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We study the Lorentz invariance of D = 4 and 6 superstrings in the double-spinor
formalism, which are equivalent to the D = 4 and 6 superstrings in the pure-spinor formalism
in the sense of the BRST cohomology. We first re-examine how the conformal and Lorentz
anomalies appear in the D = 4 and 6 Green-Schwarz superstrings in the semi-light-cone
gauge in the framework of BRST quantization. We construct a set of BRST invariant
Lorentz generators and show that they do not form a closed algebra, even cohomologically.
We then turn to the construction of Lorentz generators in the D = 4 and 6 double-spinor
superstrings, and show that the Lorentz invariance is again anomalous. We also discuss the
relation between the anomaly-free Lorentz generators in the lower-dimensional pure-spinor
formalisms and that obtained in this paper.

§1. Introduction

Recently, it has been recognized that the covariant quantization of superstrings
using pure spinors1) can be naturally understood in terms of a Green-Schwarz-like
superstring with twice as many fermionic degrees of freedom, the double-spinor (DS)
formalism.2) The superstring in the DS formalism possesses an additional local sym-
metry, and is classically gauge equivalent to the ordinary Green-Schwarz (GS) su-
perstring. Imposing the semi-light-cone gauge condition on one half of the fermionic
variables, Aisaka and Kazama completed a Dirac/BRST quantization of the D = 10
DS superstring, finding that the resulting system is cohomologically equivalent to the
PS superstring.∗) In this way, they uncovered the “origin” of the formalism, and, in
particular, they derived the previously mysterious seventeen first-class constraints4)

assumed to clarify the relation between GS and PS superstrings.
In a previous paper, Ref. 5), we applied this idea to lower-dimensional (D = 4

and 6) cases.6),7) The primary motivation of that work was to understand how the
concept of the critical dimension emerges in the PS formalism. We have shown
that, starting from similar Lagrangians, D = 4 and D = 6 DS superstrings can
be BRST quantized to yield free CFTs similar to the semi-light-cone gauge GS
superstrings, along with additional conjugate pair systems and extra constraints.
The BRST charges again reduce to those of the lower-dimensional PS superstrings

∗) See Ref. 3) for a different formulation which also relates GS and PS superstrings.
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560 H. Kunitomo and S. Mizoguchi

through similarity transformations.
Thus, the DS superstrings “interpolate” between the GS and PS superstrings,

but this raises some questions. The GS superstring theories have a Lorentz anomaly
in lower dimensional cases, while the PS superstring theories have anomaly-free
Lorentz generators.6),7) Where does this difference come from? Then, as a related
question, what do “quantum mechanically consistent D = 4 and 6 superstrings”
describe?

The DS superstrings are closely related to the GS superstrings in the semi-light-
cone gauge.2) The presence or absence of Lorentz and conformal anomalies for the
D = 10 semi-light-cone gauge GS superstring was a subject of great debate in the
late 1980s and early 1990s. In Ref. 8), it was revealed that, contrary to the prevailing
belief at that time,9) the D = 10 GS superstring in the semi-light-cone gauge has a
non-vanishing conformal anomaly. Later, it was shown that this conformal anomaly
is canceled by introducing a certain local counterterm, and the Lorentz algebras
become closed with a suitable modification of the Lorentz generators.10),11) This
local counterterm can be viewed as a coupling to a certain dilaton background. More
recently, the Lorentz invariance of the D = 10 GS superstring in the semi-light-cone
gauge has been re-examined and proved using the BRST method.4)

In this paper, we first examine the conformal and Lorentz anomalies of the
D = 4 and 6 GS superstrings in the semi-light-cone gauge. We BRST quantize
these lower-dimensional GS superstrings in a manner similar to that for the DS
superstring in Ref. 5). The key step in this procedure is the modification of the
quantum constraints, and we argue that it effectively changes the background from
a flat space-time to a linear-dilaton-like one. We then construct a set of BRST
invariant Lorentz generators and show that they are not closed, as expected.

Next, we turn to an examination of the Lorentz invariance of the D = 4 and 6
DS superstrings studied in Ref. 5). We present a complete set of BRST-invariant
Lorentz generators in both cases. We then show that they form the correct Lorentz
algebra, except for the commutators between the “i−” generators, which, again, are
not BRST exact. Finally, we investigate the relation between these charges and the
anomaly-free Lorentz generators in the D = 4 PS formalism described in Refs. 6)
and 7).

The organization of this paper is as follows. In §2, we study the conformal and
Lorentz anomalies of the D = 4 and 6 GS superstrings in the semi-light-cone gauge
using the BRST method. We derive the BRST-invariant Lorentz generators of the
semi-light-cone gauge DS superstring and compute their algebras in §3. In the final
section, we discuss the difference between the anomaly-free Lorentz generators of
Refs. 6) and 7) and those obtained in this paper.
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Lorentz Anomaly in Semi-Light-Cone Gauge Superstrings 561

§2. The Lorentz invariance of lower-dimensional GS superstrings in the
semi-light-cone gauge

2.1. The D = 4 GS superstring in the semi-light-cone gauge

The Lagrangian of the D = 4 Green-Schwarz (GS) superstring is an obvious
generalization of the D = 10 GS Lagrangian,2) with an appropriate spinor structure
in four dimensions:

L = LK + LWZ , (2.1a)

LK = −1
2
√
−ggabΠµ

a Πµb, (2.1b)

LWZ = εabΠµ
a (Wµb − Ŵµb) − εabWµ

a Ŵµb (2.1c)

with

Πµ
a = ∂aX

µ −
2∑

A=1

WAµ
a , (2.2)

WAµ
a = iθAσµ∂aθ̄

A − i∂aθ
Aσµθ̄A. (2.3)

Here, we employ the notation used in Ref. 5): µ, ν = 0, 1, 2, 3 are the flat space-time
indices with the metric ηµν = diag[+1,−1,−1,−1], a, b = 0, 1 are the worldsheet
indices, σµ are the two-by-two hermitian off-diagonal blocks of the gamma matrices
in the chiral representation, θA are complex Weyl spinors, with A = 1, 2 labeling
the left and right degrees of freedom after the semi-light-cone gauge fixing. We also
adopt the notation W µ

a = WA=1,µ
a , Ŵµ

a = WA=2,µ
a , etc.

The fermionic constraints are simply

DA
α = kA

α − i(kµ + ηA(Πµ
1 + WµĀ

1 ))(σµθ̄A)α ≈ 0, (2.4a)

D̄A
α = k̄A

α̇ − i(kµ + ηA(Πµ
1 + WµĀ

1 ))(θAσµ)α̇ ≈ 0, (2.4b)

where Ā = 1(2) if A = 2(1). Parameterizing the worldsheet metric as

gab =
(

−N2 + γ(N1)2 γN1

γN1 γ

)
, (2.5)

in the ADM form, we obtain the Hamiltonian

H =
N
√

γ
T0 + N1T1 + θ̇AαDA

α + ˙̄θAα̇D̄A
α̇ , (2.6)

where

T+ =
1
2
(T0 + T1) =

1
4
ΠµΠµ, (2.7a)

T− =
1
2
(T0 − T1) =

1
4
Π̂µΠ̂µ, (2.7b)
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562 H. Kunitomo and S. Mizoguchi

Πµ = kµ + X ′µ − 2Wµ
1 , (2.8a)

Π̂µ = kµ − X ′µ + 2Ŵµ
1 . (2.8b)

In fact, all the above formulas can be derived from the corresponding ones in the
D = 4 DS formalism5) by setting all the variables with tildes to zero. Assuming the
Poisson brackets

{Xµ(σ), kν(σ′)}P = ηµνδ(σ − σ′), (2.9a)
{θAα(σ), kB

β (σ′)}P = −δABδα
β δ(σ − σ′), (2.9b)

{θ̄Aα̇(σ), k̄B
β̇

(σ′)}P = −δABδα̇
β̇
δ(σ − σ′), (2.9c)

we find that two of the four fermionic constraints are first class, generating the kappa
symmetry, and the other two are second class. Imposing the semi-light-cone gauge
condition

θ2 ≈ θ̄2̇ ≈ 0, (2.10)

the kappa symmetry is fixed, and all the fermionic constraints become second class.
Then, the only first-class constraints are the left and right Virasoro constraints gen-
erated by (2.7).

The Dirac bracket can be computed straightforwardly, and the result is identical
to the DS superstring given in Ref. 5), with the variables with tildes replaced by
variables without tildes, and T and Π+(≡ Π0+Π3) replaced by variables appropriate
for the GS superstring. In this case, unlike in the case of the DS superstrings, the
Dirac brackets among Xµ and kν remain canonical; the only necessary modifications
are the familiar rescalings

S ≡
√

2Π+θ1, S̄ ≡
√

2Π+θ̄1̇, (2.11)

which satisfy the relations

{S(σ), S̄(σ′)}D = iδ(σ − σ′), (2.12a)
{Xµ(σ), S(σ′)}D = 0, (2.12b)
{Xµ(σ), S̄(σ′)}D = 0. (2.12c)

We now turn to the quantization of the D = 4 GS superstring. As in Ref. 5), we
replace the Dirac brackets obtained above with appropriate OPEs. With some rescal-
ings, the left constraint, T0 + T1, becomes the energy-momentum tensor Tmatter(z)
composed of free fields:

T (z) =
1
2
∂Xµ∂Xµ − 1

2
(S∂S̄ − ∂SS̄). (2.13)

The OPEs for the basic holomorphic fields are

Xµ(z)Xν(w) ∼ ηµν log(z − w), (2.14a)

S(z)S̄(w) ∼ 1
z − w

. (2.14b)
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Lorentz Anomaly in Semi-Light-Cone Gauge Superstrings 563

Because the central charge of T (z) is 5, the ghost contribution −26 cannot be can-
celled in four dimensions. To compensate for the shortage, we modify the energy-
momentum tensor T (z) similarly to that in Ref. 5), as

T (z) → Ť (z) =
1
2
∂Xµ∂Xµ − 1

2
(S∂S̄ − ∂SS̄) +

7
8
∂2 log ∂X+, (2.15)

with η+− = 2, ηij = −δij . In general, a family of energy-momentum tensors

TX+X−(z) =
1
2
∂X+∂X− + ξ ∂2 log ∂X+ (2.16)

with a parameter ξ has central charge

c(ξ) = 1 + 24ξ (2.17)

if X+(z)X−(w) ∼ +2 log(z − w). Therefore, the logarithm term correctly shifts the
central charge to 26. Using this modified energy-momentum tensor, we can construct
a standard nilpotent BRST charge:

QGS =
∮

dz

2πi

(
cŤ + bc∂c

)
. (2.18)

Note that although this modification of the energy-momentum tensor may seem
ad hoc, it is required even in the D = 10 GS superstring in the semi-light-cone
gauge. Indeed, a one-loop analysis reveals the existence of a conformal anomaly of
c = −12, including the bc ghosts, which can only be canceled with a special dilaton
coupling introduced as a local counterterm.10),11) This causes a change of the energy-
momentum tensor as in (2.15), though with a coefficient of 1/2 instead of 7/8. The
inclusion of the counterterm also results in a modification of the spacetime Lorentz
transformation rules, which have been shown to have no anomaly.10),11),4) Similarly,
we can add a local counterterm to the D = 4 GS action so that the total conformal
anomaly vanishes, and this gives rise to a change of the energy-momentum tensor
(2.15). The question is whether, with that counterterm, the rigid Lorentz symmetry
is preserved in the theory. Below we examine this point.

A Lorentz generator for the GS superstrings in the semi-light-cone gauge basi-
cally consists of a Noether current and, if it does not preserve the semi-light-cone
gauge condition (2.10), an additional, compensating kappa-symmetry current. In
addition, we need some extra terms for the BRST invariance of the generators. For
the D = 4 case, we find

N ij =
1
4
(
−X i∂Xj + Xj∂X i + iεijSS̄

)
, (2.19a)

N+− =
1
4
(
−X+∂X− + X−∂X+

)
, (2.19b)

N i+ =
1
4
(
−X i∂X+ + X+∂X i

)
, (2.19c)

N i− =
1
4

(
−X i∂X− + X−∂X i + 2iεij ∂Xj

∂X+
SS̄ − 7

2
∂2X i

∂X+

)
, (2.19d)
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where i, j = 1, 2 and ε12 = −ε21 = 1, ε11 = ε22 = 0. The third term in N i− (2.19d)
comes from the compensating kappa transformation, and the fourth term is required
for the BRST invariance.∗) Lorentz generators constructed from these currents all
commute with QGS. Defining the charges as

Mµν =
∮

dz

2πi
Nµν(z), (2.20)

it can be verified that they form the D = 4 Lorentz algebra, except for [M1−, M2−],
which is given by

[M1−, M2−] =
∮

dz

2πi

(
i

SS̄

(∂X+)2

(
1
2
∂Xµ∂Xµ − 7

8
∂3X+

∂X+
+

7
4

(∂2X+)2

(∂X+)2

)

−3
4

∂X1∂2X2 − ∂2X1∂X2

(∂X+)2

)
. (2.21)

Unlike the D = 10 GS superstring analyzed in Ref. 4), the right-hand side cannot be
BRST-exact. This can be proven as follows. Suppose that the terms proportional to
SS̄ in (2.21) could be written as a commutator of QGS and some BRST “parent.”
Then, since Ť does not have such a term, the parent itself must contain SS̄. It is not
difficult to show that the only possible choice is bSS̄

(∂X+)2
multiplied by some constant.

However, we have[
QGS,

∮
dz

2πi
i

bSS̄

(∂X+)2
(z)
]

=
∮

dz

2πi

(
i

SS̄

(∂X+)2

(
1
2
∂Xµ∂Xµ − 1

8
∂3X+

∂X+
− 7

8
(∂2X+)2

(∂X+)2

)
+

3
4
i
S∂2S̄ + ∂2SS̄

(∂X+)2

)
,

(2.22)

which is inconsistent. Thus, we have shown that (2.21) does not vanish, even coho-
mologically, and therefore the Lorentz invariance is broken. This is a natural result,
because we know that the Lorentz algebra is not closed in the light-cone quantization,
and this should be independent of the gauge choice.

2.2. The D = 6 GS superstring in the semi-light-cone gauge

The BRST quantization of the D = 6 GS superstring in the semi-light-cone
gauge is completely analogous, and therefore we give only a brief summary. Again,
the Dirac brackets for the D = 6 GS superstring are derived from the D = 6 DS
superstring5) by similar replacements. The matter energy-momentum tensor is given
by

T (z) =
1
2
∂Xµ∂Xµ − 1

2
SI

a∂Sa
I . (2.23)

∗) An analogous term is also needed for the D = 10 GS superstring. In this case, one must add

+∂2Xi

∂X+ to N i− in Eq. (3.6) of Ref. 4).
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Lorentz Anomaly in Semi-Light-Cone Gauge Superstrings 565

The relevant OPEs are

Xµ(z)Xν(w) ∼ ηµν log(z − w), (2.24a)

Sa
I (z)Sb

J(w) ∼ −εIJεab

z − w
. (2.24b)

Again, we modify the energy-momentum tensor to

Ť (z) =
1
2
∂Xµ∂Xµ − 1

2
SI

a∂Sa
I +

3
4
∂2 log ∂X+, (2.25)

so that the BRST charge

QGS =
∮

dz

2πi

(
cŤ + bc∂c

)
(2.26)

becomes nilpotent. The BRST-invariant Lorentz generators are found to be

N ij =
1
4

(
−X i∂Xj + Xj∂X i +

i

2
(SIγijSI)

)
, (2.27a)

N+− =
1
4
(
−X+∂X− + X−∂X+

)
, (2.27b)

N i+ =
1
4
(
−X i∂X+ + X+∂X i

)
, (2.27c)

N i− =
1
4

(
−X i∂X− + X−∂X i + i

∂Xj

∂X+
(SIγijSI) − 3

∂2X i

∂X+

)
. (2.27d)

It can be verified that they form the correct D = 6 Lorentz algebra, except that

[M i−, M j−]

=
∮

dw

2πi

(
i

2
(SIγijSI)
(∂X+)2

(
1
2
∂Xµ∂Xµ − 1

8
SJ

b ∂Sb
J − 3

4
∂3X+

∂X+
+

(∂2X+)2

(∂X+)2

)

−1
2

∂X i∂2Xj − ∂2X i∂Xj

(∂X+)2
+

i

4
(SIγij∂2SI)

(∂X+)2

+
i

8
(SIγij∂SJ)

(∂X+)2
SJ

b Sb
I

)
. (2.28)

Again, the right-hand side is not BRST-exact: As in the D = 4 case, the S-bilinear
terms can only arise from a product of cŤ and something proportional to SIγijSI

(∂X+)2
,

but we have[
QGS,

∮
dz

2πi
i
b(SIγijSI)
2(∂X+)2

(z)
]

=
∮

dw

2πi

(
i

2
(SIγijSI)
(∂X+)2

(
1
2
∂Xµ∂Xµ − 1

2
SJ

b ∂Sb
J +

7
4

∂3X+

∂X+
− 3

4
(∂2X+)2

(∂X+)2

)

+
3
4
i
(SIγij∂2SI)

(∂X+)2

)
, (2.29)

which does not coincide with (2.28).
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§3. The Lorentz invariance of the lower-dimensional DS superstrings

3.1. The D = 4 DS superstring

We now focus on the issue of the Lorentz invariance of the lower-dimensional
DS superstrings studied in Ref. 5). We first briefly review the relevant results in the
D = 4 case. The Lagrangian of the D = 4 DS superstring is

L = LK + LWZ , (3.1a)

LK = −1
2
√
−ggabΠµ

a Πµb, (3.1b)

LWZ = εabΠµ
a (Wµb − Ŵµb) − εabWµ

a Ŵµb, (3.1c)

with

Πµ
a = ∂aX

µ −
2∑

A=1

i∂a(θAσµ ˜̄θA − θ̃Aσµθ̄A) −
2∑

A=1

WAµ
a (3.2)

and

WAµ
a = iΘAσµ∂aΘ̄

A − i∂aΘ
AσµΘ̄A, (3.3a)

ΘA = θ̃A − θA, Θ̄A = ˜̄θA − θ̄A. (3.3b)

Here, θ̃A and ¯̃
θA are the spinors newly added to the GS superstring, and if they are

set to zero, the Lagrangian reduces to that of the GS superstring. Following Ref. 2),
we impose the semi-light-cone gauge condition only on the spinors with tildes and
compute the Dirac bracket. Then, we obtain a new set of canonical variables with
respect to the Dirac bracket, in terms of which the remaining holomorphic first-class
constraints read as follows:5)

D1 = d1 − i
√

2π+S̄, (3.4a)

D2 = d2 − i

√
2

π+
πS̄ − 2

π+
SS̄∂θ̄2̇, (3.4b)

D̄1̇ = d̄1̇ + i
√

2π+S, (3.4c)

D̄2̇ = d̄2̇ + i

√
2

π+
π̄S +

2
π+

SS̄∂θ2, (3.4d)

T = −1
2

πµπµ

π+
− 1

2
S∂S̄

π+
+

1
2

∂SS̄

π+
+ i

√
2

π+
(S∂θ̄1̇ + ∂θ1S̄)

+i

√
2

(π+)3
(
π̄S∂θ̄2̇ + π∂θ2S̄

)
+ 4

SS̄∂θ2∂θ̄2̇

(π+)2
, (3.4e)

where

dα = pα − i∂Xµ(σµθ̄)α − 1
2
(
(θσµ∂θ̄) − (∂θσµθ̄)

)
(σµθ̄)α, (3.5a)

d̄α̇ = p̄α̇ − i∂Xµ(θσµ)α̇ − 1
2
(
(θσµ∂θ̄) − (∂θσµθ̄)

)
(θσµ)α̇, (3.5b)

πµ = i∂Xµ + θσµ∂θ̄ − ∂θσµθ̄. (3.5c)
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Lorentz Anomaly in Semi-Light-Cone Gauge Superstrings 567

Here, the symbol ∂ represents ∂
∂z . The quantities π± = π0 ± π3, π = π1 + iπ2 and

π̄ = π1 − iπ2 are also introduced.
The relevant OPEs among the basic fields are all free:

Xµ(z)Xν(w) ∼ ηµν log(z − w), (3.6a)

pα(z)θβ(w) ∼ δβ
α

z − w
, (3.6b)

p̄α̇(z)θ̄β̇(w) ∼ δβ̇
α̇

z − w
, (3.6c)

S(z)S̄(w) ∼ 1
z − w

. (3.6d)

Again, the algebras of the constraints (3.4) are not closed, due to the presence of
multiple contractions in the OPEs, and this prevents us from constructing a nilpotent
BRST charge. To remedy this, as in Ref. 2), we modify the constraints as

D1 → Ď1 ≡ D1, (3.7a)

D̄1̇ → ˇ̄D1̇ ≡ D̄1̇, (3.7b)

D2 → Ď2 ≡ D2 −
∂2θ̄2̇

π+
+

1
2

∂π+∂θ̄2̇

(π+)2
, (3.7c)

D̄2̇ → ˇ̄D2̇ ≡ D̄2̇ −
∂2θ2

π+
+

1
2

∂π+∂θ2

(π+)2
, (3.7d)

T → Ť ≡ T +
∂θ2∂2θ̄2̇

(π+)2
− ∂2θ2∂θ̄2̇

(π+)2
− 1

8
∂2 log π+

π+
. (3.7e)

The additional terms above can be viewed as arising from the normal-ordering ambi-
guities of the constraints, and the precise values of the coefficients have been deter-
mined so that the algebras are closed. One can verify that these modified constraints
have the OPE

Ď2(z) ˇ̄D2̇(w) ∼ 4Ť (w)
z − w

, (3.8)

without higher singularities, and is regular otherwise. In this way, we obtain a set
of first-class constraints which can be used to construct a nilpotent BRST charge in
a conventional manner as

Q̃ =
∮

dz

2πi

(
λαĎα + λ̄α̇ ˇ̄Dα̇ + cŤ − 4λ2λ̄2̇b

)
. (3.9)

Here, b and c are the usual fermionic ghosts, satisfying

b(z)c(w) ∼ 1
z − w

, (3.10)

while λα and λ̄α̇ are unconstrained bosonic spinor ghosts, a part of which is identified
as the pure spinor ghosts after the similarity transformations described in the next
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section.∗)
Let us now consider the Lorentz generators. All of them but N i− are obtained

by adding generators constructed from p, θ, λ and ω, the conjugate of λ, with

λα(z)ωβ(w) ∼
δα
β

z − w
, (3.11a)

λ̄α̇(z)ω̄β̇(w) ∼
δα̇
β̇

z − w
, (3.11b)

to those of the GS superstring in the semi-light-cone gauge,

N ij =
1
4
(
−X i∂Xj + Xj∂X i + iεijSS̄

+iεij(θσ3p + p̄σ3θ̄ − λσ3ω + ω̄σ3λ̄)
)
, (3.12a)

N+− =
1
4
(
−X+∂X− + X−∂X+

+2(θσ3p − p̄σ3θ̄ − λσ3ω − ω̄σ3λ̄) + 4bc
)
, (3.12b)

N i+ =
1
4
(
−X i∂X+ + X+∂X i

+2(siθ
2p1 + s̄iθ̄

2̇p̄1̇ − siλ
2ω1 − s̄iλ̄

2̇ω̄1̇)
)

, (3.12c)

where

si =
{

1 (i = 1)
i (i = 2) and s̄i =

{
1 (i = 1)
−i (i = 2) . (3.13)

The generator N+− also contains a contribution from the bc-ghost. This is because
that these ghost fields are not Lorentz scalars, which can be seen from the form of
the BRST charge (3.9). On the other hand, N i− involves extra terms coming from
the compensating κ symmetry, and also other terms for the BRST invariance. The
result is

N i− =
1
4

(
−X i∂X− + X−∂X i + 2(s̄iθ

1p2 + siθ̄
1̇p̄2̇ − s̄iλ

1ω2 − siλ̄
1̇ω̄2̇)

+
4πibc

π+
+ 2iεij πjSS̄

π+
+ 4

√
2i

bc(s̄iS∂θ̄2̇ + si∂θ2S̄)

(π+)
3
2

− 3
2

∂πi

π+

−2
√

2i
s̄i∂S∂θ̄2̇ + si∂θ2∂S̄

(π+)
3
2

−
√

2i
s̄iS∂θ̄2̇ + si∂θ2S̄

(π+)
5
2

∂π+

+12iεij πj∂θ2∂θ̄2̇

(π+)2
+ 6

s̄i∂θ1∂θ̄2̇ − si∂θ2∂θ̄1̇

π+

+4
√

2i
b(s̄iS∂λ̄2̇ − si∂λ2S̄)

(π+)
1
2

)
. (3.14)

∗) Note that the D = 4 pure spinor condition implies λα = 0 or λ̄α̇ = 0, treating them as

independent quantities (rather than complex conjugates), as usual in the PS formalism.
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With the exception of [M i−, M j−], these generators form the correct D = 4 Lorentz
algebra:

[Mµν , Mρσ] = −1
2
(ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ), (3.15)

Mµν ≡
∮

dz

2πi
Nµν(z). (3.16)

The commutator [M i−, M j−] is given by

[M i−, M j−]

=
∮

dz

2πi

[
1
2
iεij π+π− − ππ̄

(π+)2
SS̄ +

3
4
−πi∂πj + πj∂πi

(π+)2

+
√

2εijbc

(
π̄S∂θ̄2̇ − π∂θ2S̄

(π+)5/2
+

S∂θ̄1̇ − ∂θ1S̄

(π+)3/2

)

−iεij∂

(
bc

π+

)
SS̄

π+
+ 4iεij

(
−2

∂(bc)
(π+)3

+
bc∂π+

(π+)4

)
∂θ2∂θ̄2̇

+
√

2εij

(
3
2

∂π̄S∂θ̄2̇ − ∂π∂θ2S̄

(π+)5/2
− 1

2
π̄∂S∂θ̄2̇ − π∂θ2∂S̄

(π+)5/2

− 7
4

(π̄S∂θ̄2̇ − π∂θ2S̄)∂π+

(π+)7/2
− 1

2
∂S∂θ̄1̇ − ∂θ1∂S̄

(π+)3/2
− 1

4
(S∂θ̄1̇ − ∂θ1S̄)∂π+

(π+)5/2

)

+3iεij

(
(π+π− − 2ππ̄)∂θ2∂θ̄2̇

(π+)2
− π̄∂θ1∂θ̄2̇ + π∂θ2∂θ̄1̇

(π+)2
− ∂θ1∂θ̄1̇

π+

)

−iεij

(
∂2∂θ2∂2∂θ̄2̇

(π+)3
+

∂π+∂(∂θ2∂θ̄2̇)
(π+)4

− 4
(∂π+)2∂θ2∂θ̄2̇

(π+)5

)

+
√

2εij

(
b(π̄Sλ̄2̇ + πλ2S̄)

(π+)3/2
+

b(Sλ̄1̇ + λ1S̄)√
π+

)

+2iεij

(
2∂b

∂θ̄2̇λ2 − ∂θ2λ̄2̇

(π+)2
+ b

∂2θ̄2̇λ2 − ∂2θ2λ̄2̇

(π+)2
− b

∂θ̄2̇λ2 − ∂θ2λ̄2̇

(π+)3
∂π+

)

+2iεij −∂(S∂θ̄2̇)∂θ2S̄ + ∂(∂θ2S̄)S∂θ̄2̇

(π+)3

+4iεij bSS̄(λ2∂θ̄2̇ + ∂θ2λ̄2̇)
(π+)2

]
. (3.17)

We can show that the right-hand side cannot be written in a BRST exact form
as follows. First, suppose that all the terms in (3.17) could be written in the form[

Q̃,

∮
dz

2πi
(parent)

]
(3.18)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/118/3/559/1852490 by guest on 23 April 2024



570 H. Kunitomo and S. Mizoguchi

for some (parent). Then, note that (parent) cannot contain ωα or ω̄α̇, because
(3.17) contains neither ωα and ω̄α̇ nor pα and p̄α̇, which necessarily follows from the
contraction with λαdα + λ̄α̇d̄α̇. In analogy to the previous section, let us focus on
terms that do not contain any of λ, λ̄, ∂θ and ∂θ̄:

[M i−, M j−] =
∮

dz

2πi

(
εij iSS̄

π+

(
1
2

πµπµ

π+
− ∂

(
bc

π+

))
+

3
4
−πi∂πj + πj∂πi

(π+)2

)
+O(∂θ) + O(λ). (3.19)

This contribution could only arise from contraction with cŤ , and thus (parent) must
contain b. Taking into account the π+ dependence of (3.19), the SS̄ terms can only
arise from the OPE between terms of cT (≡ cT0), that are independent of both ∂θ

and ∂θ̄, and εij SS̄
π+ . However, we find

[∮
dz

2πi
cT0,

∮
dw

2πi

(
−iεij bSS̄

π+

)]
=
∮

dz

2πi

(
εij iSS̄

π+

(
1
2

πµπµ

π+
− ∂

(
bc

π+

))

− 3
8

∂2π+

(π+)2
+

15
8

(∂π+)2

(π+)3

− 3
4
i
∂2SS̄ + S∂2S̄

(π+)2

)
, (3.20)

which is inconsistent with (3.19). Therefore, the commutator (3.17) is not BRST-
exact. Thus we have shown that the D = 4 DS superstring has only partial Lorentz
invariance, like the D = 4 GS superstring in the light-cone or semi-light-cone gauge.

3.2. The D = 6 DS superstring

The Lagrangian of the D = 6 DS superstrings is similarly given by

LK = −1
2
√
−ggmnΠµ

mΠµn, (3.21a)

LWZ = εmnΠµ
m(Wµn − Ŵµn) − εmnWµ

mŴµn, (3.21b)

where

Πµ
m = ∂mXµ −

2∑
A=1

i∂m(θIACγµθ̃A
I ) −

2∑
A=1

WAµ
m , (3.22)

WAµ
m = i(ΘIACγµ∂mΘA

I ), (3.23)
ΘA

I = θ̃A
I − θA

I . (3.24)

Here we use the same convention as in Ref. 5), except that, for later convenience,
we put a bar on the lower component in the light-cone decomposition of a SU(2)
Majorana-Weyl (MW) spinor:

θα
I =

(
θa
I

θ̄ȧ
I

)
, (a, ȧ = 1, 2) (3.25)
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where a and ȧ are the spinor indices of the transverse rotation SO(4) ∼ SU(2) ×
SU(2). The SU(2) MW condition is given by

(θa
I )∗ = εIJθb

Jεba ≡ θI
a, (3.26a)

(θ̄ȧ
I )∗ = εIJ θ̄ḃ

Jεḃȧ ≡ θ̄I
ȧ. (3.26b)

After some field redefinitions, we find that the constraint generators are classi-
cally given by

DI
a = dI

a +
√

2π+SI
a, (3.27a)

D̄I
ȧ = d̄I

ȧ +

√
2

π+
πi(SI γ̄i)ȧ +

2
π+

SI
b Sb

J∂θ̄J
ȧ , (3.27b)

T = −1
2

πµπµ

π+
− 1

2
SJ

a ∂Sa
J

π+
−
√

2
π+

∂θJ
a Sa

J

−
√

2
π+

πi(∂θ̄JγiSJ)
π+

+ 2
∂θ̄I

ȧ∂θ̄ȧ
JSJ

a Sa
I

(π+)2
, (3.27c)

where the super-covariant currents dI
α and πµ are defined by

dI
α = pI

α + i∂Xµ(CγµθI)α +
1
2
(θJCγµ∂θJ)(CγµθI)α, (3.28a)

πµ = i∂Xµ + (θICγµ∂θI). (3.28b)

The redefined fields are free and satisfy the relations

Xµ(z)Xν(w) ∼ ηµν log(z − w), (3.29a)

pI
α(z)θβ

J (w) ∼ δI
Jδβ

α

z − w
, (3.29b)

Sa
I (z)Sb

J(w) ∼ −εIJεab

z − w
. (3.29c)

Including quantum corrections, we define ĎI
a,

ˇ̄DI
ȧ and Ť as

ĎI
a = DI

a, (3.30a)

ˇ̄DI
ȧ = D̄I

ȧ − 2
∂2θ̄I

ȧ

π+
+

∂π+∂θ̄I
ȧ

(π+)2
+

8
3

∂θ̄I
ḃ
∂θ̄ḃ

J∂θ̄J
ȧ

(π+)2
, (3.30b)

Ť = T − 1
4

∂2 log π+

π+
− 2

∂2θ̄J
ḃ
∂θ̄ḃ

J

(π+)2
+

8
3

∂θ̄I
ȧ∂θ̄ȧ

J∂θ̄J
ḃ
∂θ̄ḃ

I

(π+)3
, (3.30c)

then they satisfy

ˇ̄DI
ȧ(z) ˇ̄DJ

ḃ
(w) ∼ −

4εIJεȧḃŤ (w)
z − w

, (3.31a)

[all other combinations] ∼ 0. (3.31b)
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The BRST charge can be straightforwardly constructed from this constraint
algebra as

Q̃ =
∮

dz

2πi

(
λα

I ĎI
α + cŤ − 2λ̄I

ȧλ̄
ȧ
Ib
)
, (3.32)

with the unconstrained bosonic ghost pair λα
I and ωI

α and the fermionic ghost pair b
and c, with

c(z)b(w) ∼ 1
z − w

, (3.33a)

λα
I (z)ωJ

β (w) ∼
δα
β δJ

I

z − w
. (3.33b)

The BRST charge given in (3.32) is exactly nilpotent.
Using the light-cone decomposition, it is convenient to use the rewritten forms

π+ = i∂X+ + 2θ̄I
ȧ∂θ̄ȧ

I , (3.34a)
π− = i∂X− + 2θI

a∂θa
I , (3.34b)

πi = i∂Xi + (∂θ̄IγiθI) − (θ̄Iγi∂θI), (3.34c)

da
I = pa

I − i∂X+θa
I − i∂Xi(γ̄iθI)a + ∂θ̄ḃ

J θ̄J
ḃ
θa
I − θ̄ḃ

I∂θ̄J
ḃ
θa
J + θ̄ḃ

I θ̄
J
ḃ
∂θa

J , (3.34d)

d̄ȧ
I = p̄ȧ

I − i∂X−θ̄ȧ
I − i∂Xi(γiθI)ȧ + ∂θb

JθJ
b θ̄ȧ

I − θb
I∂θJ

b θ̄ȧ
J + θb

Iθ
J
b ∂θ̄ȧ

J , (3.34e)

where we have used the notation

γi = iσi (i = 1, 2, 3), γ4 = 12, (3.35a)
γ̄i = −iσi (i = 1, 2, 3), γ̄4 = 12, (3.35b)

which are 2×2 blocks of the gamma matrices defined in Ref. 5).∗) Their standard
index positions are (γi)ȧ

b and (γ̄i)a
ḃ. Using these 2×2 matrices, we also define

(γij)a
b ≡ − i

2
(γ̄iγj − γ̄jγi)a

b, (3.36a)

(γ̄ij)ȧ
ḃ ≡ − i

2
(γiγ̄j − γj γ̄i)ȧ

ḃ, (3.36b)

(γijk)ȧ
b ≡ +

1
6
(γiγ̄jγk − γiγ̄kγj + γj γ̄kγi − γj γ̄iγk + γkγ̄iγj − γkγ̄jγi)ȧ

b.(3.36c)

The Lorentz generators, except for N i−, can be easily obtained as

N ij = −1
4
X i∂Xj +

1
4
Xj∂X i +

i

4
(θIγijpI) +

i

4
(θ̄I γ̄ij p̄I)

− i

4
(λIγijωI) −

i

4
(λ̄I γ̄ijω̄I) +

i

8
(SIγijSI), (3.37a)

N+− = −1
4
X+∂X− +

1
4
X−∂X+ +

1
2
θI
ap

a
I − 1

2
θ̄I
ȧp̄

ȧ
I − 1

2
λI

aω
a
I +

1
2
λ̄I

ȧω̄
ȧ
I + bc,

(3.37b)

N i+ = −1
4
X i∂X+ +

1
4
X+∂X i +

1
2
(θ̄IγipI) −

1
2
(λ̄IγiωI). (3.37c)

∗) These are denoted by γ̃i and ˜̄γi in Ref. 5).
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The remaining generator N i− is given by

N i− = −1
4
X i∂X− +

1
4
X−∂X i +

1
2
(θI γ̄ip̄I) −

1
2
(λI γ̄iω̄I)

+
πibc

π+
+

1
4

iπj(SIγijSI)
π+

− 1
4

∂πi

π+
−

√
2
bc(∂θ̄IγiSI)

(π+)3/2

−
√

2
3

(∂θ̄IγiSJ )SJ
a Sa

I

(π+)3/2
+

1√
2

∂π+(∂θ̄IγiSI)
(π+)5/2

− iπj(∂θ̄I γ̄ij∂θ̄I)
(π+)2

−(∂θ̄Iγi∂θI)
π+

− 8
√

2
3

(∂θ̄IγiSJ)∂θ̄J
ȧ ∂θ̄ȧ

I

(π+)5/2
+
√

2
b(λ̄IγiSI)
(π+)1/2

. (3.37d)

The integrated generators

Mµν =
∮

dz

2πi
Nµν(z) (3.38)

are BRST invariant, satisfying [Q̃, Mµν ] = 0, and form the Lorentz algebra, except
for

[M i−, M j−]

=
∮

dz

2πi

(
− 1

2

(
δikδjl − 1

2
εijkl

)
πk∂πl − πl∂πk

(π+)2

+
i

2
(SIγijSI)

π+

(
1
2

πµπµ

π+
+

1
8

SJ
a ∂Sa

J

π+
+

1
4

∂2π+

(π+)2
− ∂

(
bc

π+

))

− i

4
(SIγij∂2SI)

(π+)2
− i

8
(SIγij∂SJ)SJ

a Sa
I

(π+)2

+
√

2b

(
πi(λ̄IγjSI)

(π+)3/2
− πj(λ̄IγiSI)

(π+)3/2
+

πk(λ̄IγijkSI)
(π+)3/2

+
i(λIγijSI)
(π+)1/2

)

−
√

2bc

(
πi(∂θ̄IγjSI)

(π+)5/2
− πj(∂θ̄IγiSI)

(π+)5/2
+

πk(∂θ̄IγijkSI)
(π+)5/2

+
i(∂θIγijSI)

(π+)3/2

)

− 1√
2

(
3
∂πi(∂θ̄IγjSI)

(π+)5/2
− 3

∂πj(∂θ̄IγiSI)
(π+)5/2

− 4
∂π+πi(∂θ̄γjSI)

(π+)7/2

+4
∂π+πj(∂θ̄γiSI)

(π+)7/2
− ∂π+πk(∂θ̄IγijkSI)

(π+)7/2
− i∂π+(∂θIγijSI)

(π+)5/2

)

−2b
i∂π+(λ̄I γ̄ij∂θ̄I)

(π+)3
+

b

3

(
8
(λ̄IγiSI)(∂θ̄JγjSJ )

(π+)2
− 8

(λ̄IγjSI)(∂θ̄JγiSJ )
(π+)2

−4
(λ̄IγiSJ)(∂θ̄JγjSI)

(π+)2
+ 4

(λ̄IγjSJ )(∂θ̄JγiSI)
(π+)2

− 12
i(∂λ̄I γ̄ij∂θ̄I)

(π+)2
+ 6

i∂π+(λ̄I γ̄ij∂θ̄I)
(π+)3

−4
i(λ̄I γ̄ij∂θ̄J)SJ

a Sa
I

(π+)2

)
−

√
2

3

(
πi(∂θ̄IγjSJ )SJ

a Sa
I

(π+)5/2
− πj(∂θ̄IγiSJ)SJ

a Sa
I

(π+)5/2
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+
πk(∂θ̄IγijkSJ )SJ

a Sa
I

(π+)5/2
+

i(∂θIγijSJ)SJ
a Sa

I

(π+)3/2

)

− i(∂θ̄I γ̄ij∂θ̄I)
(π+)2

(
π− +

SJ
b ∂Sb

J

π+
+

1
2

∂2 log π+

π+
− 4

b∂c

π+

)

+2
iπiπk(∂θ̄I γ̄kj∂θ̄I)

(π+)3
+ 2

iπkπj(∂θ̄I γ̄ik∂θ̄I)
(π+)3

− 2
πi(∂θ̄Iγj∂θI)

(π+)2
+ 2

πj(∂θ̄Iγi∂θI)
(π+)2

−2
πk(∂θ̄Iγijk∂θI)

(π+)2
− i(∂θIγij∂θI)

π+
− (∂θ̄IγiSI)∂(∂θ̄JγjSJ )

(π+)3
+

(∂θ̄IγjSI)∂(∂θ̄JγiSJ )
(π+)3

−(∂θ̄IγiSJ)∂(∂θ̄JγjSI)
(π+)3

+
(∂θ̄IγjSJ )∂(∂θ̄JγiSI)

(π+)3

+2
i(∂θ̄I γ̄ij∂2θ̄J )SJ

a Sa
I

(π+)3
− 32b

3
i(λ̄I γ̄ij∂θ̄J)∂θ̄J

ȧ ∂θ̄ȧ
I

(π+)3
+

i

3
(SIγijSI)SJ

a Sa
K∂θ̄K

ȧ ∂θ̄ȧ
J

(π+)3

−8
√

2
3

(
2
πi(∂θ̄IγjSJ)∂θ̄J

ȧ ∂θ̄ȧ
I

(π+)7/2
− 2

πj(∂θ̄IγiSJ)∂θ̄J
ȧ ∂θ̄ȧ

I

(π+)7/2
+

πk(∂θ̄IγijkSJ )∂θ̄J
ȧ ∂θ̄ȧ

I

(π+)7/2

)

+2
√

2

(
(∂θ̄IγiSJ)(∂θ̄Iγ

j∂θJ)
(π+)5/2

− (∂θ̄IγjSJ )(∂θ̄Iγ
i∂θJ)

(π+)5/2
− 2

i(∂θIγijSJ)∂θ̄J
ȧ ∂θ̄ȧ

I

(π+)5/2

)

+
i(∂θ̄I γ̄ij∂θ̄I)∂θ̄J

ȧ ∂2θ̄ȧ
J

(π+)4
− 2

i(∂θ̄I γ̄ij∂2θ̄J)∂θ̄J
ȧ ∂θ̄ȧ

I

(π+)4
+

8
3

i(∂θ̄I γ̄ij∂θ̄I)∂θ̄J
ȧ ∂θ̄ȧ

KSK
a Sa

J

(π+)4

)
.

(3.39)

In particular, we have

[M i−, M j−]

=
∮

dz

2πi

(
− 1

2

(
δikδjl − 1

2
εijkl

)
πk∂πl − πl∂πk

(π+)2

+
i

2
(SIγijSI)

π+

(
1
2

πµπµ

π+
+

1
8

SJ
a ∂Sa

J

π+
+

1
4

∂2π+

(π+)2
− ∂

(
bc

π+

))

− i

4
(SIγij∂2SI)

(π+)2
− i

8
(SIγij∂SJ)SJ

a Sa
I

(π+)2

)
+ O(∂θ) + O(λ). (3.40)

On the other hand, we find{∮
dz

2πi
cT0,

∮
dz

2πi

(
− i

2
b(SIγijSI)

π+

)}

=
∮

dz

2πi

(
i

2
(SIγijSI)

π+

(
1
2

πµπµ

π+
+

1
2

SJ
a ∂Sa

J

π+
− 1

4
∂2π+

(π+)2
+

7
4

(∂π+)2

(π+)3
− ∂

(
bc

π+

))

−3
4

i(SIγij∂2SI)
(π+)2

)
, (3.41)
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where, as above, T0 is the ∂θ-independent part of T . Then, repeating the same
argument as in the previous section, we find that the commutator is not BRST
exact.

§4. Conclusions and discussion

In this paper, we have shown that the D = 4 and 6 double-spinor (DS) super-
strings do not possess the full Lorentz symmetry, as in the light-cone and semi-light-
cone gauge quantizations of lower-dimensional Green-Schwarz superstrings.

We have emphasized that the modification of the energy-momentum tensor is
a common procedure employed to preserve quantum conformal invariance in the
semi-light-cone gauge quantization, even in the critical case. One can rewrite the
logarithmic term of the energy-momentum tensor (2.15) or, more generally, (2.16)
in the usual linear-dilaton form by bosonization. Owing to the relation

∂X+(z)X−(w) ∼ 2
z − w

, (4.1)

we can identify them as a βγ-system. Therefore, we define

∂X+(z) = γ(z) = eφ−χ(x), (4.2a)
X−(z) = 2β(z) = 2∂χe−φ−χ(x), (4.2b)

where γ(z)β(w) ∼ 1
z−w , φ(z)φ(w) ∼ − log(z − w) and χ(z)χ(w) ∼ + log(z − w).

Plugging these into (2.16), we obtain

TX+X−(z) = −1
2
(∂φ)2 +

(
1
2

+ ξ

)
∂2φ +

1
2
(∂χ)2 +

(
1
2
− ξ

)
∂2χ, (4.3)

where ξ = 7
8 (D = 4), 3

4 (D = 6) and 1
2 (D = 10). Therefore, the modification of

the energy-momentum tensor can be regarded as a change of the background from
flat to linear-dilaton, although the dilaton is only linear with respect to the special
bosonized coordinates. This way of viewing the modification is consistent with that
in recent works on the relation between the lower-dimensional PS and non-critical
superstrings.12) It is also interesting that the χ field becomes a normal scalar in the
critical (D = 10) case. However, the meaning of this observation is yet unclear.

We showed in Ref. 5) that the physical spectra of the D = 4 and D = 6 DS
superstrings coincide with those of the pure-spinor (PS) formalisms in the same
numbers of dimensions. Let us now compare the Lorentz generators given in Refs. 6)
and 7) and ours obtained in the DS formalism. In four dimensions, the necessary
similarity transformations relating the BRST charges of the two D = 4 theories are5)

X = −1
4

∮
dz

2πi

c ˇ̄D2̇

λ̃2
, (4.4)

Y = −1
2

∮
dz

2πi
SS̄ log π+, (4.5)

Z =
∮

dz

2πi

(
i√
2
d̄1̇S̄ +

∂θ2∂θ̄2̇

π+

)
. (4.6)
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Then, the BRST charge Q̃ is transformed to

(eZeY eX)Q̃(eZeY eX)−1 = Q + δb + δ, (4.7)

Q =
∮

dz

2πi
λαdα, (4.8)

δb = −4
∮

dz

2πi
λ2λ̄2̇b, (4.9)

δ =
√

2i

∮
dz

2πi
λ̄1̇S, (4.10)

where δb and δ anti-commute with Q and have trivial cohomologies of the BRST
quartets (b, c; λ̄2̇, ω̄2̇) and (S, S̄; λ̄1̇, ω̄1̇) (where ω̄α̇ is the field conjugate to λ̄α̇). One
can alternatively decouple λα instead of λ̄α̇. Taking the quotients with respect to
the Hilbert space of these BRST trivial fields leaves precisely the D = 4 PS Hilbert
space with the BRST charge Q proposed in Refs. 6) and 7).

The D = 4 PS superstring has an anomaly-free set of level-1 Lorentz currents. If
they are similarity-transformed back to the DS theory by using the above X, Y and
Z, they do not coincide with the Lorentz generators we considered in the previous
section. This is obvious, because the Lorentz generators in the PS formalism do not
act on the BRST-quartet fields decoupled through the similarity transformations.
This can also be verified by an explicit calculation. Thus, we conclude that, although
the generators of the PS formalism realize a representation of the D = 4 Lorentz
group on the PS fields, they are not directly related to the symmetries of the DS
Lagrangian. A similar statement holds in the D = 6 case.
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