ·T ) = 0 implies L(V∗T ) = 0, since

δG(Λ)L(V ·T ) = Λ∗L(V ·T ) = L((Λ∗V )·T + V ·(Λ∗T )) = Λ·L((V∗T )) − L([Λ, V ;T ]). (4.4)

The Bianchi identity Ea(V ·T ) = 0 can also be solved with a rank 2 tensor gauge field Aµν in the

same way as for the simple product case Ea(V 0T ) = 0. In the main text, however, we deal with

only the latter case for simplicity of notation.
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This expression actually has the same form as Eλρ(V1V2) 12) for the case of the
completely neutral vectors V1 and V2.

Now, because of the form (4.9), the constraint Eλ(V 0T ) = 0 implies that there
exists an antisymmetric tensor gauge field Aµν with which −Eλρ can be written as

1
3!
ελρσµν∂[σAµν]; thus the constraint Eλ(V 0T ) = 0 is rewritten as

F̂λµν(A) − 1
2
ελµνρσ

(
4vρσασ + αB̂ρσ + F̂ ρσ(W 0)σ + 2iΩ̄0γρστ

)
= 0 (4.11)

in terms of the covariant field strength of Aµν :

F̂λµν(A) ≡ 3∂[λAµν] − 3W 0
[λBµν]

− 6iψ̄[λγµν](ατ +Ω0σ) + 6iψ̄[λγµψν]ασ . (4.12)

With Eq. (4.11), the original tensor B̂ab is now rewritten in terms of the tensor gauge
field Aµν , which has fewer components, 5−1C2 = 6, than B̂ab, due to gauge invariance
under δAµν = 2∂[µΛ

B
ν]. Solving B̂ab in terms of Aµν is, however, not quite trivial,

since Eq. (4.11) contains B̂ab in two places; that is, it has the form

3W 0
[λB̂µν] + 1

2
αελµνρσB̂

ρσ = Hλµν , (4.13)

Hλµν ≡ 3∂[λAµν] + 6iW 0
[λ(2ψ̄µγν]τ − ψ̄µψν]σ) − 6iψ̄[λγµν](ατ +Ω0σ)

+ 6iψ̄[λγµψν]ασ − 1
2
ελµνρσ

(
4vρσασ + F̂ ρσ(W 0)σ + 2iΩ̄0γρστ

)
. (4.14)

This is solved in the Appendix to yield

B̂ab =
α

α2 − (W 0)2

(
1
3!
εabcdeHcde − 1

α
W 0cHabc +

2
3!α2

W 0
[aεb]cdefW

0cHdef
)
. (4.15)

The transformation law of Aµν can be read from this covariant field strength
(4.12) as

δAµν = 2iε̄γµν(ατ +Ω0σ) − 4iε̄γ[µψν]ασ +W 0
[µ(4iε̄γν]τ − 4iε̄ψν]σ)

+ 2∂[µΛ
B
ν] + Λ0Bµν , (4.16)

where Λ0 is the parameter of the central charge transformation Z. Thus, the inde-
pendent components of the tensor gauge multiplet are

A =
(
σ, τ i, Aµν , Zσ

)
, (4.17)

and their properties are listed in Table I.
We add here the transformation law of the field strength F̂µνρ(A) and its Bianchi

identity (equivalent to Ea(V 0T ) = 0):

δF̂abc(A) = 6iε̄γ[abD̂c](ατ +Ω0σ) + 6iε̄γ[aR̂bc](Q)ασ

+ 3iε̄γde[aγbc](ατ +Ω0σ)vde + 6iε̄γ[a(F̂bc](W
0)τ +Ω0B̂bc])

+ 6iη̄γabc(ατ +Ω0σ) + 3Λ0(D̂[aB̂bc] + 2iτ̄γ[aR̂bc](Q)) ,

0 = D̂[aF̂bcd](A) + 3
4
B̂A

[abB̂
B
cd]fAB . (4.18)
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1152 T. Kugo and K. Ohashi

§5. An invariant action for large tensor multiplets

We first discuss the explicit form of the Yang-Mills G′-gauge transformation
of the large tensor multiplets Tα. We can interpret the vector multiplets as special
tensor multiplets that are Z-inert. This fact enabled us to treat the tensor and vector
multiplets collectively as T A ≡ (V I , Tα) in the embedding formula L(f(T )) given in
Eq. (3.6). This suggests that the tensor and vector multiplets transform collectively
also under the G′-gauge transformation; that is, δG′(Λ)T A = ΛJ(tJ)A

BT B, or more
explicitly,

δG′(Λ)
(
V I

Tα

)
=
∑
J≥1

ΛJ
(

(tJ)I
K 0

(tJ)α
K (tJ)α

β

)(
V K

T β

)
. (5.1)

Here, we have used 0 for the top-right entry of the generator matrix (tJ)A
B, be-

cause the tensor multiplets are Z-variant and therefore cannot appear in the G′-
gauge transformation of Z-inert vector multiplets V I . The other off-diagonal entry,
(tJ)α

K , can be non-vanishing. Specifically, the G′-gauge transformation of the scalar
components σα of the tensor multiplets, δG′(Λ)σα, can generally contain the scalar
fields M I of a vector multiplet V I as well, as pointed out very recently by Bergshoeff
et al. 9) Nevertheless, as we see shortly, this mixing of vector multiplets in the G′-
transformation of the tensor multiplets is only apparent, and it must vanish in the
field basis in which the kinetic terms of tensor and vector multiplets do not mix with
each other: (tI)α

K = 0 for I ≥ 1. We see below, however, that the introduction
of a mass term effectively induces an off-diagonal entry (t0)α

K only for the central
charge transformation, I = 0.

A general invariant action for the tensor multiplets is obtained by using the VL
action formula 12) as follows:

LT = LVL

(
V 0L(h(T ))

)
, h(T ) = −T A(ZT B)dAB + T AT BηAB . (5.2)

Here we have put a negative sign in front of the kinetic term for later convenience.
Because the linear multiplet L(h(T )) has a non-zero central charge, V 0 in Eq. (5.2)
must be the central charge vector multiplet in order for the action to be Z-invariant.
Because ZV I = 0, we can take dAJ = (dαJ , dIJ) = 0. We can also assume that
the submatrix dαβ is invertible, because Tα(ZT β)dαβ gives the kinetic term of the
tensor multiplets, as we see below. Then, we can redefine the tensor multiplets as
Tα → Tα−V IdIβ(d−1)βα without changing the superconformal transformation rule
(3.3) to cancel the off-diagonal part of the kinetic term, V I(ZT )αdIα. Further, the
contribution of V IV JηIJ in T AT BηAB can be absorbed into the kinetic term of the
vector multiplets, LVL

(
V IL(V JV K)

)
cIJK , which we also discuss later. The function

h(T ) can, therefore, generally be assumed to be

h(T ) = −Tα(ZT )βdαβ + TαT βηαβ + 2TαV IηαI . (5.3)

We can also assume without loss of generality that the metric tensor dαβ is anti-
symmetric, dαβ = −dβα (and ηαβ is symmetric, ηαβ = ηβα). This is because the
symmetric part dS

αβ of dαβ , if it exists, yields a total central-charge transformed
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linear multiplet ZL(TαT β)dS
αβ, but the action of the form LVL (V0ZL) is seen to

vanish up to total derivative terms.
We examine the invariance of the action (5.2) with h(T ) in Eq. (5.3) under the

G′-transformation (5.1). It is easily seen that h(T ) itself must be G′-invariant and
that the kinetic term part Tα(ZT )βdαβ and the mass term part TαT βηαβ+2TαV IηαI

must be separately invariant. The G′-transformation of the former gives

δG′(Λ)
(
Tα(ZT )βdαβ

)
= ΛJ(tJ)α

KV
K(ZT )βdαβ

+ ΛJ
(
(tJ)γ

αdγβ + dαγ(tJ)γ
β

)(
Tα(ZT )β

)
, (5.4)

and therefore it is necessary that the antisymmetric tensor dαβ is G′ invariant,

(tJ)γ
αdγβ + dαγ(tJ)γ

β = 0, (J = 1, 2, · · ·) (5.5)

and the off-diagonal entry (tJ)α
K vanishes,

(tJ)α
K = 0, (J = 1, 2, · · ·) (5.6)

as stated above. Similarly, the invariance of the mass term TαT βηαβ + 2TαV IηαI

requires the G′-invariance of the symmetric tensors ηαβ and ηαI :

(tJ)γ
αηγβ + ηαγ(tJ)γ

β = 0, (tJ)γ
αηγI + ηαK(tJ)K

I = 0. (J = 1, 2, · · ·) (5.7)

We now wish to obtain an explicit component expression of the action (5.2) with
h(T ) in Eq. (5.3). For that purpose, we first compute the expression for the following
simpler action without mass terms:

LT = −LVL

(
V 0L(Tα(ZT )β)

)
dαβ. (5.8)

As we show below, the expression for the general action with mass terms can easily
be obtained from the result in this case.

The component expression of the action (5.8) is computed in the following way.
The constraints (3.9) give complicated expressions for the central-charge transformed
quantities ZB̂α

ab, ZXαij , Z(Zταi), Z(Z2σα), which should be expressed in terms of
the independent fields σα, ταi, B̂α

ab, X
αij , Zταi, Zσα and Z2σα. However, fortu-

nately, this can be done relatively easily as follows. Because

V∗Tα = V 0ZTα + gV α
βT

β with V α
β =

∑
I≥1

V I(tI)α
β , (5.9)

the constraints (3.9), L(V∗Tα) = 0, can be rewritten in the form

L(V 0ZTα) = −L(gV α
βT

β). (5.10)

If we can use this relation, the unwanted central-charge transformed quantities
ZB̂α

ab, ZXαij , Z(Zταi), Z(Z2σα), which are contained in the LHS, can immedi-
ately be rewritten in terms of the independent variables. In order to utilize this
relation, we first recall the following facts. First, LVL(V 1 L(V 2 V 3)) is trilinear in

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/108/6/1143/1888649 by guest on 24 April 2024



1154 T. Kugo and K. Ohashi

the three vector multiplets V 1, V 2 and V 3, and it is completely symmetric under
their interchange if they are all G-neutral (i.e., Abelian); that is, we have the identity

LVL

(
V 1 L(V 2 V 3)

)
= LVL

(
V 2 L(V 1 V 3)

)
+
[
LVL

(
V 1 L(V 2 V 3)

)
−LVL

(
V 2 L(V 1 V 3)

)]
∗-terms

,

(5.11)

where ‘∗-terms’ indicates all the G-transformation terms containing the ∗-symbol
that are absent when the vector multiplets V are Abelian. When we wish to gener-
alize this identity to cases including tensor multiplets, we must define the quantity
LVL(T L) for the tensor multiplet T , because the VL action formula LVL(V L) ex-
plicitly contains the vector component Wµ of V , to which the tensor multiplet T has
no counterpart. However, we recall that the VL action formula can be rewritten into
a form in which the vector component Wµ appears only in the field strength Fµν(W )
if V and L are both G-neutral. Thus, as a definition of the quantity ‘LVL(T L)’, we
introduce the following function LTL(TαL(V IT β)), which reduces to the VL invari-
ant action when the multiplets T and V I are all Abelian vector multiplets. Writing
f(T ) = V IT β , we have

e−1LTL (TαL(f(T ))) ≡ XαijLij(f(T )) + 2iτ̄α
(
ϕ(f(T )) + L(f(T ))γ ·ψ

)
+ 1

2
σα
(
N(f(T )) − 2iψ̄ ·γϕ(f(T )) − 2iψ̄i

aγ
abψj

bLij(f(T ))
)

+ 1
4
Bα

µνE
µν(f(T )),

Eµν(V IT β) ≡ −
(
(4vµν + iψ̄ργ

µνρσψσ)M Iσβ + (FµνI(W )σβ +M IBβµν)

+ 2iΩ̄Iγµντβ − 2iψ̄λγ
µνλ(ΩIσβ +M Iτβ) + 1

2
εµνλρσW I

λB
β
ρσ

)
, (5.12)

where Bα
µν (without a hat) was introduced in Eq. (3.10). We should, however, note

a misleading point of our notation in Eq. (5.12): The function LTL(TαL(V IT β)) de-
pends directly on V I and T β through Eµν , (V IT β) which is not actually a component
of the linear multiplet L(V IT β) unless V I and T β are both Abelian vector multiplets.
Therefore, for instance, although we have the equation L(V 0ZTα)+L(gV α

βT
β) = 0

in Eq. (5.10), we have a non-vanishing difference,

LTL

(
TαL(V 0ZT β)

)
+ LTL

(
TαL(gV β

γT
γ)
)

= 1
4
Bα

µν

(
Eµν(V 0ZT β)) + Eµν(gV β

γT
γ)
)

= − 1
8
εµνλρσBα

µν∂λB
β
ρσ. (5.13)

In deriving this, we need to use the previous identity (3.10). Applying the equations
(5.13), (5.11) and (5.12) and the constraint relation (5.10), we can rewrite the action
(5.8) as

LT = −LVL

(
V 0L(TαZT β)

)
dαβ = −LTL

(
TαL(V 0ZT β)

)
dαβ +∆L′(∗-terms)

= LTL

(
TαL(gV β

γT
γ)
)
dαβ

∣∣∣∗-free + 1
8
εµνλρσBα

µν∂λB
β
ρσdαβ +∆L(∗-terms),

∆L′(∗-terms) ≡ dαβ

{
−LVL

(
V 0L(TαZT β)

)∣∣∣∗-terms
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+LTL

(
TαL(V 0ZT β)

)∣∣∣∗-terms

}
,

∆L(∗-terms) ≡ ∆L′(∗-terms) + LTL

(
TαL(gV β

γT
γ)
)
dαβ

∣∣∣∗-terms

= dαβ

{
−LVL

(
V 0L(TαZT β)

)∣∣∣∗-terms
+ LTL

(
TαL(V∗T β)

)∣∣∣∗∗-terms

}
, (5.14)

where the subscript ‘∗-free’ indicates that the ∗-terms are all discarded.
Now, this equation is evaluated as follows. Because the ∗-free terms are the

same as those in the Abelian vector multiplet case, the first term is

LTL

(
TαL(gV β

γT
γ)
)
dαβ

∣∣∣∗-free = LVL

(
gV β

γL(TαT γ)
)
dαβ

∣∣∣∗-free. (5.15)

The explicit expression of this term can be directly read from our previous re-
sult 11) for the vector multiplet action LVL(V IL(V JV K))cIJK , which is solely char-
acterized by the ‘norm function’ N (M) = cIJKM

IMJMK . The ∆L(∗-terms) can
be directly computed by picking out only the terms containing the ∗-symbol in
LVL(V 0L(TαZT β)) and LTL(TαL(V∗T β)) (in fact, appearing twice in the latter,
since one ∗ is already contained in V∗T β).∗)

In this way, we find the following component expression for the tensor action
(5.8):

e−1LT = 1
2
N
(

1
2
D − 1

2
iψ̄ ·γχ− 1

4
R(M) − i

2
ψ̄aγ

abcRbc(Q) + 3v2

+ iψ̄aγ
abcdψbvcd − 11iψ̄aψbv

ab − 6ψ̄aψbψ̄
aψb + 2ψ̄aψbψ̄cγ

abcdψd

)
+ 1

2
NA

(
iτ̄Aχ+ iτ̄Aγ ·R(Q) + 2vabBA

ab

− 2iτ̄Aγabcψavbc + 6iτ̄Aγaψbv
ab

+ i
2
ψ̄aγ

abcdψbB
A
cd − 2iψ̄aψbBA

ab − 4ψ̄aψbψ̄cγ
abγcτA

)
− 1

2
NAB

(
− 1

4
BA

abB
abB + 1

2
D′aσAD′

aσ
B + 2iτ̄A /D′τB +XA

ijX
Bij

− iτ̄Aγ ·vτB + iψ̄a(γ ·BA − 2/D′σA)γaτB

− ψ̄aψbτ
AγabτB − 2ψ̄aγbτ

Aψ̄cγ
abγcτB − 2ψ̄aτ

Aψ̄bγ
aγbτB

)
+ NABC

(
iτ̄AXBτC + i

4
τ̄Aγ ·BBτC

− 2
3
ψ̄aγbτ

Aτ̄BγabτC − 2
3
ψ̄i ·γτAj τ̄B

i τ
C
j

)
+ 1

8
e−1εµνλρσBα

µνD′
λB

β
ρσdαβ + 1

4
NAB(gMσ)A(gMσ)B − 2NAigΩ̄τ

A

−NABiτ̄
AgMτB + NAiψ̄ ·γgMτA + α

(
α2 − (W0)2

)
(Zσ)α(Z2σ)βdαβ

+ 1
2

(
3α2 − (W0)2

)
(Zσ)α(gMZσ)βdαβ

+ (Zσ)α
(
αW a

0 (D′
aZσ)β + 2iΩ̄0(3α− /W 0)(Zτ)β

− 2αiψ̄a(α+ /W 0)γa(Zτ)β
)
dαβ

∗) To avoid possible confusion, we should note that these ∗∗-terms are those in the expression

of LTL(TαL(V∗T β)) before the constraint L(V∗T β) = 0 is applied.
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+ 2αi(Zτ̄)α(α− /W 0)(Zτ)βdαβ , (5.16)

where the ‘norm function’ here is given by

N ≡ −σαdαβ(gM)β
γσ

γ = −σαdαβ

∑
I≥1

M I(gtI)β
γσ

γ , (5.17)

and NA = ∂N (σ)/∂σA, NAB = ∂2N (σ)/∂σA∂σB, etc. The operator Da is a ‘homo-
geneous covariant derivative’, which is covariant under all the homogeneous trans-
formations, Mab, D and Uij , and the gauge transformations G = G′ × U(1)Z , and
D′

a is equivalent to Da with U(1)Z covariantization omitted:

Dµ = ∂µ − 1
2
ωab

µ Mab − bµD − 1
2
V ij

µ Uij −W 0
µZ −

∑
I≥1

W I
µGI ,

= D′
µ −W 0

µZ. (5.18)

The contributions from ∆L(∗-terms) are the terms in the last four lines, starting
with 1

4
NAB(gMσ)A(gMσ)B, aside from the G′-covariantization terms contained in

D′
a.

Now, let us include the mass terms and consider the general action,

LT = −LVL

(
V 0L(Tαdαβ(ZT )β)

)
+ LVL

(
V 0L(TαηαβT

β + 2TαηαIV
I)
)
. (5.19)

Interestingly, the component expression for this case turns out to take the same form
as the above Eq. (5.16), provided that the following replacements are made. First,
the central charge transformation is replaced by the new one, Z̃:∗)

ZTα → Z̃Tα ≡ ZTα − (gt0)α
βT

β − (gt0)α
IV

I ,

(gt0)α
β ≡ (d−1)αγηγβ, (gt0)α

I ≡ (d−1)αβηβI . (5.20)

Second, the norm function now reads

N ≡ −σαdαβ(gM)β
γσ

γ − 2ασαdαβ(gt0)β
IM

I = σασβM IcIαβ − 2ασαM IηαI ,

cIαβ ≡ −dαγ(gtI)γ
β . (I = 0, 1, 2, · · ·) (5.21)

Note that, in contrast to the previous N in (5.17), summations over repeated I here
and henceforth always include I = 0 with M0 = α and (gt0)α

A defined in Eq. (5.20).
Third, the primed homogeneous covariant derivative D′

µ should now be understood
to also contain covariantization with respect to the ‘homogeneous part’ G0 of the
central charge transformation Z:

D′
µ ≡ Dµ +W 0

µZ̃ = ∂µ − 1
2
ωab

µ Mab − bµD − 1
2
V ij

µ Uij −W 0
µG0 −

∑
I≥1

W I
µGI ,

G0T
α ≡ (gt0)α

βT
β + (gt0)α

IV
I . (5.22)

∗) Thanks to the G′-invariance of the tensors ηαβ and ηαI in Eq. (5.7), this Z̃ transforma-

tion commutes with the G′ transformation, and therefore it is still natural to call it the ‘central

transformation’.
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The group action implied in terms like gMσα, gMτα, etc., is also understood to
contain the ‘off-diagonal’ (gt0)α

I part:

gMσα = (gM)α
βσ

β + α(gt0)α
IM

I . (5.23)

Finally, the ‘Chern-Simons’ like term (e−1/8)εµνλρσBα
µνD′

λB
β
ρσdαβ is replaced by

1
8
e−1εµνλρσBα

µνD′′
λB

β
ρσdαβ

= 1
8
e−1εµνλρσBα

µν

(
∂λB

α
ρσ −W I

λ (gtI)α
βB

β
ρσ − 2W 0

λ (gt0)α
IFρσ

I(W )
)
. (5.24)

Note the factor 2 multiplying the last covariantization term in D′′
λB

β
ρσ, which differs

from the factor 1 in the above definitions of D′
µ and the group action gM .

We now explain why these replacement rules appear. First, consider the case
in which there exist no V -T mixing mass terms 2TαηαIV

I . Then, the purely tensor
mass terms can easily be absorbed into the tensor kinetic terms,

Lpure
T = −LVL

(
V0L(Tαdαβ(ZT )β − TαηαβT

β)
)

= −LVL

(
V0L(Tαdαβ(Z̃T )β)

)
,

(5.25)
by using the redefined central charge transformation Z̃ given above in Eq. (5.20) (but
with ηαI set equal to 0 in this case). This is the same form as the previous tensor
kinetic term, LT , in Eq. (5.8) with Z replaced by Z̃. Note, however, that the central
charge transformations Z contained in the ∗-operations of all the other equations,
e.g., the constraint equation (3.9) and the embedding formula (3.6), remain the same
as the original Z. We need to rewrite them in terms of the new Z̃. We have

V∗Tα = V 0(ZT )α +
∑
I≥1

V I(gtI)α
βT

β = V 0(Z̃T )α + V I(gtI)α
βT

β

with V I(gtI)α
βT

β =


V 0(gt0)α

β +
∑
I≥1

V I(gtI)α
β


T β . (5.26)

It is thus seen that, after rewriting the central charge, the tensor multiplets Tα

become U(1)Z-charged in the usual sense, with generators (t0)α
β . Therefore, the

G′-transformation should now include I = 0 everywhere, with (gt0)α
β = (d−1)αγηγβ,

and so we obtain the above replacement rules, Eqs. (5.20)–(5.24), in the case (gt0)α
I =

0. Note that the central charge term Z̃T vanishes if equations of motion are used.
We know that a very similar situation exists also for the mass term of the hypermul-
tiplets. 11)

Next, we consider the general action (5.19), also containing the V -T transition
mass term LVL

(
V0L(2TαηαIV

I)
)
. This case can in fact be reduced to the pure ten-

sor mass case considered above as follows. Let us consider the pure tensor multiplet
system, as in Eq. (5.25), in which the tensor multiplets consist of three categories:
TA ≡ (T I , T Ī , Tα). Here, T I is an adjoint representation, T Ī is another adjoint
tensor multiplet, and Tα is the rest, which can be of arbitrary representation. We
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chose invariant d and η tensors in the forms

dAB =


 0 dIJ̄ 0
dĪJ = −dJĪ 0 0

0 0 dαβ


 = −dBA, ηAB =


 0 0 ηIβ

0 0 0
ηαJ 0 ηαβ


 = ηBA.

(5.27)
Then the action (5.25) becomes

L′
T = −LVL

(
V0L(Tαdαβ(ZT )β + T IdIJ̄(ZT )J̄ + T ĪdĪJ(ZT )J)

)
+ LVL

(
V0L(TαηαβT

β + 2TαηαIT
I)
)
. (5.28)

Note that we have included no mass terms containing T Ī . Then, this system is a
pure tensor multiplet system in any case, and therefore the previous result for the
component expression (5.16) of the action applies with replacement rules given in
Eqs. (5.20)–(5.24), with (ηαβ , ηαI) → (ηAB, 0) understood in this case. Now, we
stipulate that the first adjoint tensor multiplet T I be a vector multiplet V I ; i.e.,
We set T I = V I . This is allowed, because the vector multiplet is a special tensor
multiplet (which is Z-invariant), and all the manipulations in computing the above
component expression remain valid also for vector multiplets. Then, the action
(5.28) of this system clearly reduces to the desired general action (5.19), because
ZV I = 0 and LVL

(
V0L(V IdIJ̄(ZT )J̄)

)
= LVL

(
V0ZL(V IdIJ̄T

J̄)
)

vanishes up to
total derivatives. This also implies that the action becomes completely independent
of the adjoint tensor multiplet T Ī .

We now apply the above replacement rules. The central charge transformation
is replaced by Z̃TA = ZTA − (gt0)A

BT
B. Because we have

(gt0)A
B ≡ (d−1)ACηCB =


 0 0 0

0 0 (d−1)ĪKηKβ

(d−1)αγηγJ 0 (d−1)αγηγβ


 , TA =


 V I

T Ī

Tα


 ,
(5.29)

Z̃Tα actually reproduces the rule (5.20), and also

Z̃V I = ZV I = 0, Z̃T Ī = ZT Ī − (d−1)ĪKηKβT
β . (5.30)

Accordingly, the primed derivative D′
µ applied to Tα also reproduces the rule (5.22),

and D′
µ applied to V I undergoes no change: D′

µV
I = DµV

I . Applying the derivative
D′

µ to T Ī yields
D′

µT
Ī = D′hom

µ T Ī −W 0
µ(d−1)ĪKηKβT

β , (5.31)

where D′hom
µ T Ī denotes the part homogeneous in T Ī . Although it is guaranteed that

the component fields of T Ī never appear in the action, the second term
−W 0

µ(d−1)ĪKηKβT
β may give a nonvanishing contribution. This in fact happens

only in Chern-Simons-like terms, which now read
1
8
e−1εµνλρσBA

µνD′
λB

B
ρσdAB

= 1
8
e−1εµνλρσ

{
Bα

µνD′
λB

β
ρσdαβ + F I

µν(W )D′
λB

J̄
ρσdIJ̄ +BJ̄

µνD′
λF

I
ρσ(W )dJ̄I

}
.

(5.32)
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Note that in the second term, D′
λB

J̄
ρσ = D′hom

λ BJ̄
ρσ−W 0

λ (d−1)J̄KηKαB
α
ρσ by Eq. (5.31).

The D′hom
λ BJ̄

ρσ part, after performing the partial integration, gives the same contribu-
tion as the third term, which vanishes by the Bianchi identity εµνλρσDλF

I
ρσ(W )dJ̄I =

0. The contribution of the remaining part, −W 0
λ (d−1)J̄KηKαB

α
ρσ, in D′

λB
J̄
ρσ is seen

to give

− 1
8
e−1εµνλρσ

{
F I

µν(W )W 0
ληIαB

α
ρσ = Bα

µνW
0
ληαIF

I
ρσ(W )

= Bα
µνW

0
λdαβ(gt0)β

IF
I
ρσ(W )

}
. (5.33)

This doubles the last covariantization term, Bα
µν

(
−W 0

λ (gt0)α
IFρσ

I(W )
)
dαβ , of the

first term contribution in Eq. (5.32),

1
8
e−1εµνλρσBα

µν

{
D′

λB
β
ρσ =

(
∂λB

α
ρσ −W I

λ (gtI)α
βB

β
ρσ −W 0

λ (gt0)α
IFρσ

I(W )
)}
dαβ ,

(5.34)
and actually reproduces the replacement rule in Eq. (5.24).

Finally, the norm function now is given by

N ≡ −σAdAB(gM)B
Cσ

C = −σαdαβ

(
(gM)β

γσ
γ + α(gt0)β

IM
I
)

−M IdIK̄

(
(gM)K̄

J̄σ
J̄ + α(gt0)J̄

ασ
α
)
− σJ̄dJ̄K(gM)K

IM
I . (5.35)

However, because M IdIK̄(gM)K̄
J̄σ

J̄ = σJ̄dJ̄K(gM)K
IM

I , due to the G′-invariance
of M IdIJ̄σ

J̄ and the relation (gM)K
IM

I = [gM, M ]K = 0, this reduces to

N = −σαdαβ(gM)β
γσ

γ − ασαdαβ(gt0)β
IM

I − αM IdIK̄(gt0)J̄
ασ

α. (5.36)

If we further substitute the expressions for (gt0)β
I and (gt0)J̄

α given in Eq. (5.29)
into Eq. (5.36), the last two terms on the RHS give 2ασαηαIM

I , and so this N
reproduces that given in (5.21). This completes the proof of the replacement rules
given in Eqs. (5.20)–(5.24)

A few comments are in order concerning the result (5.16).
i) First, the action of the tensor multiplets actually gives a contribution to the

scalar potential Vscalar:

Vscalar = − 1
4
NAB(gMσ)A(gMσ)B, (5.37)

Note that gMσA vanishes for A = I, because gMσI = [gM,M ]I = 0. Since
gMσα = M I(gtI)α

βσ
β + α(gt0)α

JM
J , this potential contains terms quadratic, cu-

bic and quartic in M I (I = 0, 1, 2, · · ·) (recall that M0 = α). Only the first terms
quadratic in the M (which are also quadratic in the σ) was found by Günaydin
and Zagermann, 7) while the other terms exist only when the tensor-vector mixing
(gt0)α

J is introduced. Note, however, that this mixing comes from the tensor-vector
mixing mass term. The general tensor-vector mixing terms (gtI)α

J for I �= 0 in the
G′ transformation, as was introduced by Bergshoeff et al., 9) can be eliminated by
the field redefinitions, as we saw above, and then play no role here.
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Table II. Comparison of the multiplets. The numbers outside and inside the parentheses denote

the off-shell and on-shell degrees of freedom, respectively, of each component field.

multiplets large tensor T 16+16 tensor gauge A 8+8 vector V 8+8

constraints L(V∗T ) = 0 L(V 0A) = 0 ZV = 0

σ 1(1) σ 1(1) M 1(1)

τ i 8(4) τ i 8(4) Ωi 8(4)

B̂ab 10(3) Aµν 6(3) Wµ 4(3)

components Xij 3(0) Y ij 3(0)

Zσ 1(0) Zσ 1(0)

Zτ i 8(0)

Z2σ 1(0)

ii) The action (5.16) does not contain the kinetic terms for the vector multiplets
V I , because we have inserted the central charge transformation operator Z in the
initial Lagrangian LVL(V 0L(TαZT β)dαβ). As done in Ref. 11), the general kinetic
terms for the vector multiplets can be given by an action of the form∗)

−LVL(V IL(V JV K))cIJK . (5.38)

If we add this action of vector kinetic terms to the above tensor action (5.8), the
resultant component expression is still given by (5.16), provided that the ‘norm
function’ N there is understood to be

N ≡ cIαβM
Iσασβ + 2ηαIαM

Iσα + cIJKM
IMJMK , (5.39)

and the following Chern-Simons term is added to the previous Chern-Simons-like
term (5.24):

LC-S = 1
8
cIJKε

λµνρσW I
λ

(
F J

µν(W )FK
ρσ(W ) + 1

2
g[Wµ,Wν ]JFK

ρσ(W )

+ 1
10
g2[Wµ,Wν ]J [Wρ,Wσ]K

)
. (5.40)

iii) As seen from the action (5.16), the tensor fields Bα
µν possess the first-order

kinetic term (5.24), as well as the mass term, and therefore they are ‘self-dual’
tensor fields of the type (1.1), as discussed in Ref. 1). The number of the on-shell
modes of Bα

µν for each α is (5−1)C2/2 = 3. We also see that Zσ, Z2σ and Zτ i are
all non-propagating auxiliary fields, so that the on-shell modes in the large tensor
multiplet Tα for each α are 1(σ) + 3(Bµν) bosons plus 4(τ i) fermions. The on-shell
and off-shell mode counting is summarized in Table II for the three multiplets: large
tensor multiplet, tensor gauge multiplet and vector multiplet. Note also that the
number of these large tensor multiplets Tα appearing in the action is always even,
because the coefficient dαβ of the kinetic term must be antisymmetric under α↔ β.
(The symmetric part of dαβ , if any, could add only a total derivative term to the
Lagrangian.)

∗) Precisely speaking, the VL action formula LVL(V IL(V JV K)) applies only to the case in

which the index I is that of an Abelian vector multiplet. Nevertheless, one can construct an

invariant action corresponding to the form (5.38) as long as cIJKV
IV JV K is G′-invariant. (See

Ref. 11) for details.)
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§6. An invariant action for A and a duality relation

The tensor gauge (small tensor) multiplet is just a special tensor multiplet that
satisfies the stronger constraint (4.1), so that we can apply to it the embedding into
the linear multiplet formula (3.6) and then the VL action formula, to obtain an
invariant action for a tensor gauge multiplet A:

LA = −LVL(V 0L(AA)). (6.1)

When computing the explicit form of this action, we need to use the complicated
component expression of the constraints (4.1). However, we can avoid this, as in the
large tensor multiplet case of the previous section. Since, for any quantity X,

X = X
∣∣∣∗-free +X

∣∣∣∗-terms
(6.2)

holds trivially, we apply it to X = −LVL(V 0L(AA))+ 2LTL(AL(V 0A)) and use the
identity

LVL(V 0L(AA))
∣∣∣∗-free = LTL(AL(V 0A))

∣∣∣∗-free, (6.3)

as before. Then we have

LA = LVL(V 0L(AA))
∣∣∣∗-free − 2LTL(AL(V 0A)) +∆L(∗-terms),

∆L(∗-terms) ≡ [2LTL(AL(V 0A)) − LVL(V 0L(AA))]
∣∣∣∗-terms

. (6.4)

The reason we have considered the combination 2LTL(AL(V 0A))−LVL(V 0L(AA))
is that the Z(Zσ) and Zτ terms are contained in LVL(V 0L(AA)) twice as many
times as in LTL(AL(V 0A)).

To see the content of this action, let us examine only the bosonic part for sim-
plicity. With the aid of Eq. (6.4), the bosonic part can be read as follows:

e−1LA

∣∣∣
boson

= α

(
1
4
BabB

ab + 1
2
D′

aσD′aσ −
(
σ

α

)2

Y0ijY
ij
0

)
+ 1

2
D′

a(σ
2)Daα

+ ( 1
8
R(M) − 1

4
D − 3

2
v2)ασ2 − Fab(W 0)vab σ2

+ 1
2
α(α2 − (W 0

b )2)(Zσ)2 + 1
8
e−1ελµνρσW 0

λBµνBρσ. (6.5)

This expression is not yet the final one, since Bµν should be rewritten in terms of
the tensor gauge field Aµν . As derived in the Appendix, the terms containing Bµν

are written as
1
4
αB̂abB̂

ab + 1
8
εabcdeW 0

a B̂bcB̂de

=
1
4α

{
1
3
(Habc)2 +

1
α2 − (W 0)2

[(
HabcW

0c
)2

− 1
6
εabcdeαHabcHdefW

0f
]}
, (6.6)

where Habc is the quantity introduced in Eq. (4.14), and the boson part is essentially
the field strength of the tensor gauge field Aµν :

Hλµν

∣∣∣
boson

≡ 3∂[λAµν] − 1
2
ελµνρσ

(
4vρσασ + F̂ ρσ(W 0)σ

)
. (6.7)
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Thus we see that LA contains the kinetic terms of the tensor gauge field Aµν as well
as the scalar field σ correctly.

Finally, we show that this tensor gauge multiplet is dual to the vector multiplet.
To show this, let us consider the following action for a tensor gauge multiplet A and
a large tensor multiplet T which is G′-neutral:

L = LVL(V 0L(T 2)) + 2LVL(V 0L(AT )). (6.8)

If we first integrate out A, or equivalently use equations of motion resulting from
δS/δA = 0, we find that the tensor multiplet T reduces to a vector multiplet V . This
can be seen as follows. We attach the superscript T to the component fields of the
large tensor multiplet as T = (σT , τT , BT

ab, Zσ
T , · · ·) to distinguish them from those

of the tensor gauge multiplet A = (σ, τ, Aµν , Zσ). If we concentrate on the bosonic
parts, we have

LVL(V 0L(AT )) ∼ − 1
8
εµνλρσBT

µν∂λAρσ − 1
2
α(α2 − (W 0)2)(ZσT )(Zσ)

+ 1
2
α
[
(α2 − (W 0)2)(Z2σT ) + (terms containing ZσT )

]
σ, (6.9)

so that the equations of motion δS/δA = 0 yield(
δS

δ(Zσ)
,
δS

δσ
,

δS

δAµν

)
= 0 ⇒

(
ZσT , Z2σT , εµνλρσ∂λB

T
µν

)
= 0. (6.10)

Thus, the tensor multiplet has vanishing central charge, and Bµν satisfies the Bianchi
identity, so that it can be expressed by a vector field. The fermionic part should also
reduce to that of a vector multiplet by supersymmetry. If we substitute the solution
T = V back into the action (6.8), then, using the identity LVL(V 0L(AV )) = 0, we
obtain

L = LVL(V 0L(V V )), (6.11)

which is the action for the vector multiplet V . [All the component fields of the central
charge vector multiplet V 0, except the gravi-photon, are eliminated by the dilatation
D and special supersymmetry S gauge fixing or, otherwise, by non-propagating
auxiliary fields.]

It may be necessary to add an explanation of the identity LVL(V 0L(AV )) = 0.
This follows from the more general identity

LVL(V 0L(V1T )) = LVL(V1L(V 0T )), (6.12)

which holds for any G′-neutral (Abelian) vector multiplet V1 and any tensor multi-
plet, a large one T or a small one A. Then, applying this, we have

LVL(V 0L(AV )) = LVL(V L(V 0A)) = 0, (6.13)

using the constraint L(V 0A) = 0.
If we instead integrate T out first in the initial action (6.8), then we obtain

L = L(V 0L((T +A)2)) −L(V 0L(AA)) ⇒ −L(V 0L(AA)), (6.14)
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the action for a tensor gauge multiplet. The first term, L(V 0L((T+A)2)), represents
the non-propagating ‘mass’ terms for the tensor multiplet T ′ ≡ T + A and can be
eliminated.

This duality can be shown in the opposite way if we start from the action

L = −L(V 0L(T 2)) + 2L(V 0L(V T )). (6.15)

Then, integrating V out first yields the equation of motion L(V 0T ) = 0 by (6.12),
so that the tensor multiplet T reduces to a tensor gauge multiplet A. Substituting
this solution T = A back into the action yields the tensor gauge multiplet action
−L(V 0L(AA)), since L(V 0L(V A)) = 0. Integrating out T first, on the other hand,
gives the vector action L(V 0L(V V )).
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Appendix A
Solving Eq. (4.13)

Let us solve an equation of the form (4.13):

3W[aB̂bc] + 1
2
MεabcdeB̂

de = Habc. (A.1)

We define the following two operations P‖ and R⊥ on rank 2 antisymmetric
tensors Tab:

P‖Tab ≡ WaW c

W 2 Tcb + Tac
W cWb

W 2 ,

R⊥Tab ≡ 1
2M

εabcdeW
cT de. (A.2)

Then P‖ and (M2/W aWa)R2
⊥ are ‘longitudinal’ and transverse projection operators,

respectively:

P2
‖ = P‖, λ−1R2

⊥ + P‖ = 1, R⊥P‖ = 0, λ ≡ W 2

M2 . (A.3)

Taking the dual of the given equation (A.1), we rewrite it as

H̃ab = MB̂ab + 1
2
εabcdeW

cB̂de = M(1 + R⊥)B̂ab. (A.4)

Then we can solve it as

B̂ab = 1
M

(1 + R⊥)−1H̃ab = 1
M(1−λ)

(1 −R⊥ − λP‖)H̃ab, (A.5)
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yielding Eq. (4.15). Using this we have

1
4
MB̂abB̂

ab + 1
8
εabcdeWaB̂bcB̂de

= 1
4
MB̂ab(1 + R⊥)B̂ab = 1

4M
H̃ab(1 + R⊥)−1H̃ab

= 1
4(M2−W 2)

H̃ab(1 −R⊥ − λP‖)H̃ab, (A.6)

which gives Eq. (6.6) in the text.

References

1) K. Pilch, P. K. Townsend and van Nieuwenhuizen, Phys. Lett. B 136 (1984), 38.
2) E. Cremmer, “Supergravities in 5 dimensions,” in Superspace and supergravity, ed.

S. Hawking and M. M. Roček (Cambridge University Press, 1980).
A. H. Chamseddine and H. Nicolai, Phys. Lett. B 96 (1980), 89.

3) J. Maldacena, Adv. Theor. Math. Phys. 2 (1998), 231, hep-th/9711200.
For a review, see O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri and Y. Oz, hep-
th/9905111.
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