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Under area- and orientation-preserving maps, the images of the symmetry axes accumu-
late at the unstable manifold of a saddle fixed point P , while their inverse images accumulate
at the stable manifold of P . Before or after the tangency of these stable and unstable man-
ifolds, four types of generalized dynamical ordering are derived. They determine the order
of the appearance of the symmetric periodic orbits. We derive these types of ordering for
the area- and orientation-preserving Hénon map. A lower bound of the topological entropy
is obtained by using the symbol sequence of the periodic orbits included in the dynamical
ordering and the trellis method.

§1. Introduction

The tangency of the stable and unstable manifolds of a saddle fixed point or a
periodic point gives rise to rich phenomena1) related to the change of complexity in
a given system. We are particularly interested in tangency in the case of reversible
area- and orientation-preserving maps. If such a map can be expressed as a product
of two involutions,2) then it is said to be reversible, and it possesses symmetry axes.3)

The forward images of these symmetry axes accumulate at the unstable manifold of
a saddle fixed point, and their inverse images accumulate at the stable manifold. As
a result, before or after tangency, infinitely many symmetric periodic orbits appear
through saddle-node or equi-period bifurcations. For these periodic orbits, the dy-
namical ordering (DO) is determined. This DO is represented by two-dimensional
order relations.4),5) Using information with respect to the periodic orbits included
in the DO, we determine a lower bound of the topological entropy htop.6),7) The DO
gives useful information concerning the complexity before and after the tangency of
the stable and unstable manifolds. We call this method of analyzing the complexity
of a system the dynamical ordering method (DOM).

The trellis method developed by Collins8) is a powerful method for obtaining
a lower bound of the topological entropy htop. This method uses a trellis, which
is a finite portion of the tangle of stable and unstable manifolds of a saddle fixed
point. In order to calculate htop, we consider the condition of tangency, because the
construction of a compatible graph for the trellis in this case is easier than in the
case of intersection. Another useful method is the braid method, i.e. the method
employing the symbol sequence for periodic orbits included in the DO. When using
the braid or symbol sequence method to calculate htop, the software Wintrain,
developed by Hall,9) is helpful.
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764 Y. Yamaguchi and K. Tanikawa

The above mentioned methods are all based on the Nielsen-Thurston theorem
(NT).10)−12) The train track method (TTM) is an algorithmic proof of NT.13) A proof
of the validity of the trellis method was obtained using the TTM. After constructing
the compatible graph in the TTM or constructing the braid (symbol sequence) in
the DOM, the transition matrix M is determined, and the largest eigenvalue λmax

of M is evaluated.7),13) Thus, a lower bound of the topological entropy is obtained
as htop ≥ lnλmax.

In the present paper, we derive a family of dynamical orderings for the area-
and orientation-preserving Hénon map.14) Then, we apply the trellis method and
the DOM for the Hénon map to calculate htop. The original area- and orientation-
preserving Hénon map TH is defined in the (x, y)-plane as

yn+1 = xn + 1− ãy2
n, (1)

xn+1 = −yn, (2)

where ã > 0 is a parameter. After a coordinate change and a scale transformation,
TH can be rewritten in the following form T :

yn+1 = yn + f(xn), (3)
xn+1 = xn + yn+1. (4)

Here, f(x) = a(x − x2) and a > 0 is a parameter. There exist two fixed points,
P = (0, 0) and Q = (1, 0), where P is a saddle and Q is an elliptic point (for
0 < a < 4) or a saddle with a reflection (for a > 4). At a = 4, a period-doubling
bifurcation of Q occurs. The above symplectic form is useful for understanding the
structure of the stable and unstable manifolds of P and of the symmetry axes. We
study the Hénon map using the form given in Eqs. (3) and (4).

With the aid of the numerical method developed by Biham and Wenzel,15),16) the
number of periodic points has been obtained.17),18) Here let qmax be the maximum
period and Nqmax(a) be the total number of periodic points of period q, satisfying
1 ≤ q ≤ qmax, at a fixed value of a. The value of qmax was found to be 20 in Refs. 17)
and 24) in Ref. 18). It has been shown that the function Nqmax(a) has interesting
properties. For example, Nqmax(a) is a monotonic function of a. In addition, Nqmax(a)
seems to have infinitely many plateaus. These facts suggest that the lower bound
of the topological entropy htop may be a monotonic function of a, and it may be
constant in the plateau regions. In order to establish these properties, the pruning
theory and an algorithm for pruning have been proposed.19)

The two ends of a plateau correspond to certain tangency conditions of the stable
and unstable manifolds of P . The arcs of the stable and unstable manifolds forming
the tangency that determines the beginning of the plateau are not necessarily those
forming the tangency that determines the end. We can apply the trellis method to
calculate htop at the two ends of a plateau and apply the DOM for the parameter
regions in the vicinities of both the ends.

Hereafter, let ahs be the critical value at which the horseshoe for T is completed.
The numerical value of ahs is 5.1766 · · · . The topological entropy htop and Nqmax(a)
have been extensively calculated in the vicinity of ahs, and many plateaus in the
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Generalized Dynamical Ordering and Topological Entropy 765

graphs of Nqmax(a) and htop(a) have been found in this parameter region.17)−19) We
give a detailed study of this parameter region in §4. In the region 3.242 < a < 4.045,
there exists the largest plateau in the graph of Nqmax(a).18) We study this region in
§5.

In §2, we prepare the basic tools used in later sections. We derive four types
of the dynamical ordering in §3. Using both the trellis method and DOM, a lower
bound of the topological entropy is obtained in §§4 and 5. In §6, we discuss on some
implications of the plateaus of the entropy function.

§2. Basic tools

2.1. Symmetry axes and homoclinic lobes

The Hénon map T is reversible; that is, it can be expressed as a product of two
involutions h and g as

T = h ◦ g, (5)

where h and g are defined by

g

(
x
y

)
=

(
x

−y − f(x)

)
(6)

and

h

(
x
y

)
=

(
x− y
−y

)
, (7)

with det∇h =det∇g = −1. The sets of fixed points of h and g are called the
symmetry axes.3) We refer to them as S1 and S2 for h and g, respectively:

S1 = {(x, y) : y = 0}, (8)
S2 = {(x, y) : y = −f(x)/2}. (9)

Let Wu = Wu(P ) be the branch of the unstable manifold starting at P and ex-
tending in the upper-right direction and Ws = Ws(P ) be that of the stable manifold
extending in the lower-right direction. We explain the relation between the stable
and unstable manifolds and the symmetry axes. The stable manifold Ws starting at
P transversely intersects S1 at v and S2 at u in this order and the unstable manifold
Wu starting at P transversely intersects S2 at u and S1 at v in this order. The two
manifolds, Ws and Wu, transversely intersect at homoclinic points u and v.20)

Let us denote by [α, β]A an open arc of one-dimensional manifold A with α, β ∈
A. If A has an orientation, we use the convention that the up-stream point is the
left terminal of the interval. A closed arc [α, β]A and a semi-open arc (α, β]A are
also defined. We next introduce the arcs γu = [u, v]Wu, γs = [u, v]Ws, Γu = [v, Tu]Wu

and Γs = [v, Tu]Ws . The homoclinic lobe U is an open region bounded by γu and
γs, and the homoclinic lobe V is an open region bounded by Γu and Γs. Finally, we
introduce the closed region Z bounded by the four arcs [P, u]Wu , [u, v]Ws, [v, Tu]Wu

and [Tu, P ]Ws . The geometry is displayed in Fig. 1.
Next we consider the situation for a = ahs, the value at which the horseshoe is

just completed (see Fig. 2). There exist four components of int{TZ ∩T−1Z}, where
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766 Y. Yamaguchi and K. Tanikawa

Fig. 1. The stable and unstable manifolds Ws and Wu of a saddle P , the homoclinic lobes U and

V , two homoclinic intersection points u and v, and the two symmetry axes S1 (the x-axis) and

S2 are displayed for a = 4.

Fig. 2. The structure of Ws and Wu in the situation that the horseshoe is just completed. V0 and

V1 are the two vertical belts in Z∩T−1Z, and H0 and H1 are the two horizontal belts in Z∩TZ.

int{A} denotes the interior of set A. The region defined by V0 ∩H0 (resp., V1 ∩H1)
includes P (resp., Q). It is well known that htop = ln 2 for a ≥ ahs. If the orbital
point is located in V0 (resp., V1), its symbol is defined as 0 (resp., 1). With this rule,
we determine the symbol sequence for a periodic orbit. There is no ambiguity in this
determination, because the common point of V0 and V1 is a homoclinic point and is
not periodic.

The following proposition is important when we consider the origin of the plateau
regions. The proof is given in Ref. 5).

Proposition 1. Neither U nor V contains any periodic orbits.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/114/4/763/1836359 by guest on 19 April 2024



Generalized Dynamical Ordering and Topological Entropy 767

2.2. Intervals in symmetry axes

In the following, we use four segments of the symmetry axes, defined as follows:

S11 ≡ {(x, y) : y = 0, 0 < x < 1}, (10)
S12 ≡ {(x, y) : y = 0, 1 < x < π1(v)}, (11)
S21 ≡ {(x, y) : y = −f(x)/2, 0 < x < 1}, (12)
S22 ≡ {(x, y) : y = −f(x)/2, 1 < x < π1(u)}. (13)

Here, π1(z) represents the x-coordinate of the point z. Similarly, π2(z) is used to
represent the y-coordinate of z.

We next define several kinds of intervals in S11 and S21:

Ii ≡ T−iU ∩ S11 = (Ai, Bi), (14)
Li ≡ (Bi+1, Ai), (15)
Ji ≡ T−iU ∩ S21 = (Ci, Di), (16)

Mi ≡ (Di+1, Ci). (17)

Here, we have π1(Ai) < π1(Bi) and π1(Ci) < π1(Di) for i ≥ 1.
Let us denote by O(z0) = {· · · , z−1, z0, z1, z2, · · · } the orbit of a point z0. If z0

is a periodic point of period q, we can write its orbit as O(z0) = {z0, z1, · · · , zq−1}.
In the case of a symmetric periodic orbit O(z0) for which z0 ∈ Li, zk ∈ Mj and
the points zm for 0 < m < k are not located on any symmetry axis. Its period is
q = 2k+1 as seen from the theorem of de Vogelaere.3) In §3, we derive the dynamical
ordering for these periodic orbits.

The following proposition relates the forward and backward images of the arcs
of the symmetry axes with the stable and unstable manifolds. This proposition is a
direct consequence of the Lambda lemma.21)

Proposition 2.

lim
i→∞

T i+1Li = Γu = lim
i→∞

T i+2Mi+1, (18)

lim
i→∞

T−(i+1)Li = γs = lim
i→∞

T−(i+1)Mi+1. (19)

Equation (19) is derived from Eq. (18) by using the relations hT i+1Li =
T−(i+1)hLi = T−(i+1)Li and hT i+2Mi+1 = gT i+1Mi+1 = T−(i+1)gMi+1 =
T−(i+1)Mi+1. The arcs of the images of Li and Mi+1 in Eq. (18) are located on
the right side of Γu with respect to the orientation of Γu, and those of the inverse
images of Li and Mi+1 in Eq. (19) are located on the right side of γs.

2.3. Procedures of the trellis method and the DOM

Here we summarize the trellis method and the DOM.

Algorithm of the trellis method8)

[1] Define the trellis by the segments of the stable and unstable manifolds.
[2] Draw one control edge (c-edge) for each stable segment in the trellis.
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768 Y. Yamaguchi and K. Tanikawa

[3] Join two adjacent c-edges with one expanding edge (e-edge). The set of c-edges
and e-edges is called a compatible graph G.
[4] Determine the images of the c-edges.
[5] If there is an invariant set of edges of G which does not contain a c-edge, then
collapse each of these edges to a point.
[6] After deleting the e-edges not contributing to the transition matrix M , we obtain
a simplified graph Ĝ.
[7] Construct the transition matrix M and calculate its eigenvalues. The lower
bound of the topological entropy thus obtained is lnλmax, where λmax is the largest
eigenvalue of M .

Procedure of the dynamical ordering method (DOM)
[1] Consider tangent stable and unstable manifolds.
[2] Construct the dynamical ordering (DO) for the symmetric periodic orbits ap-
pearing through saddle-node bifurcations before and after tangency.
[3] Define the symbol sequences for the symmetric periodic orbits included in the list
of the DO.
[4] Use the symbol sequence and the software Wintrain, developed by Hall, to cal-
culate the largest eigenvalue λ̂max, for which we have htop ≥ ln λ̂max.

§3. Dynamical ordering

3.1. A theorem

In this subsection, we prove Theorem 1, which asserts the existence of the dy-
namical orderings for the symmetric periodic orbits appearing through saddle-node
bifurcations.

Theorem 1. Let k ≥ 0 and k′ ≥ 0 be integers that are not simultaneously zero.
Suppose that T kΓu and T−k′

γs have a quadratic tangency point at a = ac(k′′), with
k′′ = k + k′, and have transversal intersection points for a > ac(k′′). Let ic(k′′)
(abbreviated as ic) be the suffix i of Li which appears at a = ac(k′′) due to the
tangency of T kΓu and T−k′

γs. Then, the dynamical orderings of Types I, II, III and
IV hold.
Remarks. Here we explain how to read Tables I(a), (b), (c) and (d) 1) The quantities
indicated by Li in the left box and Mi in the top box are the intervals in the symmetry
axes defined in §2.2. The symbol ‘⇒’ represents a forcing relation between intervals.
Thus, for example, Mic+1 ⇒ Mic+2 means that if Mic+1 exists, then Mic+2 exists.
The symbol ‘⇓’ represents the same relation. 2) The numbers in the main box are
the periods of the periodic orbits that appear through saddle-node bifurcations. If
a number is in the column labeled by, say, Mic+1, then the periodic orbit with this
period has an orbital point in Mic+1. Similarly, if a number is in the row labeled by,
say, Lic , then the periodic orbit with this period has an orbital point in Lic . These
periodic orbits are symmetric, because they have two orbital points on symmetry
axes. 3) All the numbers in the main box belong to a row and a column. If a
number is in column Mic+l and row Lic+m, then the period of the corresponding
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Generalized Dynamical Ordering and Topological Entropy 769

Table I. (a) Dynamical ordering of Type I.

Mic+1 ⇒ Mic+2 ⇒ Mic+3 ⇒
Lic 2(k + k′) + 4ic + 5 ← 2(k + k′) + 4ic + 7 ← 2(k + k′) + 4ic + 9 ←
⇓ ↑ ↑ ↑

Lic+1 2(k + k′) + 4ic + 7 ← 2(k + k′) + 4ic + 9 ← 2(k + k′) + 4ic + 11 ←
⇓ ↑ ↑ ↑

Lic+2 2(k + k′) + 4ic + 9 ← 2(k + k′) + 4ic + 11 ← 2(k + k′) + 4ic + 13 ←
⇓ ↑ ↑ ↑

Lic+3 2(k + k′) + 4ic + 11 ← 2(k + k′) + 4ic + 13 ← 2(k + k′) + 4ic + 15 ←
⇓ ↑ ↑ ↑

(b) Dynamical ordering of Type II.

Mic+1 ⇒ Mic+2 ⇒ Mic+3 ⇒
Lic 2(k + k′) + 4ic + 5 ← 2(k + k′) + 4ic + 7 ← 2(k + k′) + 4ic + 9 ←
⇓ ↓ ↓ ↓

Lic+1 2(k + k′) + 4ic + 7 ← 2(k + k′) + 4ic + 9 ← 2(k + k′) + 4ic + 11 ←
⇓ ↓ ↓ ↓

Lic+2 2(k + k′) + 4ic + 9 ← 2(k + k′) + 4ic + 11 ← 2(k + k′) + 4ic + 13 ←
⇓ ↓ ↓ ↓

Lic+3 2(k + k′) + 4ic + 11 ← 2(k + k′) + 4ic + 13 ← 2(k + k′) + 4ic + 15 ←
⇓ ↓ ↓ ↓

(c) Dynamical ordering of Type III.

Mic+1 ⇒ Mic+2 ⇒ Mic+3 ⇒
Lic 2(k + k′) + 4ic + 5 → 2(k + k′) + 4ic + 7 → 2(k + k′) + 4ic + 9 →
⇓ ↑ ↑ ↑

Lic+1 2(k + k′) + 4ic + 7 → 2(k + k′) + 4ic + 9 → 2(k + k′) + 4ic + 11 →
⇓ ↑ ↑ ↑

Lic+2 2(k + k′) + 4ic + 9 → 2(k + k′) + 4ic + 11 → 2(k + k′) + 4ic + 13 →
⇓ ↑ ↑ ↑

Lic+3 2(k + k′) + 4ic + 11 → 2(k + k′) + 4ic + 13 → 2(k + k′) + 4ic + 15 →
⇓ ↑ ↑ ↑

(d) Dynamical ordering of Type IV.

Mic+1 ⇒ Mic+2 ⇒ Mic+3 ⇒
Lic 2(k + k′) + 4ic + 5 → 2(k + k′) + 4ic + 7 → 2(k + k′) + 4ic + 9 →
⇓ ↓ ↓ ↓

Lic+1 2(k + k′) + 4ic + 7 → 2(k + k′) + 4ic + 9 → 2(k + k′) + 4ic + 11 →
⇓ ↓ ↓ ↓

Lic+2 2(k + k′) + 4ic + 9 → 2(k + k′) + 4ic + 11 → 2(k + k′) + 4ic + 13 →
⇓ ↓ ↓ ↓

Lic+3 2(k + k′) + 4ic + 11 → 2(k + k′) + 4ic + 13 → 2(k + k′) + 4ic + 15 →
⇓ ↓ ↓ ↓

orbits is 2(k + k′) + 4ic + 2(l + m) + 3, the initial point z0 is in Lic+m, and the point
zk+k′+2ic+l+m+1 is in Mic+l. 4) The symbol ‘←’ represents a forcing relation between
periodic orbits. Let us consider one relation from these tables:

q′ ← q. (20)

We read Eq. (20) as “q forces q′”. This means that the existence of a point of a
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770 Y. Yamaguchi and K. Tanikawa

Fig. 3. Relations among T−ic−1Γu, TMic+1 and Lic .

periodic orbit with period q implies the existence of a point of a periodic orbit with
period q′. We also use the symbols →, ↑ and ↓ to express the same forcing relation.

Proof. Two arcs γs and Γu have no common points except v. Thus, the case k =
k′ = 0 is excluded in Theorem 1.

If the interval Lic+m exists, then the interval Mic+m+1 exists for any m ≥ 0.
In fact, T−1Aic+m (= g ◦ hAic+m = gAic+m) is located below S21, because Aic+m

is located above S21. This fact implies the assertion. In addition, obviously Lm ⇒
Lm+1 and Mm ⇒Mm+1 for any m ≥ 1. Thus, the forcing relations between intervals
expressed by ‘⇒’ and ‘⇓’ in Tables I(a), (b), (c) and (d) have been demonstrated.
The interval TMic+m+1 is situated between Lic+m and T−ic−m−1Γu. This relation
is displayed for m = 0 in Fig. 3.

Suppose that T kΓu and T−kγs (= hT kΓu) intersect each other (see Fig. 4). In
this situation, the arc T k+ic+2Mic+1 is located between T k+ic+1Lic and T kΓu. Then,
by reversibility, T−k−ic−1Mic+1 is located between T−k−ic−1Li and T−kγs. Here, the
relations hT k+ic+2Mic+1 = gT k+ic+1 Mic+1 = T−k−ic−1gMic+1 = T−k−ic−1Mic+1,
hT k+ic+1Lic = T−k−ic−1hLic = T−k−ic−1Lic and hT kΓu = T−khΓu = T−kγs have
been used. Operating with T−k′+k on the latter three arcs, we obtain T−k′−ic−1Mic+1,
T−k′

γs and T−k′+ic+1Lic . The relative positions of these arcs with respect to T kΓu

and its accompanying arcs in a typical situation are illustrated in Figs. 5(a), (b), (c)
and (d). The arc T k+ic+j+2Lic+j+1 is located between T k+ic+j+1Lic+j and T kΓu for
j ≥ 0, whereas the arc T−k′−ic−m−1Mic+m+1 is located between T−k′−ic−mMic+m

and T−k′
γs for m ≥ 1. For i ≥ ic, Proposition 2 gives the following relations:

lim
i→∞

T k+i+1Li = T kΓu, (21)

lim
i→∞

T−(k′+i+1)Mi+1 = T−k′
γs. (22)

There are four types of tangency. The first type, illustrated in Fig. 5(a), is
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Generalized Dynamical Ordering and Topological Entropy 771

Fig. 4. Schematic illustration of the relations between T kΓu and T−kγs, between T k+ic+1Lic and

T−k−ic−1Lic , and between T k+ic+2Mic+1 and T−k−ic−1Mic+1.

called Type I. The second type, illustrated in Fig. 5(b), is called Type II. The third
and fourth types are illustrated in Figs. 5(c) and (d) and called Types III and IV.
In Figs. 5(a) and (b), the arc T−k′

γs moves up and exhibits a quadratic tangency
with T kΓu when the parameter value changes monotonically. In Figs. 5(c) and (d),
T kΓu moves up and is quadratically tangent to T−k′

γs. (However, note that the
order, i.e., quadratic or higher, of the tangency is not important in our proof. We
only need the following progression as the parameter value changes: non-tangency,
tangency and intersection.)

Now, let us consider the case of Type I. Before the tangency of T−k′
γs and T kΓu,

all the periodic orbits included in Table I(a) appear through a saddle-node bifurca-
tion, since all the accompanying arcs exhibit tangencies beforehand. In fact, let us
imagine sitting at T k+ic+1Lic and watching how the image arcs of Mic+m (m ≥ 1)
approach. Before the tangency of T−k′

γs and T kΓu, T−k′−ic−1Mic+1 and T k+ic+1Lic

are tangent. Next, T−k′−ic−2Mic+2 and T k+ic+1Lic become tangent and so on. Thus,
the dynamical order relations

Lic : 2(k + k′) + 4ic + 5← 2(k + k′) + 4ic + 7← 2(k + k′) + 4ic + 9← · · · (23)

are obtained. A periodic orbit of period 2(k+k′)+4ic+5 has a point in Mic+1. There
is a similar situation for the other periodic orbits. Similarly, sitting at T k+ic+1Lic+l,
l ≥ 1 and watching the image arcs of Mic+m (m ≥ 1), we obtain the dynamical
ordering indicated by the symbol ←.

Next, let us imagine sitting at T−k′−ic−1Mic+1 and looking around. This arc has
a tangency point with T k+ic+1Lic , T k+ic+2Lic+1, · · · , in this order, as the value of
the parameter a increases. This implies the dynamical ordering in the first column.
Similarly, sitting at T−k′−ic−mMic+m (m ≥ 2) and looking around, we obtain the
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772 Y. Yamaguchi and K. Tanikawa

Fig. 5. Schematic illustrations of the four tangency situations for T kΓu and T−k′
γs. In (a) and

(b), the top of T−k′
γs moves up and has a quadratic tangency point with T kΓu. In (a), the

gray region above T kΓu is included in T kV , and the dark gray region below T−k′
γs is included

in T−k′
U . The situation is similar in (b).

dynamical ordering indicated by ↑. Thus the proof for Type I is completed.
Next, using Fig. 5(b), let us verify the dynamical ordering of Type II. We assume

that the top of arc T−k′
γs moves up and has a tangency point on T kΓu. Before

the appearance of this tangency, there is the situation in which T−k′−ic−1Mic+1 is
tangent to T kΓu. After this tangency, T−k′−ic−1Mic+1 intersects the images of Lic .
This process gives the following ordering:

Mic+1 : 2(k + k′) + 4ic + 5→ 2(k + k′) + 4ic + 7→ 2(k + k′) + 4ic + 9→ · · · . (24)

This is the dynamical ordering of the first column in Table I(b). The proofs for the
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Generalized Dynamical Ordering and Topological Entropy 773

Fig. 5 (continued). In (c) and (d), the top of T kΓu moves up and has a quadratic tangency point

with T−k′
γs. In (c), the gray region below T−k′

γs is included in T−k′
U , and the dark gray

region below T kΓu is included in T kV . In (d), the gray region is included in both T kV and

T−k′
U .

other columns are similar and thus omitted.
Let us now imagine observing the process while sitting at T k+ic+1Lic . First,

T−k′−ic−1Mic+1 approaches and becomes tangent to T k+ic+1Lic . Next, T−k′−ic−2

Mic+2 becomes tangent to T k+ic+1Lic . Thus, the dynamical ordering of the first row
is proved. The proof for the other rows is similar and therefore omitted.

The situations for Types III and IV are displayed in Figs. 5(c) and (d). Here
we note how these situations are realized. The higher iterates of Γu are also folded
when they accumulate at T kΓu. Then there is an iterate TmΓu (m > k) that remains
below and runs parallel to T kΓu but whose orientation is reversed [see Fig. 5(a) for
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774 Y. Yamaguchi and K. Tanikawa

reference]. In this case, higher iterates of Lic+j (j � 1) remain above and run parallel
to TmΓu. This is the situation illustrated in Fig. 5(c). The situation illustrated in
Fig. 5(d) can be realized similarly. Using these figures, we can prove the dynamical
orderings of Types III and IV. However, we omit the details of the proof. (Q.E.D.)

3.2. Remarks on Theorem 1

In order to specify the periodic orbit in Tables I(a)–(d), we use the matrix
notation (i, j), where i is the suffix of the interval Li and j is that of Mj . Let
a

I(a)
c (i, j) be the critical parameter value at which the periodic orbit of the (i, j)-

element in Table I(a) appears through a saddle-node bifurcation. The critical values
a

I(b)
c (i, j), a

I(c)
c (i, j) and a

I(d)
c (i, j) are defined similarly. The following relations hold:

lim
i,j→∞

aI(a)
c (i, j) = aI(a)

c (k′′), (25)

lim
i,j→∞

aI(b)
c (i, j) = aI(b)

c (k′′), (26)

lim
i,j→∞

aI(c)
c (i, j) = aI(c)

c (k′′), (27)

lim
i,j→∞

aI(d)
c (i, j) = aI(d)

c (k′′). (28)

All the periodic orbits included in Table I(a) appear before the tangency of T kΓu

and T−k′
γs. Contranstingly, all the periodic orbits in Table I(d) appear after the

tangency. Some periodic orbits in Tables I(b) and (c) appear before the tangency
and others appear after.

Let us now briefly consider the order of appearance of the different types of
tangency. The region T kV leaves Z under the backward iteration. Therefore we
regard T kV as a region located outside of Z. The top of T−k′

γs leaves Z through
a condition of tangency and returns to Z through a second condition of tangency.
This implies that the tangency of Type II appears after the tangency of Type I. Here
we consider the situation in which the value of a increases. Let us consider the case
with k = 0, k′ = 1 and ic = 1. This situation corresponds to the completion of the
horseshoe. Before the completion of the horseshoe, the dynamical ordering of Type
I appears, but that of Type II does not appear. This is derived from the fact that
a portion of T−1γs leaves Z and never returns. For this case, only the ordering of
Type I holds (see §4.7).

For k, k′ � 1, the orderings of Types III and IV appear. For example, the
tangency of Type III appears after the tangency of Type I, and the tangency of Type
IV appears after the tangency of Type II. It is difficult to realize these tangency
situations through numerical calculation. In the following section, we study the
tangencies of Types I and II.
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§4. Just before the completion of horseshoe

4.1. Definition of the n-th stage

We now consider the situation before the completion of the horseshoe and sup-
pose that T−1γs does not yet intersect S21. However, T−1γs may intersect S11. In
this case, T−2γs intersects S21. We consider the situation in which T−2γs intersects
S21, S12 and S22 and has a tangency point in T 2Γu (see Fig. 6). We easily con-
firm that this takes place for a = a

(1)
l < ahs. Increasing the value of a further, the

top of arc T−2γs moves up, and then it again has a tangency point in T 2Γu. Let
a = a

(1)
r < ahs be the parameter value in this situation. Let us call the parameter

range [a(1)
l , a

(1)
r ] the “first stage”. The geometrical configurations of the stable and

unstable manifolds for the beginning and end of the first stage are displayed in Fig.
6.

The situation before the first stage is schematically illustrated in Fig. 7. With
the increase of the value of a, the top of arc T−2γs moves up and intersects first the
lower side of the folded T 2Γu and then the upper side. These two intersections, or
more precisely, tangencies define the first stage. If the value of a is increased further,
the top of arc T−2γs moves up and then intersects first the lower side of the folded
T 3Γu, which corresponds to the start of the second stage, and then the upper side,
which corresponds to the end of the second stage. We write this parameter range as
[a(2)

l , a
(2)
r ]. The beginning and end of the n-th stage are defined similarly. Thus, the

situation in which T−2γs is tangent to Tn+1Γu whose direction is to the right (resp.,
left) is the beginning (resp., end) of the n-th stage. This stage is denoted [a(n)

l , a
(n)
r ].

4.2. The first stage

From the structure of Wu and Ws displayed in the upper panel of Fig. 6, we
define the trellis displayed in Fig. 8 (the upper panel) and construct its compatible
graph (the lower panel). Next, we follow the images of the control edges labeled
A, B, · · · , G. Here the relations β = Tα and γ = Tβ hold. In this way, all elements
of the transition matrix M1 are obtained.8)

M1 =



B C E F D A G

B 0 0 0 0 0 1 0
C 0 1 0 1 2 0 2
E 1 0 0 0 0 0 0
F 0 1 1 0 0 0 0
D 0 0 1 0 0 0 0
A 0 0 1 1 0 1 0
G 0 0 0 0 1 0 0


. (29)

The element corresponding to the transitions from C to D and from C to G is 2.
This is due to the fact that the image of C covers D and G twice. The characteristic
equation

λ7 − 2λ6 + 2λ2 − 2
1∑

k=0

λk = 0 (30)
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Fig. 6. The upper figure depicts the beginning (a = 4.975) of the first stage and the lower figure

the end (a = 5.145) of the first stage.

gives the largest eigenvalue, λmax = 1.9688. This value is equal to that of the tran-
sition matrix constructed by Davis, Mackay and Sannami (DMS).17) The dynamical
orderings in these situations are included in Theorem 1 with k = k′ = 2 and ic = 1.
These are obtained in Tables II(a) and II(b).

The completion of the horseshoe is equivalent to the existence of tangency be-
tween T−2γs and T−1Γu. In this situation, T−2γs and T 2Γu already intersect each
other, and hence Theorem 1 applies with k = k′ = 2, and ic = 1. This gives us the
periodic orbits appearing in Tables II(a) and II(b) that correspond to Tables I(a)
and I(b). The two periodic orbits appearing through the saddle-node bifurcation
have the following symbol sequences:

s1
II.(a)(i, j) =

{
0i(110111)02j−1(111011)0i,

0i(110101)02j−1(101011)0i,
(31)

s1
II(b)(i, j) =

{
0i(100111)02j−1(111001)0i,

0i(100101)02j−1(101001)0i.
(32)

From the symmetry and the numerical calculation, we can determine the symbol
sequence for the periodic orbit O(z0) of period 17 with z0 ∈ L1, which is the (1, 2)-

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/114/4/763/1836359 by guest on 19 April 2024



Generalized Dynamical Ordering and Topological Entropy 777

Fig. 7. Schematic illustration of the situation before the first stage. The lower gray region is

included in T 2V and the upper one in T 3V .

Table II. Dynamical ordering.

(a)

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 17 ← 19 ← 21 ← 23 ← · · ·
⇓ ↑ ↑ ↑ ↑
L2 19 ← 21 ← 23 ← 25 ← · · ·
⇓ ↑ ↑ ↑ ↑
L3 21 ← 23 ← 25 ← 27 ← · · ·
⇓ ↑ ↑ ↑ ↑
L4 23 ← 25 ← 27 ← 29 ← · · ·
⇓ ↑ ↑ ↑ ↑
· · · · · · · · · · · · · · ·

(b)

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 17 ← 19 ← 21 ← 23 ← · · ·
⇓ ↓ ↓ ↓ ↓
L2 19 ← 21 ← 23 ← 25 ← · · ·
⇓ ↓ ↓ ↓ ↓
L3 21 ← 23 ← 25 ← 27 ← · · ·
⇓ ↓ ↓ ↓ ↓
L4 23 ← 25 ← 27 ← 29 ← · · ·
⇓ ↓ ↓ ↓ ↓
· · · · · · · · · · · · · · ·

element in Table II(a). The symbol for z0 is 0, because z0 is located in L1, z8 is
located in M2, and both the intervals L1 and M2 are located in the region V0 of Fig.
2. The two points z1 and z4 are located in the region labeled V1 ∩H0 in Fig. 2. As
π2(z4) < π2(x1), the point z3 is located in the region labeled V0 ∩ H1. Hence, the
symbol for z1 is 1 and that for z3 is 0. Comparing the positions of TM2 and L1, we
see that the symbol for z9 is 0, and consequently the symbol for z7 is 0. We need
a numerical calculation to determine the position of z2. The symbol is 1 for z2, as
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Fig. 8. Trellis (upper graph) in the first stage and its compatible graph bG represented by the thin

curve. In the lower figure, the control edges in bG are named A, B, · · · , G. Here, the relations

β = Tα and γ = Tβ hold.

shown in Fig. 9. The symbols 1 and 0 are both possible for z5. As displayed in Fig.
9, z5 is located in the vicinity of the tangency point (intersection point), and thus
z6 is located in V1 ∩H0 or V1 ∩H1 in the vicinity of γs. Hence the symbol for z6 is
1. In the left (resp., right) panel of Fig. 9, the periodic orbit from z0 to z8 with the
symbol sequence 011011100 (resp., 011010100) is displayed, where z5 is located in
the region V1 (resp., V0). By reversibility, the symbol sequences from z9 to z16 are
01110110 and 01010110.

We now explain how to find the general expressions for the periodic orbits ap-
pearing in Table I(a). If z0 is located in L2 and z9 in M2, z1 is located slightly
above the initial point of the periodic orbit with period q = 17. Therefore, we place
s(1, 2) between two 0’s and obtain the symbol sequence for the (2, 2)-element as
0011011100011101100. Next we consider the periodic orbit with z0 located in L1

and z9 located in M3. We know that M3 is located near P . Then, comparing T 2M3,
TM2 and L1, it is found that the symbol for z10 is 0. Thus the symbol for z8 is also
0. There are three zeros in the middle of s(1, 2). Adding two zeros in the middle of
s(1, 2), we obtain s(1, 3) as 0110111000001110110. Repeating these procedures, the
two expressions in Eq. (31) are derived.

In order to form the symbol sequences for the orbits appearing in Table II(b),
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Fig. 9. The orbit from z0 to z8. Here, 0, 1, etc., represent z0, z1, etc. Displayed are two orbits for

the (1, 2)-element in Table II(a), where z2 is located in the region V1. The symbol sequences

are 011011100 for the left orbit and 011010100 for the right orbit.

Fig. 10. The orbit from z0 to z8. Displayed are two orbits for the (1, 2)-element in Table II(b),

where z2 is located in the region V0. The symbol sequences are 010011100 for the left orbit and

010010100 for the right orbit.

we plot the orbital points of the periodic orbit for the (1, 2)-element in Table II(b)
(see Fig. 10). The difference between Figs. 9 and 10 is only the position of z2. In
Fig. 10, it is located in the region V0. Thus, two expressions given in Eq. (32) are
obtained.

4.3. The second stage

The trellis for the second stage at which T−2γs is tangent to T 3Γu is illustrated in
Fig. 11. The compatible graph is displayed in the lower panel. From the compatible
graph, the matrix M2 representing the transitions among A, B, · · · , I is determined:
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M2 =



B C D E G H F A I

B 0 0 0 0 0 0 0 1 0
C 0 1 0 1 2 1 2 0 2
D 1 0 0 0 0 0 0 0 0
E 0 1 1 0 0 0 0 0 0
G 0 0 1 0 0 0 0 0 0
F 0 0 1 1 0 1 0 0 0
H 0 0 0 0 1 0 0 0 0
A 0 0 0 0 0 1 0 1 0
I 0 0 0 0 0 0 1 0 0


. (33)

The characteristic equation for M2 is obtained as follows:

λ9 − 2λ8 + 2λ3 − 2
2∑

k=0

λk = 0. (34)

The largest eigenvalue is λmax = 1.9923. This value is equal to that of the transition
matrix constructed by DMS.17)

From Theorem 1, we derive the dynamical orderings III(a) and III(b) for the
case with k = 3, k′ = 2 and ic = 1 and the symbol sequences for the periodic orbits
appearing in III(a) and III(b).

s2
III(a)(i, j) =

{
0i(1100111)02j−1(1110011)0i,

0i(1100101)02j−1(1010011)0i,
(35)

s2
III(b)(i, j) =

{
0i(1000111)02j−1(1110001)0i,

0i(1000101)02j−1(1010001)0i.
(36)

It is noted that the tangency point of T−2γs and T 3Γu is located in a region
much closer to T−1Γu than that of T−2γs and T 2Γu. This implies that z5 of the
orbit O(z0) in the (1,2)-element of Table III(a) is located in a region closer to T−1Γu

than that of z′4 of the orbit O(z′0) in the (1,2)-element of Table II(a). The symbol
for z′3 = T−1z′4 is 0 [see Eq. (35)]. Then z4 is located on the left of z′3, and its
symbol is 0. The orbit from z0 to z5 passes a region closer to P than that from z′0
to z′4. Finally, the orbit from z0 to z5 is coded as 010001, which has one more 0
than the sequence for the orbit from z′0 to z′4, 01001. Thus, the symbol sequences
are determined as 0110011100011100110 and 0110010100010100110. The derivation
for the other sequences is omitted.
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Fig. 11. Trellis (upper panel) for the second stage and its compatible graph bG. In the lower panel,

the control edges in bG are labeled A, B, · · · , I, and in this case, the relations β = Tα, γ = Tβ

and δ = Tγ hold.
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Table III. Dynamical ordering.

(a)

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 19 ← 21 ← 23 ← 25 ← · · ·
⇓ ↑ ↑ ↑ ↑
L2 21 ← 23 ← 25 ← 27 ← · · ·
⇓ ↑ ↑ ↑ ↑
L3 23 ← 25 ← 27 ← 29 ← · · ·
⇓ ↑ ↑ ↑ ↑
L4 25 ← 27 ← 29 ← 31 ← · · ·
⇓ ↑ ↑ ↑ ↑
· · · · · · · · · · · · · · ·

(b)

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 19 ← 21 ← 23 ← 25 ← · · ·
⇓ ↓ ↓ ↓ ↓
L2 21 ← 23 ← 25 ← 27 ← · · ·
⇓ ↓ ↓ ↓ ↓
L3 23 ← 25 ← 27 ← 29 ← · · ·
⇓ ↓ ↓ ↓ ↓
L4 25 ← 27 ← 29 ← 31 ← · · ·
⇓ ↓ ↓ ↓ ↓
· · · · · · · · · · · · · · ·

4.4. The third stage

In Fig. 12, we display the trellis for the third stage and its compatible graph.
The transition matrix M3 and its characteristic equation are obtained as:

M3 =



B C D E F G I J H A K

B 0 0 0 0 0 0 0 0 0 1 0
C 0 1 0 1 2 1 2 1 2 0 2
D 1 0 0 0 0 0 0 0 0 0 0
E 0 1 1 0 0 0 0 0 0 0 0
F 0 0 1 0 0 0 0 0 0 0 0
G 0 0 1 1 0 1 0 0 0 0 0
I 0 0 0 0 1 0 0 0 0 0 0
J 0 0 0 0 0 1 0 0 0 0 0
H 0 0 0 0 0 0 1 0 0 0 0
A 0 0 0 0 0 0 0 1 0 1 0
K 0 0 0 0 0 0 0 0 1 0 0



, (37)

and

λ11 − 2λ10 + 2λ4 − 2
3∑

k=0

λk = 0. (38)

The largest eigenvalue is λmax = 1.99808.
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Fig. 12. Trellis (upper graph) for the third stage and its compatible graph bG. In the lower graph,

the control edges in bG are labeled A, B, · · · , K, and in this case, the relations β = Tα, γ = Tβ,

δ = Tγ and ε = Tδ hold.
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Table IV. Dynamical ordering.

(a)

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 21 ← 23 ← 25 ← 27 ← · · ·
⇓ ↑ ↑ ↑ ↑
L2 23 ← 25 ← 27 ← 29 ← · · ·
⇓ ↑ ↑ ↑ ↑
L3 25 ← 27 ← 29 ← 31 ← · · ·
⇓ ↑ ↑ ↑ ↑
L4 27 ← 29 ← 31 ← 33 ← · · ·
⇓ ↑ ↑ ↑ ↑
· · · · · · · · · · · · · · ·

(b)

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 21 ← 23 ← 25 ← 27 ← · · ·
⇓ ↓ ↓ ↓ ↓
L2 23 ← 25 ← 27 ← 29 ← · · ·
⇓ ↓ ↓ ↓ ↓
L3 25 ← 27 ← 29 ← 31 ← · · ·
⇓ ↓ ↓ ↓ ↓
L4 27 ← 29 ← 31 ← 33 ← · · ·
⇓ ↓ ↓ ↓ ↓
· · · · · · · · · · · · · · ·

From Theorem 1, we derive the dynamical orderings IV(a) and (b) for this case
with k = 4, k′ = 2 and ic = 1 and the symbol sequences for the periodic orbits
appearing in IV(a) and (b).

s3
IV(a)(i, j) =

{
0i(11000111)02j−1(11100011)0i,

0i(11000101)02j−1(10100011)0i,
(39)

s3
IV(b)(i, j) =

{
0i(10000111)02j−1(11100001)0i,

0i(10000101)02j−1(10100001)0i.
(40)

4.5. The n-th stage

We can similarly derive the transition matrix Mn, which we do not give explicitly
here. The characteristic equation for Mn is obtained as

λ2n+5 − 2λ2n+4 + 2λn+1 − 2
n∑

k=0

λk = 0. (41)

From Eq. (41), we can determine the largest eigenvalue λmax. For a large value of
n, we have the topological entropy htop = lnλmax � ln 2− 1/(4(2n + 4n+1)).

From Theorem 1, we derive the dynamical ordering for this case with k = n +
1, k′ = 2 and ic = 1 and obtain the symbol sequences.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/114/4/763/1836359 by guest on 19 April 2024



Generalized Dynamical Ordering and Topological Entropy 785

Table V. Dynamical ordering.

(a)-n

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 2n + 15 ← 2n + 17 ← 2n + 19 ← 2n + 21 ← · · ·
⇓ ↑ ↑ ↑ ↑
L2 2n + 17 ← 2n + 19 ← 2n + 21 ← 2n + 23 ← · · ·
⇓ ↑ ↑ ↑ ↑
L3 2n + 19 ← 2n + 21 ← 2n + 23 ← 2n + 25 ← · · ·
⇓ ↑ ↑ ↑ ↑
L4 2n + 21 ← 2n + 23 ← 2n + 25 ← 2n + 27 ← · · ·
⇓ ↑ ↑ ↑ ↑
· · · · · · · · · · · · · · ·

(b)-n

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 2n + 15 ← 2n + 17 ← 2n + 19 ← 2n + 21 ← · · ·
⇓ ↓ ↓ ↓ ↓
L2 2n + 17 ← 2n + 19 ← 2n + 21 ← 2n + 23 ← · · ·
⇓ ↓ ↓ ↓ ↓
L3 2n + 19 ← 2n + 21 ← 2n + 23 ← 2n + 25 ← · · ·
⇓ ↓ ↓ ↓ ↓
L4 2n + 21 ← 2n + 23 ← 2n + 25 ← 2n + 27 ← · · ·
⇓ ↓ ↓ ↓ ↓
· · · · · · · · · · · · · · ·

sn
V.(a)(i, j) =

{
0i(110n111)02j−1(1110n11)0i,

0i(110n101)02j−1(1010n11)0i,
(42)

sn
V(b)(i, j) =

{
0i(100n111)02j−1(1110n01)0i,

0i(100n101)02j−1(1010n01)0i.
(43)

4.6. Topological entropy evaluated by the DOM

Using the symbol sequences and the software Wintrain, developed by Hall, the
largest rate of increase of the number of periodic orbits is obtained. We call this
value λ̂max.

We are particularly interested in λ̂max for the (i, i + 1)-element in both Tables
V(a)-n and (b)-n. The limit i → ∞ corresponds to the tangency of Tn+1Γu and
T−2γs. In Table VI, the values of λ̂max obtained using Wintrain are listed. Note
that the limits of the values in the columns for V(a)-n and V(b)-n are the same for
each n. Thus, htop is constant in the n-th stage. The accumulation points for both
columns are λmax, as derived using the trellis method.

4.7. The case in which only Type I dynamical ordering holds

As remarked in §3.2, the situation with k = 0, k′ = 1 and ic = 1 has only the
dynamical ordering of Type I appearing in Table VII.
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Table VI. Largest eigenvalue.

i V(a)-1 V(b)-1 V(a)-2 V(b)-2 V(a)-3 V(b)-3 V(a)-4 V(b)-4

1 1.859 1.867 1.882 1.882 1.9238 1.9403 1.9606 1.9698

2 1.944 1.946 1.968 1.969 1.9738 1.9739 1.9747 1.9672

3 1.962 1.963 1.986 1.986 1.9923 1.9923 1.9936 1.9936

4 1.967 1.967 1.990 1.990 1.9966 1.9966 1.9980 1.9980

5 1.968 1.968 1.992 1.992 1.9977 1.9977 1.9991 1.9991

λmax 1.968 1.968 1.992 1.992 1.9980 1.9980 1.9995 1.9995

The numbers 1–4 in V(a)-1–V(a)-4 and V(b)-1–V(b)-4 represent the values of n.

Table VII. Dynamical ordering.

M2 ⇒ M3 ⇒ M4 ⇒ M5 ⇒ · · ·
L1 11 ← 13 ← 15 ← 17 ← · · ·
⇓ ↑ ↑ ↑ ↑
L2 13 ← 15 ← 17 ← 19 ← · · ·
⇓ ↑ ↑ ↑ ↑
L3 15 ← 17 ← 19 ← 21 ← · · ·
⇓ ↑ ↑ ↑ ↑
L4 17 ← 19 ← 21 ← 23 ← · · ·
⇓ ↑ ↑ ↑ ↑
· · · · · · · · · · · · · · ·

Table VIII. Largest eigenvalue.

i VII

1 1.874

2 1.974

3 1.993

4 1.998

5 1.999

λmax 2

The symbol sequences for the periodic orbits in Table VII are

sVII(i, j) =

{
0i(101)02j−1(101)0i,

0i(111)02j−1(111)0i,
(44)

where i ≥ 1 and j ≥ 2. We list in Table VIII the largest eigenvalues λ̂max for the
elements (i, i+1), with i = 1, 2, 3, 4 and 5, and their limiting value, ln 2, in the limit
i→∞.

§5. The largest plateau and its family

Here we consider the tangency of TnΓu and T−nγs on S11. The geometry for
the case n = 1 and the compatible graph are illustrated in Fig. 13. The transition
matrix is derived as follows:8)

M1 =


A B C

A 1 2 0
B 0 0 1
C 1 0 0

 . (45)
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Fig. 13. The upper figure depicts the tangency of TΓu and T−1γs at a = 3.242, and the lower one

shows its compatible graph bG, where A, B and C represent the control edges.

Using the same procedure as that used to derive Eq. (45), we have the following
(2n + 3)× (2n + 3) transition matrix for the tangency of TnΓu and T−nγs on S11:

Mn =



1 2 0 0 ... 0 0 0 0
0 0 1 0 ... 0 0 0 0
0 0 0 1 ... 0 0 0 0
0 0 0 0 ... 0 0 0 0
... ... ... ... ... ... ... ... ...
0 0 0 0 ... 1 0 0 0
0 0 0 0 ... 0 1 0 0
0 0 0 0 ... 0 0 1 0
0 0 0 0 ... 0 0 0 1
1 0 0 0 ... 0 0 0 0


. (46)

The characteristic equation is obtained as

λ2n+1 − λ2n − 2 = 0. (47)

The limit n→∞ corresponds to the integrable case, a = 0. In this limit, λmax tends
to 1 and hence htop tends to zero.
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788 Y. Yamaguchi and K. Tanikawa

Fig. 14. A bifurcation of the cubic type at the homoclinic point α2 occurs at a = 4.045 (upper

figure). The lower figure depicts the situation at a = 4.5, where the new homoclinic points β1

and β2 exist.

Here we remark on the first and second instances of tangency of TΓu and Tγs. In
the first instance, the tangency is quadratic and in the second it is cubic.18) The latter
situation is displayed in Fig. 14, where the upper panel depicts the cubic tangency
situation, and the lower panel shows that the new homoclinic points β1 and β2 are
bifurcated from α2. We call this the cubic-type bifurcation of a homoclinic point.

Because the first tangency of TΓu and T−1γs is quadratic, from Theorem 1, the
dynamical ordering of Type I with k = k′ = ic = n(n ≥ 1) holds. At the second
tangency, the dynamical ordering of Type II holds. The results are given in Tables
IX(a)-n and IX(b)-n.

The symbol sequences for the periodic orbits appearing in Tables IX(a)-n and
IX(b)-n are

sn
IX(a)(i, j) =

{
0i(1002n−201)02j−1(1002n−201)0i,

0i(1002n−211)02j−1(1102n−201)0i,
(48)

sn
IX(b)(i, j) =

{
0i(1102n−201)02j−1(1002n−211)0i,

0i(1102n−211)02j−1(1102n−211)0i,
(49)
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Table IX. Dynamical ordering.

(a)-n

Mn+1 ⇒ Mn+2 ⇒ Mn+3 ⇒ Mn+4 ⇒ · · ·
Ln 8n + 5 ← 8n + 7 ← 8n + 9 ← 8n + 11 ← · · ·
⇓ ↑ ↑ ↑ ↑

Ln+1 8n + 7 ← 8n + 9 ← 8n + 11 ← 8n + 13 ← · · ·
⇓ ↑ ↑ ↑ ↑

Ln+2 8n + 9 ← 8n + 11 ← 8n + 13 ← 8n + 15 ← · · ·
⇓ ↑ ↑ ↑ ↑

Ln+3 8n + 11 ← 8n + 13 ← 8n + 15 ← 8n + 17 ← · · ·
⇓ ↑ ↑ ↑ ↑
· · · · · · · · · · · · · · ·

(b)-n

Mn+1 ⇒ Mn+2 ⇒ Mn+3 ⇒ Mn+4 ⇒ · · ·
Ln 8n + 5 ← 8n + 7 ← 8n + 9 ← 8n + 11 ← · · ·
⇓ ↓ ↓ ↓ ↓

Ln+1 8n + 7 ← 8n + 9 ← 8n + 11 ← 8n + 13 ← · · ·
⇓ ↓ ↓ ↓ ↓

Ln+2 8n + 9 ← 8n + 11 ← 8n + 13 ← 8n + 15 ← · · ·
⇓ ↓ ↓ ↓ ↓

Ln+3 8n + 11 ← 8n + 13 ← 8n + 15 ← 8n + 17 ← · · ·
⇓ ↓ ↓ ↓ ↓
· · · · · · · · · · · · · · ·

Table X. Largest eigenvalue.

i IX(a)-1 IX(b)-1 IX(a)-2 IX(b)-2 IX(a)-3 IX(b)-3 IX(a)-4 IX(b)-4

1 1.427 1.495

2 1.634 1.637 1.251 1.288

3 1.676 1.677 1.386 1.389 1.178 1.203

4 1.689 1.689 1.424 1.425 1.279 1.281 1.138 1.157

5 1.693 1.693 1.439 1.439 1.312 1.312 1.219 1.220

6 1.694 1.694 1.445 1.445 1.327 1.327 1.248 1.248

7 1.695 1.695 1.447 1.447 1.334 1.334 1.261 1.261

8 1.695 1.695 1.449 1.449 1.337 1.337 1.269 1.269

9 1.450 1.450 1.339 1.339 1.273 1.273

10 1.340 1.340 1.275 1.275

λmax 1.695 1.695 1.451 1.451 1.342 1.342 1.279 1.279

where i ≥ n, j ≥ n + 1 and n ≥ 1.
The largest eigenvalues, λ̂max, accumulate at λmax, which is determined by Eq.

(47) (see Table X).

§6. Concluding remarks

Hagiwara and Shudo19) constructed a pruning algorithm to evaluate the topo-
logical entropy. However, there is no guarantee that this algorithm gives a lower
bound or an upper bound of the entropy, though the algorithm is quite complicated.
For the Hénon map, we cannot judge whether the concept of pruning is valid.
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Fig. 15. A schematic depiction of the first stage, for which a ∈ [4.975, 5.145], and two plateaus, for

which a ∈ (4.975, 5.113) and (5.124, 5.141).

In concluding this paper, let us consider the internal structure of the first stage
(§4.2). We need to distinguish two concepts, that of the stage and that of the plateau.
In Fig. 15, we depict the first stage, in which two plateaus exist.17)−19) The left end
of the first plateau coincides with the left end of the first stage, whereas the right
end of the second plateau does not coincide with the right end of the first stage. Our
results presented in §4.2 show that the symmetric periodic orbits appear through
saddle-node bifurcations before and after the end of this stage. Thus the number
of the periodic point is not constant in this parameter region. Arai22) determined
the interval of parameter values in which the plateaus are hyperbolic. The two
plateaus approximately coincide with the intervals determined by Arai. Part of the
first stage is non-hyperbolic. There may exist small hyperbolic intervals in the first
stage between the two plateaus.

From Fig. 15 and the result of Ref. 19), we find that the lower bound of
the topological entropy increases after the first plateau and is constant in the second
plateau. Our results do not account for this fact. To determine the detailed structure
of the topological entropy in the first stage, we need to find the tangency situation
that contributes to the complexity.

For the Hénon map, we can apply the Biham-Wenzel method to calculate the
number of periodic orbit. Using this result, we can determine the detailed structure
in the first stage. However, for other mapping systems, there is no method to evaluate
the number of periodic points. Our method and the trellis method are applicable to
such systems in order to derive a lower bound of the topological entropy.

Sterling, Dullin and Meiss18) studied the cubic-type bifurcation of homoclinic
points. As mentioned in §5, the critical value of this bifurcation determines the
value of the end of the stage. The ordering of Type II holds before and after this
tangency.
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