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Chern-Simons theory on a U(1) bundle over a Riemann surface X, of genus g is dimen-
sionally reduced to BF theory with a mass term, which is equivalent to the two-dimensional
Yang-Mills on Y;. We show that the former is inversely obtained from the latter by the
extended matrix T-duality developed in hep-th/0703021. For the case of g = 0 (i.e. S%),
the U(1) bundle represents the lens space S*/Z,. We find that in this case both the Chern-
Simons theory and the BF theory with the mass term are realized in a matrix model. We also
construct Wilson loops in the matrix model that correspond to those in the Chern-Simons
theory on S3.

§1. Introduction

Some matrix models have been proposed as nonperturbative formulation of su-
perstring or M-theory.Y®) Since the information of topology is relevant for com-
pactification in string theory, it should be included in these matrix models. The
topological field theories have been developed to efficiently describe the topological
aspects of field theories. It is, therefore, worthwhile to investigate realization of the
topological field theories in matrix models.

The large N reduction® is the first example for realization of field theories in
matrix models. It states that a large N planar gauge theory is equivalent to the
matrix model that is its dimensional reduction to zero dimensions unless the U (1)”
symmetry is broken, where D denotes the dimensionality of the original gauge theory.
However, the U(1)” symmetry is in general spontaneously broken in the case of
D > 2. There are two improved versions of the large N reduced model that preserve
the U(1)P symmetry. One is the quenched reduced model.?)®) This shares the
same idea with the T-duality for D-brane effective theories,”) which we call the
matrix T-duality in this paper. The other is the twisted reduced model,'9) which
was later rediscovered in the context of the noncommutative field theories. The
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above developments are all concerning gauge theories on flat space-time.

In this paper, as typical examples of the topological field theories, we consider
three-dimensional Chern-Simons (CS) theory on a U(1) bundle over a Riemann sur-
face Xy of genus g and two-dimensional BF theory with a mass term on Y, that is
obtained by a dimensional reduction of the CS theory on the total space to the base
space.*) The BF theory with the mass term is equivalent to the two-dimensional
Yang-Mills on X;. Hence, for our purpose, we need to extend the prescription of the
large N reduction or the matrix T-duality to that on curved space.* In 23) and
24), the matrix T-duality was extended to the relationship between a Yang-Mills-type
gauge theory on the total space of a U(1) bundle and the Yang-Mills-Higgs theory
on its base space that is obtained by dimensionally reducing the original theory with
respect to the fiber direction. Also, many works have been done on realization of
the gauge theories on fuzzy sphere'®)16) by matrix models!”) and the monopoles on
fuzzy sphere.'®22) Tt was explicitly shown in 23) that if an appropriate continuum
limit is taken, the theory expanded around a multi-monopole vacuum of the Yang-
Mills-Higgs theory on S? is equivalent to the theory expanded around a vacuum
with concentric fuzzy spheres of the matrix model that is obtained by dimensionally
reducing the original theory on S2.

We show that the CS theory on the U(1) bundle is inversely obtained from the
BF theory with the mass term on the base space by the extended matrix T-duality
developed in 24). For the case of g = 0 (i.e. S?), the U(1) bundle represents the lens
space S3/Z,. We show that in this case both the CS theory and the BF theory with
the mass term are realized in the matrix model that is obtained by dimensionally
reducing the both theories to zero dimensions. We also construct Wilson loops in the
matrix model that correspond to those in the CS theory on S2. This is an extension
of the work 25) to curved space.

Our study of the relationship between the CS theory and the BF theory with the
mass term is motivated by the following observations on the relationship among the
matrix models, topological string and lower dimensional topological field theory. The
free energy of the hermitian (holomorphic) matrix model in the large N limit can be
regarded as a topological B-model amplitude on a suitable conical Calabi-Yau singu-
larity.26)2%) The topological string amplitude obtained from the matrix model can
also be applied to derivation of effective superpotential of four-dimensional N’ = 1
supersymmetric gauge theory. It is also argued that the A/ = 1 (quiver) matrix
models “deconstruct” the CS and BF-type theory.2?) If we now demand a peri-
odicity in the space of the matrix eigenvalues, the Vandermonde measure becomes
the unitary one by taking account of mirror images of the eigenvalues (D-branes) in
the covering space. This unitarization is reminiscent of the (matrix) T-duality we
have mentioned. Indeed, it is shown that the matrix model with unitary measure is
equivalent to the partition function of the CS theory, and then its free energy rep-
resents a topological A-model amplitude on a mirror Calabi-Yau geometry.30) (see
also for reviews 31) and 32).) Thus, these topological string amplitudes emerging

*) This dimensional reduction was suggested in 11).
**) An interesting approach to description of curved spacetime by matrices was proposed in 12).
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from the matrix models are related with each other by T-duality and mirror sym-
metry in string theory. On the other hand, two-dimensional Yang-Mills theory and
its generalization, which is obtained by a potential deformation of the BF theory
(generalized two-dimensional Yang-Mills®®)), can be interpreted as a matrix model
restricted on discrete eigenvalues.¥):3%) In particular, the two-dimensional Yang-
Mills theory on S? possesses the same kind of the Vandermonde determinant, which
is a square of the dimension of a unitary group representation, as the hermitian one
matrix model. Using the similar idea of the T-duality, the Vandermonde measure
(the dimension of the unitary representation) is replaced with an unitary one, which
is a g-analog of the dimension of the unitary representation. This model is called
g-deformed two-dimensional Yang-Mills theory.?0) (See also 37) and 38).) The ¢-
deformed two-dimensional Yang-Mills theory includes non-perturbative aspects of
the topological A model string. Actually, we can obtain the partition function of the
CS theory on S? by extracting a “ground state” configuration from the g-deformed
two-dimensional Yang-Mills theory. These facts on the relationship between various
matrix models and lower dimensional solvable gauge theories strongly suggests that
there exists T-dual like relationship between two-dimensional Yang-Mills theory on
52 and the CS theory on S3.

This paper is organized as follows. In §2, we show the relationship between
the CS theory on the U(1) bundle over Xy and the BF theory with the mass term
on Y, In §3, we show the relationship between BF theory on 52 and the matrix
model. We also find how CS theory on S3/Z, is realized in the matrix model. In
84, we construct the Wilson loops in the matrix model that correspond to those in
CS theory on S3. Section 5 is devoted to summary and discussion. In Appendix,
some formulae concerning the spherical harmonics on S3, S? and fuzzy sphere are
gathered.

§2. CS theory vs BF theory with the mass term

We consider a U(1) bundle M over a closed Riemann surface X, of genus
g. The base space X; has a covering S, and the total space M has a covering
{m= YU € 8}. »~Y(U) is diffeomorphic to U x S! by a local trivialization. Thus
it is parameterized by zM = (z#,y) (M =1,2,3, p = 1,2), where 2* parameterize
the local patch U and y parameterizes the S' with 0 < y < 27 R. If there is overlap
between the local patches U and U’, the relation between y and ' is given by the
transition function e”#% as y = y — v(xz). We can assume that the total space is
endowed with a metric which can be expressed locally on U as

ds? = GyndzMdzN = g, (x)da"da” + (dy + b, (z)dz)?, (2-1)

where g,,,, is the metric of the base space. b/R is the local connection that is viewed as
the monopole on the base space and transformed as %b’ = }%(b—l— dv). The curvature
2-form db/R belongs to H?(X,,Z). From this fact we can assume that

1 p
mwa = _v\/geuuv (2'2)
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where b, = 9,b, — 0,b,, p is an integer that represents the monopole degree of the
U(1) bundle and V is the volume of the base space. Note that (2-2) is consistent
with the equality

1

— db = —p. 2-3
R Iy, P (2:3)

In the following, all the expressions only make sense locally on U or 7~ (U) unless
any remark is made.

We next consider a gauge theory on the above total space and make a dimensional
reduction of the fiber direction to obtain a gauge theory on the base space. The gauge
field of the fiber direction, A,, is identified with the Higgs field on the base space.
The horizontal-vertical decomposition given by the connection 1-form w = }%(dy +b)
tells us how to decompose the gauge fields on the total space into the gauge fields

a, and the Higgs field ¢ on the base space:24)*)
Ay =a, +b,d,
Ay = ¢)7 (24)

where both sides of these equations are assumed to be independent of y.
We start with the U(M) CS theory on the total space:

47 M 3

By substituting (2-4) into (2-5), we make the dimensional reduction of the CS theory
as follows:

kR
Sos = 5 d*x ¢ Tr(A, 000 + $O AL + $[Ay, A))
Eg
k 1
= kR d*z e Tr <¢fuu =+ _buV¢2>
2 Js, 2
k 2
= ;R d2$TI' <€UV¢qu - T‘-Rp\/§¢2> ) (26)
2 Js, 14

where f,, = 0ua, — Oyay + [y, a,] and we have used (2-2) in the last equality. The
last line in (2-6) takes the form of the BF theory with the mass term: the first term
is the action of the BF theory on X, where ¢ corresponds to B, and the second term
is a mass term for ¢. Note that k in (2-5) must be an integer while such restriction is
no longer imposed on k in (2:6). If we integrate ¢ out, we obtain the two-dimensional
Yang-Mills on Yy,

- / /G T (fyu 7). (27)
Zg

Sym =
4952/M

where the coupling constant is given by g%, M= %.

*) Equation (4.8) in 24) expressed in the local Lorentz frame is equivalent to (2-4).
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The equations of motion for the BF theory with the mass term are

fuu + buu¢ =0,
D¢ = 0. (2:8)

These equations are solved in the gauge in which ¢ is diagonal as follows:

a, = —b,9,
~ 7 .
d): _Edla’g( s Mg—15 " yNg—1,MNgy " yNgyNgt1,° " 7ns+17"')7 (29)

Ns_1 N Nst1

where s label the (diagonal) blocks, ns must be constant integers due to Dirac’s
quantization condition for the monopole charge and ), Ny = M.

In the following, we show that we obtain the U(/N) CS theory on the total space
from the U(N X oo) BF theory with the mass term on the base space through the
following procedure: we choose a certain background of the U (N xoo) BF theory with
the mass term, expand the theory around the background and impose a periodicity
condition. The background is given by (2-9) with s running from —oo to oo, ng = ps
and Ng = N. We decompose the fields into the backgrounds and the fluctuations as

ay — Ay + ay,
¢ — -+ 0. (2:10)

We label the (off-diagonal) blocks by (s,t) and impose the periodicity (orbifolding)
condition on the fluctuations:

a£s+1,t+1) _ aff’t) = q(5—1)

PEHLHD — () = p(s—t) (2-11)
The fluctuations are gauge-transformed from U to U’ as2d

LD _ k=000

¢/(S_t) _ 6_%(S_t)v¢(5_t)- (212)

We make the Fourier transformation for the fluctuations on each patch to construct
the gauge fields on the total space from the fields on the base space:

Aule,y) =Y (@ (@) + bu(x)o!™ (x))e ™ 7,

Aya,y) = 3 o) (@)ei v, (213)

We see from (2-12) that the left-hand sides in the above equations indeed transform
from a patch to another patch as the gauge fields on the total space. We substitute
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(2-10) into the U(N x oco) BF theory with the mass term and use (2:13):
kR

1
Spr=— [ d*ze"Tr <¢fuu + —buu¢2>
2 Jy, 2

- %R / ot [Z ((ap + 8u6) 90,6 + 6109, (a, + b,0) )
29

s,t
t—s s s s u u,s
+ R (a, + bﬂ¢)( D ay, + b)) )> +2 Z ¢! ’t)<au + bﬂ¢)(t’ J(ay + byg) ™)
s,tau
= Z ﬁ/ d3z MNPy <AM8NAP -+ gA]uANAp) , (2-14)
B 47 M 3

where we have ignored a constant term. By dividing an overall factor )  in the
last line to extract a single period, we obtain the CS theory on the total space. In
the above procedure, we obtain the theory around the trivial vacuum of CS theory.
When g # 0 or p # 1, the CS theory on the total space has nontrivial vacua. We can
obtain the theories around the nontrivial vacua of CS theory from BF theory on the
base space by extending the above procedure in a straightforward way. (See 24).)

§3. BF theory with the mass term vs matrix model

For the case of g = 0, the base space is S? and the total space is the lens space
S3/Z,. In this section, we show that the BF theory with the mass term on S? is
realized in the matrix model that is its dimensional reduction to zero dimensions.
Combining this result with the result in the previous section, we find that the CS
theory on S3/Z, is realized in the matrix model.

One needs two patches to describe the lens space S3/Z,: the patch I is specified
by 0 < 8 < 7 and the patch II is specified by 0 < 8 < w. We adopt the following
metric for S3/Z,:

1 1 2
ds® = e <d92 + sin? fdp? + (gd(@z) + ) + (cos O F 1)d¢> > : (3-1)

where 0 < 0 <7, 0 < ¢ <27 and 0 < ¢ < 47. The upper sign is taken in the patch
I while the lower sign in the patch II. The radius of S3/Z, is 2/u and that of S? is
1/p. R is given by p% and by = 0, b, = %(cos@ F 1). Note that for p = 1, (3-1)
takes the well-known form of the metric of S3:

1
ds® = ) (d6* + sin? Odp? + (dvp + cos Odp)?) . (3-2)

It is convenient to rewrite the BF theory with the mass term on S? by using the
three-dimensional flat-space notation. We define vector fields in terms of the gauge
fields and the Higgs field on S2:

o 1, . 1 .
y=—1i ;gbeT + ag€, — g %0 ) (3-3)
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where €, = (sinf cos p,sinfsinp,cosf) and €y = %eg, €p = Sirlle%—‘f;. We also

introduce the angular momentum operator in three-dimensional flat space,
LO = —ic,0p + z’iagaqs. (3-4)
sin 6

The BF theory with the mass term on S? takes the form

2k 1
Spr =— [ d0doTr <—— sin 0¢? + ¢(0pay, — dyag + [ag, ad)) ) (3:5)
PH 2p
It is rewritten in terms of y; and LZ(O) as
1 df2y 1 (0)
= [ 2Ty (St oL il :
Spr 2] {y <2y + g€l Yk + 66 k(Yo Ykl (3:6)

where g%, = g&. By making a replacement y; — §; + y;, where g; denote the
background for y; corresponding to (2-9), we expand the theory around (2-9):

]. dQ S Z s S /L S
Spr = —2 Zt { <— (1) + §5ijkL§‘qt )y,(:’ ) + Eﬁz‘jk[ywyk](t’ )> } )
s,t

(3-7)

where ¢ = (ny — ns)/2 and we have ignored a constant term. L@ is the angular
momentum operator in the presence of a monopole with the magnetic charge ¢ at
the origin, which takes the form3?)

=

@ [0 s F L

sin 6 4, (38)

where the upper sign is taken in the patch I and the lower sign in the patch II.
We obtain a matrix model by dropping the derivatives in (3-6):

S = —— Tr{X ( X, + Gemk[xj,xko} (3:9)

Imm

where X; are M x M hermitian matrices. Note that this matrix model is nothing
but the Dijkgraaf-Vafa matrix model which reproduces the effective superpotential
of N = 1* theory.28)40):41) We will find a relationship between the BF theory with
the mass term on S? and the above matrix model. There the Higgs branch of N = 1*
theory, which is classified by an irreducible decomposition of SU(2) representation,
plays an important role in the equivalence.

A general solution to the equations of motion of the matrix model is given by

X, = Lj, (3-10)

where L; are the representation matrices of the SU(2) generators which are in general
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reducible, and are decomposed into irreducible representations:

L (311)

' L[js+1]

where L,Ej] are the spin j representation matrices of SU(2) and M = ) Ns(2js+1).
By making a replacement X; — X; + X;, we expand the theory around (3-11):

= - Ztr {X(St (— ( »5) + %eijij o X,gt’s) + %eijk[Xj; Xk](t’s)> } ,

gmm s,t
(3-12)
where L;o is defined by

)

Lio X"V = LPIx {0 — x (=0 bl (3-13)

and we have ignored a constant term.

In what follows, we show that the theory around (2-9) of the BF theory with the
mass term is equivalent to the theory around (3-11) with 2js + 1 = Ny + ns of the
matrix model in the Ny — oo limit. For this purpose, we make a harmonic expansion
of (3:7) and (3-12). In (3-7), we expand the fields in terms of the monopole vector
spherical harmonics Y7, | 4 defined in (A-10) and (A-18) as

=33 Z T (3-14)

p=0£1 Q>|qy| mM=-Q

where Q = J + % and Q = J — @. Substituting (3-14) into (3-7) yields

SBF:* ( ZP J+13/Jmpyffsr§2;
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+- Z ngTﬂletpl Jamaqtup2 Jsmsquspsyglnzlpl y52¥2p2y322)3p3> (315)
s,t,u
where (A-20), (A-22) and (A-23) were used. In (3-12), we expand the matrices in

terms of fuzzy vector spherical harmonics Yp m(Gejo)i &

]s+]t

Z Z Z XJmP ® Yme(_] Je)i’ (316)

p= OilQZL% —Jie| M= Q@

Since js + jr = No + % — 1, Ny plays a role of the ultraviolet cutoff. Note also
that js — jir = (ns — n¢)/2 = qs. Substituting (3-16) into (3-12) yields

Smm = _—t ( Zp J + 1 JL:/))TXF]SW:/)J

gmm

t § : 5 (st) (tu) (u,s)
+§ ngml(jsjt)pl Jama(jtju)p2 J3m3(jujs)pBlemlplXnggszJ3m3p3 ’
s,tau

(3-17)

where (A-20), (A-22) and (A-23) were again used. In the Ny — oo limit, the ul-
traviolet cutoff goes to infinity and & TimiGisje)pr Jame(Geju)pz Jsms(jujs)ps T€AUCES t0O
Efimigsipr Jomaqrupe Jsmaqusps @S shown in Appendix. Hence, in the limit in which
No — o0 and gpm — oo such that g2,,,/No = g%, (3:17) agrees with (3:15) under

the identification X thi = ygm) We have proven our statement.

Combining the above result with the result in the previous section, we see that
the U(N) CS theory around the trivial vacuum on S3/Z, is realized in the matrix
model as follow. In (3-11), we make s run from —oo to co and put Ny = N and

(3+17t+1) _ (S,t) _ (Sit)
Jmp - XJmp - XJmp ’

We take the limit in which Ny — oo and g, — oo such that g2, /No = oz and
divide the overall factor )  out. Thus we obtain the CS theory around the trivial
vacuum on S3/Z,. Indeed, if we expand the gauge fields A; expressed in the local
Lorentz frame in terms of the vector spherical harmonics on S® defined in (A-9) and
(A-18) as

27s+1 = Np+ps. We impose the periodicity condition: X

= Z AJmfnYmeﬁm'v (3'18)

Jmm

we obtain a harmonic expansion of the CS theory on S3/Z, as follows:

8wk df2s ik 1 1
= — UETr | AV, A + - AAA
Scs 3 /27‘(2/]96 T 5 VA, + 3 AL
87Tl<:

1
+§‘€J1m17ﬁ1p1 Jamarmmapa J3m3fn3p3AJ1m1ﬁ11p1 AszQTthQAJ3m3ﬁL3P3 )
(3'19)
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where 7, M1, Mg, mg are restricted to £Z. If we compare (3:19) with (3-17), we
see that the relation between the modes is given by

Agmiing = inX5n!?. (3-20)

It is now easy to obtain the CS theory around a nontrivial vacuum on S/ Z,, from
the matrix model.

§4. Description of Wilson loop in CS on S3 by matrices

Let 2™ (o) parameterize a closed loop on S3, where M = 6, ¢,%, 0 < ¢ < 1 and
2M(0) = 2M(1) = 2. Then we consider a Wilson loop on S3, which takes the form

W = Tr [P exp < /0 1 AM(z(a))d'ZZf") doﬂ

—Tr [Pexp < /0 1 Ai(z(a))eZM(z(a))dZM(U)dc;')] : (41)

do

where e, (i = 1,2,3) is the right-invariant 1-form on S® defined in appendix. We
divide the loop into n small bits denoted by Azéw (a = 1,---,n) and take the
n — oo limit. By definition the bits satisfy >°I'_; AzM = 0. The Wilson loop (4-1)
is rewritten as

n a—1 a—1
W ="Tr H (1 + A, (2 + Z Azb)eé\‘j[a (z + Z AzC)Azc]LMa>
a=1 b=1 c=1
= [( eMl( )Az{wl) <1+A1'2(z—|—A21) iz (z—i—Azl)Az2 )

— Az — Azy)ey; in—1 (z — Az, — Azn)AzﬁLfl)

/_\/—\

1+ A;, (2 — Azy)elny (2 — Azn)Azfl”"ﬂ . (42)

We expand the gauge fields in terms of the scalar spherical harmonics on S3
defined in (A-9):*)

Ai(2) = D Yo (2) Agmmi- (4-3)
Jmm
Then the gauge fields at z + Az; are evaluated as

Ai(z =+ Azl) = Z YJmm(Z =+ AZ]_)AJmmZ‘

Jmm

M
Az 19
= E e~ OMY 1w (2) A

Jmm

*) In this section, we expand the vector fields in terms of the scalar harmonics to make the
discussion simpler.
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. My ¢
- Z emAn e, LY i (2) A
Jmm
Z YJmlm Jm |6WAZ1 EM (=) 21"]Tn>14JTrlxmz (44)
Jmmim
Here L; are the Killing vectors that obey the SU(2) algebra and equal —ﬁeM o,

M

. i YA Ji
where e are the inverse of ef,. (Jm1|e" 2 el () |Jm> is the matrix element of

zAzl eMl (2)J,

the spin J representation for an SU(2) element e 1, The gauge fields at

z + Az + Azg are evaluated as

. My o ]
Ailz+ Az + Azg) = Y a2 i Er ALy, (o A2y) A g
Jmm
: My ig )
= 3" Vimgmlz + Az){Imgle 42 0 EF A0 1y
Jmmaom

. M4 i
= > Yyma(e) (Imy[e# 4 G )

Jmmimaom
% <Jm2|ei'quéwze;\?fz(Z+A21)Ji2 |Jm>AJmﬁn (45)

Similarly we can evaluate A4;, (z + 26—+ Az,) and express the Wilson loop (4-2) in
terms of the spherical harmonics at z. Due to homogenelty of S3, we can consider a
set of Wilson loops starting and ending at z such that e (2 + Z LAz AzMe s
independent of z. Then we average the Wilson loops over S3:

G /d93 , (w6)

where the integration acts only on products of YJ,.m(2). Note that (W) = (W),
Correspondingly, we can consider the Wilson loop in the matrix model:

1 ! : dzM (o)
Tr | P ] Xie] d
TN r [ €xp <W/O en(2(0)) do U)}
n a—1
1 .
= [T |1+ inXiey > Az)Az) 4-
TNO ( +Z/’L aeMa(Z+ b:1 Zb) ZCL )] 9y ( 7)

a=1

W:

Tr

where T' = ) 1. Here we decompose X; as X; — L; + X;, where L; are given in
(3-11) with s running from —oo to 0o, 255+ 1 = Ny + s, Ny = N, Ny — oo, and the
periodicity condition X,L.(S’t) = Xi(s_t) imposed. We rewrite (4-7) as

n a—1
1 1 a—1
=—"Tr 1+iuX - Az) - Az ipL-e(z4+307 ] Aze)-Azq 4.
W TNy L]_]l ( +ipX ez + b§_1 2p) ) , (4:8)

where L - e - Az = Liet,AzM and so on. We further evaluate (4-8) as follows:

W= N Tr [(1 +ipX - e(z) - Azt DA 4L inX - e(z + Azy) - Azy)e Hlelz)An
0
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eiuL-e(z)-Amei,uL-e(erAzl)-Azz(1 +ipX -e(z+ Az + Azy) - Azg)

« efi,uL-e(erAm )-Azg efi,uL-e(z)-Azl

eiube(z)‘Azl . eiuLf(z—Azn_l—Azn)AAzn_l(1 +ipX - 6(2’ _ Azn) . Azn)

> e—iuL-e(z—Azn,1—Azn)~Azn,1 . e—i,uL-e(z)~Az1

ei,uL-e(z)-Azl . ei,uL-e(zfAzn)-Azn ) (49)

Note that the factor e#l-e(z):Az1 ... ginlee(z=Azn)-Azn appearing in the last line of (4-9)
equals the identity if it is invariant under any deformation of the loop. In order to
see this invariance, we consider two paths which start at z and end at z + Az + Az’

(1) z = 24 Az - z+ Az + A2 and (2) z - 24+ A2 — z+ Az + A2, We
associate eiube(z)~Az€iuL~e(z+Az)-Az’ and eiube(z)~Az/ei,uL-e(z+Az’)-Az with (1) and (2)’

respectively. The difference between these quantities is evaluated up to O((Az2)3) as

ei,uL-e(z)Azei,uL-e(z—i—Az)Az’ N eiube(z)AAz’eiuDe(z-l—Az’)Az

= ip(Onreh(2) — Onrely (2) — nfijyedy (D)ehp () LidM A (410)

This vanishes thanks to the Maurer-Cartan equation. This fact indicates that the
factor e—inl-e(z) Az ... gmiple(z=Azn) Azn gggciated with a closed path equals the
identity. Eventually, the Wilson loop (4-7) takes the form

H ezuL e(z)-Az | | eiube(z—i—zg;lz Axp)-Azg—1
TNO ot

a—1
’ (1 FinX e(z Y Az)- Aza> i el Ana) Azt ginbel) A |

c=1
(4-11)
We expand the (s,t) block of X; in terms of the fuzzy scalar spherical harmonics
as
Xi(St ZY JsJt) Jiyfz) (412)

We evaluate an expression appearing in the Wilson loop:

eiuLe(z)-Azl Xi(S,t)e—iuLe(z)-Azl _ Z eiuL-e(z)~A21 }}}jsjt)e—iuL~e(z) Az X(S t)
m

Jmi
Jm
= 37 VI A @I ) XG0 (4413)
Jmmy

We evaluate another expression:

eiuLe(z)-Azl eiuLf(z-l—Azl)~AzzXi(svt)e—ipbe(z—i-Azl)AZQe—iu[we(z)-Azl



Chern-Simons Theory, BF Theory and Matrixz Model 875

_ Z ez’,uLe(z)-Azl Y(jsjt)e—iuL-e(z)~Azl <Jm2|6i,qu2~e(z+Az1)~J’Jm>X(37t)

Jma Jma
Jmmea
= Y VI men A @ gmy)
Jmmimaom
X (Jmyg|eindszeletAn) | gy x (51, (4-14)

In this way, we can express the Wilson loop (4-11) in terms of the fuzzy spherical
harmonics.

Using the formulae in appendix, we can easily show that for arbitrary K in the
Ny — oo limit

1 . ~ as2s
T—]V(]Tr(YJ1m1(js1jt1) e YJKmK(jsKjtK)) - / —YJlmlml (l‘) e YJKmKﬁ”LK (x)v

272
(415)

where to, = Sat1, tx = s1 and js, — ji, = (Sa — ta)/2 = Mq. Then, by comparing
(4-4) with (4-13) and (4-5) with (4-14) and using (3:20), we conclude that

W—-Ww (4-16)
in the Ny — oo limit.
§5. Summary and discussion

In this paper, we first found the relationship between the CS theory on the
total space of the U(1) bundle over ¥, and the BF theory with the mass term on
Yy. We showed that the former with the U(N) gauge symmetry is obtained by
expanding the latter with U(N X co) gauge symmetry around the background (2-9)
with s running from —oo to 0o, ny = ps and Ny = N and the periodicity condition
(2-11) imposed. We next restricted ourselves to the case of ¢ = 0 and found the
relationship between the BF theory with the mass term and the matrix model (3-9).
We showed that the theory around each background of the former is equivalent to
the theory around a certain background of the latter. By combining the above two
findings, we found that the CS theory on S3/ Z,, is equivalent to the theory around
the background (3-11) of the matrix model in the Ny — oo limit, where s runs from
—o0 to o0, 255 +1 = Ng+ ps, Ns = N and the periodicity condition is imposed. We
also constructed the Wilson loops in the matrix model that correspond to those in
the CS theory on S°.

It is important to see whether BF theory with mass term on ¥, with g # 0 is
realized in a matrix model and the CS theory on the U(1) bundle over X, with g # 0
is further realized in the matrix model.

The equivalences we found are classical ones. It is not obvious that the equiv-
alences hold at the quantum level.*) We expect from the following discussion that

*) For the studies of quantum corrections in the related models, see 17),42)-44) and references
therein.
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this is the case. The phenomenon which induces the mass term for the Higgs field
via the compactification on the non-trivial U(1) fiber bundle is equivalent to the
moduli stabilization by flux (see e.g. 45) and 46) and references therein) and the
(2-background in 47). These background fluxes and compactifications lift up the flat
directions of the Higgs fields thanks to the induced mass term. If this moduli is
also stabilized at the quantum level and the localization mechanism works, we can
evaluate exactly the partition function by counting the isolated (BPS) vacua to show
that the relationships among the CS theory, the BF theory and the matrix model
hold at the quantum level. In the context of the large N reduced model, the moduli
stabilization means that we need no quenching prescription. Indeed, the works 48)
and 49) suggest that the moduli stabilization and the localization mechanism work
in the relationship between the BF theory and the matrix model at the quantum
level. We would like to discuss this point in the near future.

In (3-7), we ignored the constant term, which depend on the background and
takes the form

sihe) — Z Nyn? (5-1)

On the other hand, in (3-12), we ignored the following constant term:

4k
Sbe) — = Ty (12
4k
= No(2]s + 1)7s(Gs + 1
3pNOE Js +1)js(js + 1)

7T]{7 1
— ; <3MN0 JrNoZanJrZNn §M+O<NO>> (5-2)

We see that (5-1) and (5-2) coincide in the Ny — oo limit up to a constant in-
dependent of the background as far as we fix the first Chern class ), Nyng of the
background on S?. This fact would be relevant when we sum up over the backgrounds
in the path integral.

Once we verify the relationship between the CS theory on S3/ Z,, and the matrix
model at the quantum level, we hope that using the Wilson loops in the matrix model
constructed in §4 we can compute the knot invariants. We expect wide application
of the Wilson loops constructed in §4, since they are independent of the theory we
consider. For instance, it was suggested in 23) that A/ = 4 super Yang Mills on
R x 83 is realized in the plane wave matrix model in the same manner as the CS
theory on S? is realized in the matrix model. Namely, we can construct the Wilson
loops in the plane wave matrix model that correspond to those in N' = 4 super Yang
Mills on R x S3. In particular, by including the six scalars in the Wilson loops, we
can construct the half-BPS Wilson loops on R x $3 59 in term of the matrices.
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Appendix A
— Spherical Harmonics

In this appendix, we review the properties of the spherical harmonics on S,
S? and fuzzy sphere summarized in 23) and 51), and add some new formulae. We
regard S3 as the SU(2) group manifold. We parameterize an element of SU(2) in
terms of the Euler angles as

g= efigngefiQJQe*il/JJg? (Al)

where J; satisfy [J;, Jj] = i€;jxJk. The isometry of S3 is SO(4) = SU(2) x SU(2),
and these two SU(2)’s act on g from left and right, respectively. We construct the
right-invariant 1-forms:

dgg~ = —ipe'J;, (A-2)

where 2/ corresponds to the radius of S3. They are explicitly given by

1
e” = —(—sinpdf + sin 6 cos pdy)),

1
1

e* = —(cos pdf + sin § sin pdip),
,u
1

e = ;(dap + cos fdy), (A-3)

and satisfy the Maurer-Cartan equation
de’ — geijkej Ael = 0. (A-4)

The metric constructed from e, (M = 0,¢,) agrees with (3-2). The Killing
vectors dual to e’ are given by

L= —ﬁelMaM, (A-5)

M

where e;” are inverse of 6?\4‘ The explicit form of the Killing vectors is

. . Cos @
Ly =—1 (— sin p0p — cot 8 cos pd, + m&p) ,
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Lo = <cos 0 — cot 0sin 0, + sin g 8¢>
sin

L3 = —iap. (A6)

L; satisfy the SU(2) algebra.

In the following expressions, the upper sign is taken in the patch I (0 <6 < )
and the lower sign in the patch II (0 < 6 < 7). Since S® is a U(1) bundle over S?
and y = (¢ + ¢)/u, the angular momentum operator in the monopole background
with the monopole charge ¢ is obtained by making a replacement in (A-6):

1
—0y — —1iq. A7)
e (
The result is
C) 1 F cosb
L =i (sin 0y + cot  cos pd,) — I~ g 0S¥
1 0
(q) i (— cos @0y + cot fsin p0,) — ioes sin ¢,
sin
LY = —id, ¥ q, (A-8)

which satisfy the SU(2) algebra and agree with (3-4).
The scalar spherical harmonics on S? are given by

Yimm(£23) = (=1)7 720 + 1(J — g~ Jm). (A-9)

39)

The monopole scalar spherical harmonics®”’ are expressed in terms of the scalar

spherical harmonics on S3:
Vimg(22) = e W0E Y (025). (A-10)

The fuzzy scalar spherical harmonics are given by

= VR0 ()OS i) (A1)

These spherical harmonics possess the following properties.
Basis of SU(2) algebra

LiYimm = (JFm)(J £m+ 1Y mm,
L3Y rmm = mY .,

LOVmg = VT F )T £m+ 1)V gmg,
L(Q)Y/qu = mY g,
LeoV¥) = JTFmT Em+ DV,
Ly o V1) =y i) (A-12)

Jm
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where L;o are defined by L; o Y}%/) = Lz[j}Y}ig,) - Y}igl)LEjl] and satisfy the SU(2)
algebra.
Complex conjugate

Yamm)' = (D)"Y, Yamg)' = (1) Yy,
(Y}%/))T — (_1)m*(j*j/)ffj(3:2‘ (A-13)

Orthonormal relation

df2y

/ Q—(YJ’m’Tﬁ’)TYJmm = 0.7 O/ O’
df2y

/T(YJ’m’q)TYqu = 5JJ’(5mm’7

NO ((Y}f] ’))TY(J] )) = 5JJ’5mm’- (A14)

Integral of the product of three harmonics

df2s
/ o2 (YJ1m1m1) YJQmQﬁlQYngsms

2J; + 1 Jomg Jgmg ~ Jamg J3mg T Y Jamemsg Jgmams?

_ \/(2J2 + 1)(2‘]3 + 1)CJ1m1 CJ1m1 — CJ1m1m1

d{d J
_ plimaiaq
/ Ar (YJ1m1Q1) YJQmQQQYJdmde - CJQquQ J3smsqs?

Ltr((Y( )) Y(J' ”)Y(j"j))
No

J mi J2m2 J3m3

L o T Je J
= (71)J1+2J3 J+i' =25 \/N0(2J2 +1)(2J3 + 1)0}721;121 Jams {j” j2 ](/3}

— Ahimai(j’s)
- CJ2m2(j’j”) Jsms(375)" (A15)

There is a formula for the asymptotic relations between the 6 — j symbols and
the 3 — j symbols. If R > 1, one obtains

a b c (_1>a+b+c+2(d+e+f+R) a b c
{d+R e+ R f+R}N VOR <e—f f—d d—e)'

(A-16)
Using this formula, one sees that in the Ny — oo limit
5J1ma(5'5) Jimiqu
CJ2m2(J"J'”) J3ms (5" 5) CJ2m2q2 Jamsqs (A-17)

with the identification j' — j = q1, j' — j" = @2, j" —j = ¢s.
The vector spherical harmonics on S3, S? and the fuzzy sphere are defined in
terms of the scalar spherical harmonics as

Qm Qm v
Jmmz lp Z UMLC ~pm’ quZ Zp Z UanQ in qu7
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P ) Qm JJ) .
Y) i =1 ZUmC’Q Yol (A-18)

where the unitary matrix U is given by
U=—[—% 0 —1]. (A-19)

The vector spherical harmonics possess the following properties.
Action of the SU(2) generators

1
Hewkv YJmmk Zezjk[’ YJmmk Ymem'L = (J+ 1) Jmmi’
Z.ei]'kL(q)Yfmq Yfqu - (‘]+ 1) Jmgqi’
i€k Ly © Y]y sk + Vs = P+ DY S (A-20)
Complex conjugate
(Ymemz) :( 1)m m+1YJp m—mai’ (Y'meqz)Jr = (71)771 q+1YJp m—qi’
Y _ +1
(}/Jrrl,(jj’)i)Jr - (_ ) ~U) Yj} m(j'j)i (A21)

Orthonormal relation

a5
/ 272 (Yﬁm’M’i)TYfmrhi = 07,7 O/ O’ O
dfy
/ A1 (YJp’m qz)TYfqu - 5JJ’ (5mm’(5pp’,

1 N
—tr((YJp,

N YO ) = 615 mm O (A-22)

e
m/(§'7)i/ ~ Jm(jj')i

Integral of the product of three harmonics

df2;
P1 P2 3
/ 272 €ijk YJ1m1m1zYJ2m2mQJY Jamarnsk — ngmlmlpl Jamamap2 Jasmzmsps
2 i YO y 2 y s =&
4 ijk Jimiqii” Jamagej~ Jamsqsk — Jimiqip1 Jamaqap2 J3msqspss

. P P P - ¢
%kﬁotr(YJllml(jj/)z'YJ;mz(j'j”)jYJ;mg(j"j)k) = Enma(G3)pr Jema (55" )pa Jams (5 j)ps -
(A-23)

One can compute & and & using (A-15). Their explicit forms are given in 23). In the

limit Nog — oo, 5J1m1(yj Jor J2mz(i'3" ) pa J3ma (5" ) ps = Enmiqipr Jamagaps Jsmagzps With
the identification j — j' =q1, 7' — 7" =q2, 7" —Jj =q5.



)
2)

w
=

—
N = O © 00 ~J O Ui
NN N NN NS NS N

==
U W
N2

=

16)
17)
18)
19)

20)
21)
22)

23)
24)
25)

26)
27)
28)
29)
30)

31)
32)
33)
34)
35)
36)

37)
38)
39)
40)

41)
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