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Gauge-Higgs unification is one of the influential scenarios for solving the hierarchy prob-
lem in the Standard Model. Recently, the scenario on the warped background attracts much
attention owing to a large possibility to construct a realistic model naturally in this frame-
work. It is, however, well known that the effective potential for the Higgs field, which is the
most important prediction of the scenario, is not easy to calculate on the warped background,
because masses of Kaluza-Klein particles are not obtained analytically. In this article, we
derive useful formulae for the effective potential. The formulae allow us to calculate Higgs
mass easily, and thus to construct a realistic model in the gauge-Higgs unification scenario
on the warped background. Using the obtained formulae, we calculate the contributions of
bulk fermions with several boundary conditions. We also show that bulk fermions that have
boundary conditions prohibited in the orbifold picture do not contribute to the effective
potential. The formulae allow us to examine the infrared behavior of the effective potential,
and we investigate the Gauge-Higgs condition that the effective theory should satisfy.

§1. Introduction

The Higgs sector is one of the most important sector of the Standard Model
(SM), although it is not confirmed yet experimentally. This sector not only governs
electroweak symmetry breaking but also gives the masses of quarks and leptons.
Furthermore, the hierarchy problem, or to be more precise, the quadratic divergent
correction to the Higgs mass strongly suggests the existence of new physics at the
TeV scale. This hierarchy problem is expected to be solved at the new physics scale
by introducing symmetries. For this purpose, a lot of scenarios beyond the SM have
been proposed so far. The most famous example is the supersymmetry (SUSY),
in which quadratic divergent corrections to the Higgs mass term are completely
cancelled. Another example is the little Higgs scenario, where the corrections are
cancelled at the one-loop level owing to an imposed (global) symmetry.

In this article, we discuss the third possibility, the so-called gauge-Higgs (GH)
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unification scenario,1),2) in which the Higgs mass term is controlled by higher-
dimensional gauge symmetry. In this picture, the Higgs field is identified as the
zero mode of the extra-dimensional component of the gauge field. Surprisingly,
not only the quadratic divergent corrections but also the other ultraviolet (UV) di-
vergences on the Higgs mass term completely vanish.2),3) Since the imposition of
the gauge invariance constrains the model stringently, few constructions of realistic
models have been performed, in which the SM correctly appears as the low-energy
effective theory of the model. This is in sharp contrast to the case of SUSY or the
little Higgs scenario. Recently, a lot of toy models of the GH unification scenario
have been considered on flat4)–8) and warped9) backgrounds.10)–16) Therefore, we
are in the stage of constructing a realistic model in the scenario. Once a realistic
model is constructed, it is possible to calculate signals of the models accurately, and
test the idea of the GH unification in experiments such as the LHC.

There are two choices for the construction of realistic GH unification models;
one is in the flat extra dimension and the other is in the warped extra dimension.
The later case seems to be attractive, because essential difficulties in the flat case
can be resolved. For example, in the flat case, the typical Kaluza-Klein (KK) scale,
Higgs mass and top Yukawa coupling tend to be too small. These problems can be
naturally solved in the warped case owing to the volume suppression of the gauge
boson mass. Thus, the proper calculation of the effective potential for the Higgs field
in the warped background is an important step toward the construction of realistic
models.

The effective potential in the warped case, however, has been investigated less
exhaustively. This situation is quite different from that in the flat case,17)–20) where
even a two-loop calculation has already been performed in a certain model.21) The
effective potential in the warped case has been evaluated in Ref. 10) for the first
time. They evaluated the contribution from a gauge multiplet. A method for the
calculation of the potential in a more general setup has been shown in Ref. 12),
but it is not easy to use for the construction. In Ref. 22), the method reported in
Ref. 10) was generalized in the case in which bulk fermions have parity-odd masses.
Recently, more phenomenological analysis has been made in Ref. 23). It was also
shown in Ref. 24) that this result can be reproduced by the so-called holographic
approach.25)

In this article, we review the generalization including antiperiodic fermions, and
derive useful approximation formulae for a large warp factor for calculating the effec-
tive potential easily. We also examine contributions to the potential from fermions
with non-orbifold-like boundary conditions, which are often introduced in warped
models.12),14),15) We show that these contributions are vanishing, although such
fermions seem to have nonvanishing couplings to the Higgs field. By applying the
obtained formulae, we investigate the GH condition26) that the effective theory of
the GH unification model should satisfy.

This article is organized as follows. First, in §2, we clarify the setup for deriving
formulae for the Higgs effective potential. Next, in §3, we calculate the contribu-
tion to the potential of gauge boson loop diagrams. We also explain the method
how we can obtain the contribution without knowledge of the KK mass spectrum
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concretely. In §4, we derive formulae for contributions from bulk fermions with par-
ity odd masses, and investigate the effective potential using the SU(3) model as
an example. In this section, we also examine the effects of the fermion with non-
orbifold-like boundary conditions and show that their contributions to the potential
are vanishing. Finally, we discuss the GH condition in §5. Section 6 is devoted to
summary and discussion.

§2. Setup

In this article, we consider a five-dimensional SU(2) model as a simple example
and derive formulae for the Higgs effective potential, unless stated explicitly. The
results can be easily applied in more general cases in a way similar to that in Ref. 18).
In the model, the SU(2) gauge symmetry is broken down to the U(1) symmetry by
the orbifold boundary conditions;27) A1,2

μ is odd, while A3
μ is even. We calculate

the effective potential of the zero mode of A2
5, setting the vacuum expectation value

(VEV) of A1
5 zero using the residual U(1) symmetry.

The warped metric is taken as9)

ds2 = GMNdx
MdxN = e−2σ(y)ημνdx

μdxν − dy2, (2.1)

where σ(y) = k|y| at −πR ≤ y ≤ πR and σ(y) = σ(y + 2πR). The four-dimensional
flat metric is given by ημν = diag(1,−1,−1,−1). For clarity, we define z(y) = eσ(y),
a = 1/z(πR) and ε(y) = σ′(y)/k. As a reference value, we often set the curvature k
and the radius R to be a0 ≡ exp(−πRk) = 10−15.

The action of gauge fields is written as

Sg = −1
2

∫ √
Gdx4dy tr

(
FMNF

MN
)

= −1
2

∫
dx4dy tr

(
F 2

μν − 2z−2F 2
μ5

)
. (2.2)

The gauge fixing term is taken to be

SGF = −
∫
dx4dy tr

[
DμAμ −D5

(
z−2A5

)]2
, (2.3)

where Dμ,5 is the covariant derivative. Then, we obtain the following equations of
motion: (

D2
μ −D5z

−2D5

)
Aν = 0, z−2

(
z2D2

μ −D2
5

) (
z−2A5

)
= 0. (2.4)

From Eq. (2.4), it turns out that the zero modes of A5 are proportional to z2. Thus,
we set the VEV of A2

5 as

g〈A5〉 = g〈A2
5〉
τ2

2
= Az2 τ

2

2
, (2.5)

where τ2 is the second Pauli matrix. It is worth noting that this zero mode corre-
sponds to the degree of freedom of the Wilson line phase θW , as in the flat case,
expressed as

W ≡ eiθW τ2
= P exp

(
−ig

∫ πR

−πR
dy G55A5

)
= exp

(
iA

1 − a2

2ka2
τ2

)
, (2.6)
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where P denotes that the integration is the path-ordered one. This leads to the
following relation between A and θW : A/k ≡ Â = 2a2θW /(1 − a2). In the following
discussion, we use hatted parameters as dimensionless parameters in units of the
curvature k, e.g., Â = A/k.

§3. Gauge contribution

In this section, we derive the formula for the Higgs effective potential induced
from gauge boson loop diagrams. This contribution has been calculated in Ref. 10).
Contributions from fermions are shown in the next section.

3.1. KK mass spectra

Before going to the evaluation of the effective potential, we have to calculate
the KK mass spectra of A1

μ and A3
μ (and also those of A1

5 and A3
5). Since we use

the convention that only the zero mode of A2
5 has a nonvanishing VEV, the classical

part of the equation of motion in Eq. (2.4) is written as(
∂2

μ − z−2D2
5 + 2σ′D5

)
Aν = 0, (3.1)

where D5 = ∂5 − ig〈A5〉. With new linear combinations, A±
μ = (A3

μ ± iA1
μ)/

√
2, the

covariant derivative D5 can be represented diagonally as

D5

(
A+

μ

A−
μ

)
=
(
∂5 + iAz2 0

0 ∂5 − iAz2

)(
A+

μ

A−
μ

)
. (3.2)

This means that χ± ≡ exp(∓i ∫ dyAz2)A±
μ satisfies the same equation of motion in

Eq. (3.1) with the replacement of D5 by ∂5. Then, the equation becomes the usual
equation of motion for gauge fields in the case of vanishing VEV. Using this fact,
the solutions of the equation can be obtained analytically as,28)

A±
μ (x, z) =

∞∑
n=0

Aμn(x) e±iε bAz2/2 eσ

Nn

[
α±

n J1 (m̂nz) + β±
n Y1 (m̂nz)

]
, (3.3)

where we have replaced ∂2
μ with the KK mass m2

n, and assumed ε2 = 1. Here and
throughout this article, Jν(x) and Yν(x) are the Bessel functions. To obtain the
canonical kinetic term for Aμn(x), the normalization constant Nn appears in the
equation. Note that Aμn(x) is not a complex but a real field, while the coefficients
α±

n and β±
n are complex numbers. In the same manner, equations of motion for A5

fields can be solved as

A±
5 (x, z) =

∞∑
n=0

A5n(x) e±iε bAz2/2 e
2σ

Nn

[
α±

n J0 (m̂nz) + β±
n Y0 (m̂nz)

]
, (3.4)

where A±
5 = (A3

5 ± iA1
5)/

√
2.

The KK mass spectra are determined by imposing the boundary conditions at
y = 0 and y = πR. We have assumed that A1

μ (A3
μ), which is proportional to ImA±

μ
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(ReA±
μ ), is odd (even), that is,

d

dy
ReA±

μ

∣∣∣∣
y=0,πR

= 0, ImA±
μ

∣∣
y=0,πR

= 0. (3.5)

Note that the boundary condition for A−
μ is the same as that for A+

μ . Thus, the
conditions give four equations for two complex coefficients, α±

n = (α3
n± iα1

n)/
√

2 and
β±

n = (β3
n ± iβ1

n)/
√

2, which are summarized as⎛⎜⎜⎝
J πR

C (xn) −J πR
S (xn) YπR

C (xn) −YπR
S (xn)

J 0
C(xn) −J 0

S (xn) Y0
C(xn) −Y0

S(xn)
s

eA/2
J1(xn) c

eA/2
J1(xn) s

eA/2
Y1(xn) c

eA/2
Y1(xn)

s
bA/2
J1(axn) c

bA/2
J1(axn) s

bA/2
Y1(axn) c

bA/2
Y1(axn)

⎞⎟⎟⎠
⎛⎜⎜⎝
α3

n

α1
n

β3
n

β1
n

⎞⎟⎟⎠ = 0, (3.6)

where xn = mn/(ka), cx(sx) = cosx(sinx), and Ã ≡ A/(ka2) = 2θW /(1 − a2). The
functions J and Y are given by(J 0

C(x)
J 0

S (x)

)
=

(
c

eAa2/2
−s

eAa2/2

s
eAa2/2

c
eAa2/2

)(
J1(ax) + axJ ′

1(ax)
Ãa2J1(ax)

)
. (3.7)

J πR
C and J πR

S are expressed in the same way by replacing a with 1, and Y is given by
these expressions with J → Y . Nonzero (nontrivial) solutions exist if the determinant
of the coefficient matrix, which we denote M(xn; θW ), in Eq. (3.6) vanishes:

N(xn; θW ) ≡ detM(xn; θW ) = 0. (3.8)

By solving the equation for the KK mass function N(xn; θW ), the KK mass spectra
for the Aμ field is obtained. Also, the KK mass function of the A5 field is obtained
in the same manner, which turns out to be the same as that of Aμ owing to the
Higgs-like mechanism. The explicit form of the KK mass function is written as

N(x; θW ) = −ax
2

2
[J1(x)J1(ax)Y0(x)Y0(ax) + J1(x)J0(ax)Y0(x)Y1(ax)

+J0(x)J1(ax)Y1(x)Y0(ax) + J0(x)J0(ax)Y1(x)Y1(ax)
−2J1(x)J0(x)Y0(ax)Y1(ax) − 2J1(ax)J0(ax)Y0(x)Y1(x)]

+
2
π2

cos (2θW ) . (3.9)

An important property of N(x; θW ) is that the function is even with respect to x.
This fact plays an essential role in the calculation of the effective potential.

3.2. Effective potential

Once the KK mass function N(x) is obtained, it is possible to calculate the
one-loop effective potential

Veff =
∑

i

1
2

∫
d4p

i(2π)4

∞∑
n=0

ln
(−p2 +m2

n

)
, (3.10)
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where i runs over the indices of the spin and gauge. We have two methods of
performing the calculation. The first one is that we carry out the four-momentum
integral by the dimensional regularization, then replace the sum of the KK modes
with the contour integral, and finally modify the path of the integrals. This method
was adopted in Ref. 10) and discussed in detail, for example, in Ref. 29). The second
method is that we can take the sum of the KK modes first. For both methods, it is
essential that the KK mass function is an even function. In the following, we show
the calculation using the second method.

Since the KK mass function is an even function, m−n ≡ −mn is also a solution
in Eq. (3.8). Therefore, the potential in Eq. (3.10) can be written as

Veff =
∑

i

1
2

∫
d4p

i(2π)4
1
2

∞∑
n=−∞

ln
(−p2 +m2

n

)
, (3.11)

where n should run also on −0 for taking account of −m0. The summation over n is
expressed by the contour integral that encircles the whole real axis counterclockwise.
After the Wick rotation, we obtain

Veff =
3
4
(ka)4

∫
d4l

(2π)4

∫
C

dx

2πi
ln
(
l2 + x2

) N ′(x; θW )
N(x; θW )

, (3.12)

where l is a dimensionless Euclidean four momentum normalized by ka, and N ′
denotes dN/dx. Here, we find infinite cuts on the Riemann surface in the partial
integration. Since the cut starting from xn ends at x−n, the surface term vanishes.
Thus, the above equation is expressed as

Veff = −3
4
(ka)4

∫ ∞

0

l3dl

8π2

∫
C

dx

2πi
(l2 + x2)′

l2 + x2
ln [N(x; θW )] . (3.13)

Because of the approximation formulae of the Bessel functions at |x| → ∞,

Jν(x) →
√

2
πx

cos
(
x− (2ν + 1)π

4

)
, (3.14)

Yν(x) →
√

2
πx

sin
(
x− (2ν + 1)π

4

)
, (3.15)

we find the asymptotic behavior of the KK mass function as

N(x; θW ) → − 2
π2

[cos {2(1 − a)x} − cos (2θW )] . (3.16)

This means that, except at argx = 0, the VEV-dependent part of ln[N(x; θW )] is
exponentially suppressed at |x| → ∞. Thus, it is possible to modify the contour
to that encircling both the upper and lower half planes clockwise, leading to new
contours encircling poles at x = ±il. After the contour integral, we obtain

Veff(θW ) =
3
2

(ka)4

(4π)2
× 2

∫ ∞

0
dxx3 ln

[
1 +

cos(2θW )
N̄c(x)

]
, (3.17)
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where N̄c(x) is written by the modified Bessel functions Iν(x) and Kν(x) as

N̄(x; θW ) ≡ N(ix; θW ) ≡ 2
π2

[
N̄c(x) + cos (2θW )

]
,

N̄c(x) = −2ax2

π2
[I1(x)I1(ax)K0(x)K0(ax) − I1(x)I0(ax)K0(x)K1(ax)

−I0(x)I1(ax)K1(x)K0(ax) + I0(x)I0(ax)K1(x)K1(ax)
+2I1(x)I0(x)K0(ax)K1(ax) + 2I1(ax)I0(ax)K0(x)K1(x)] . (3.18)

The result in Eq. (3.17) is the same as that in Ref. 10) up to a constant term.

§4. Fermion contributions

In this section, we discuss contributions to the effective potential from bulk
fermions. The strategy to calculate the contributions is essentially the same as that
for the gauge contribution. We consider fermions in the fundamental representation
for concreteness. The results obtained in this section can be easily extended to the
case of bulk fermions in larger representations.

4.1. Periodic fermion

First, we consider a periodic bulk fermion in the fundamental representation
Ψ = (Ψu

L,R, Ψ
d
L,R)T , where Ψu

L and Ψd
R have zero modes. Since Ψu

R (Ψd
R) always has the

same mass as Ψd
L (Ψu

L), we consider only ΨL and omit the index L in the following
discussion. As in the case of the gauge contribution, we calculate the KK mass
spectra of the fermion, and evaluate the contribution to the effective potential.

4.1.1. KK mass spectra
As in the case of gauge fields, the wave function of Ψ± = (Ψu ± iΨd)/

√
2 with

the kink mass term −imΨ Ψ̄Ψ can be obtained analytically as

Ψ±(x, z) =
∑

n

Ψn(x)e±
iεQ bAz2

2
eσ/2

Nn

[
α±

n Jν (m̂nz) + β±
n Yν (m̂nz)

]
, (4.1)

where mΨ = cσ′, ν = |c + 1/2|, and Q = 1/2. As can be easily understood, the
charge dependence of the wave function for bulk fermions in higher representations
is given by exp[±iεQÂz2/2]× (usual solution), where Q is the eigenvalue of τ2.

The boundary conditions for the bulk fermion are given by(
d

dy
ReΨ± + cσ′ReΨ±

)∣∣∣∣
y=0,πR

= 0, ImΨ±∣∣
y=0,πR

= 0, (4.2)

where the derivative might be replaced by the covariant derivative so that the first
condition becomes equivalent to the Dirichlet boundary condition for the correspond-
ing right-handed fermion, ReΨ±

R

∣∣
y=0,πR

= 0, as required by the equation of motion.
Note that this modification modifies the coefficient of the lower component of the
vector on the right-hand side of Eq. (4.4), which disappears in the determinant (4.5)



84 N. Haba, S. Matsumoto, N. Okada and T. Yamashita

and thus does not affect the effective potential. Thus, equations for the coefficients
αu,d

n and βu,d
n are obtained as⎛⎜⎜⎝

J̄ πR
C (xn) −J̄ πR

S (xn) ȲπR
C (xn) −ȲπR

S (xn)
J̄ 0

C(xn) −J̄ 0
S (xn) Ȳ0

C(xn) −Ȳ0
S(xn)

s
Q eA/2

Jν(xn) c
Q eA/2

Jν(xn) s
Q eA/2

Yν(xn) c
Q eA/2

Yν(xn)
s
Q bA/2

Jν(axn) c
Q bA/2

Jν(axn) s
Q bA/2

Yν(axn) c
Q bA/2

Yν(axn)

⎞⎟⎟⎠
⎛⎜⎜⎝
αu

n

αd
n

βu
n

βd
n

⎞⎟⎟⎠ = 0, (4.3)

where the functions J̄ and Ȳ are given by(J̄ 0
C(x)

J̄ 0
S (x)

)
=

(
c
Q eAa2/2

−s
Q eAa2/2

sQ eAa2/2 cQ eAa2/2

)(
(1/2 + c)Jν(ax) + axJ ′

ν(ax)
QÃa2Jν(ax)

)
, (4.4)

J̄ πR
C and J̄ πR

S are expressed in the same way by replacing a with 1, and Ȳ is give
by these expressions with J → Y . Note that the case of c < 0 can be reproduced
from the case of c > 0 by the replacement (Ψu

L, Ψ
d
L) ↔ (Ψd

R, Ψ
u
R). Thus, we consider

the case of c ≥ 0.
We define the determinant of the coefficient matrix in Eq. (4.3) as N(x; θW , c, Q)

as in the previous section. Then, the KK mass spectrum can be found to form zeros
of the determinant. After some calculations, the determinant (the KK mass function
for the bulk fermion) turns out to be

N(x; θW , c, Q) =
2
π2

[cos (2QθW ) +Nc(x; c)] , (4.5)

Nc(x; c) = 1 +
ax2π2

2
[
Jc+1/2(x)Yc−1/2(ax) − Jc−1/2(ax)Yc+1/2(x)

]
× [Jc−1/2(x)Yc+1/2(ax) − Jc+1/2(ax)Yc−1/2(x)

]
. (4.6)

It can be seen that the θW dependence of N(x; θW , c, Q) comes only from the term
(2/π2) cos(2QθW ). Since the unit of Q is 1/2, N(x; θW , c, Q) has the sift symmetry
θW → θW +2π, reflecting the phase nature of θW . This result is consistent with that
obtained in Ref. 13). Below, we discuss the KK mass function Nc(x; c) with some
specific values of c, and show an approximate form of the function when a� 1.

• c = 0 case
In the absence of the kink mass term, c = 0, Nc(x; 0) has a simple form as

Nc(x; 0) = − cos [2(1 − a)x] , (4.7)

which leads to the KK mass, mn = (nπ ± θW /2)ka/(1 − a). Note that the mass
spectrum and therefore the effective potential are the same as those in the flat case
with the replacement 1/R↔ πka/(1 − a).

• c = 1/2 case
When the kink mass is given by c = 1/2, Nc(x; 1/2) is

Nc(x; 1/2) = 1 +
ax2π2

2
[J0(x)Y1(ax) − J1(ax)Y0(x)] [J1(x)Y0(ax) − J0(ax)Y1(x)]

∼ 1 + xπJ0(x)Y1(x) − 2x
[
γE + ln

(ax
2

)]
J0(x)J1(x), (4.8)
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where γE is Euler’s constant. Note that Nc(x; 1/2) is exactly the same as the result
of the gauge boson in Eq. (3.9) when Q = 1. This coincidence is consistent with
the fact that the gaugino field has a kink mass with c = 1/2 in a supersymmetric
theory with the warped metric.28) The approximation in the last term is valid when
0 < x� 1/a.

• General c case
To obtain a useful approximation of the KK mass function for general c, it is

convenient to write the wave function in Eq. (4.1) using Jν and J−ν as the basis of
the function instead of Jν and Yν . After some calculations, we obtain

Nc(x; c) = 1 − π2ax2

2 cos2(cπ)
[
J1/2+c(x)J1/2−c(ax) + J−1/2+c(ax)J−1/2−c(x)

]
× [J1/2+c(ax)J1/2−c(x) + J−1/2+c(x)J−1/2−c(ax)

]
. (4.9)

As long as we consider a very small a, the contribution of x > 1/a is irrelevant
for our calculation. Thus, it is sufficient to know the approximate form valid for
0 < x� 1/a. We expand Jν(ax) as

Jν(x) =
(x

2

)ν
[

1
Γ (ν + 1)

− (x/2)2

Γ (ν + 2)
+ · · ·

]
. (4.10)

Note that when −ν+n < a, which is realized when |c| ∼ 3/2, 5/2, · · · , the expansion
is inappropriate. However, we are not interested in such a fine-tuned region; we are
mainly interested in the case that |c| is not much larger than 1/2. Then, we find

Nc(x, c) = 1 − πx

cos(cπ)
J−1/2+c(x)J−1/2−c(x)

+
a1−2c(2c− 1)(x/2)2−2cπ2J1/2+c(x)J−1/2+c(x)

Γ 2(3/2 − c) cos2(cπ)
, (4.11)

for c > 0. For c < 0, we get the same form with the replacement c → −c, as it
is evident from Eqs. (4.6) and (4.9). Note that the third term on the right-hand
side of Eq. (4.11) is exponentially enhanced when c − 1/2 � −1/ ln(a) owing to

Fig. 1. Mass of first KK mode with Q = 1/2 as function of c: The exact result is depicted
as a solid line, while the dotted one is the approximation (4.13). We set θW = 0.2 and
θW = 2π/3 in the left and right figures, respectively.
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the factor a1−2c. In this case, the VEV-independent part is much larger than the
VEV-dependent part. This leads to the quite suppressed VEV dependence on the
mass spectrum, which is consistent with the fact that the coupling to the Higgs field
is suppressed when |c| > 1/2.∗) When x is small enough, the KK mass function N
turns out to be

N(x; θW , c, Q) � π2

2

[
cos (2QθW ) − 1 − 4c2 − 2(1 − a1−2c)x2

1 − 4c2
+ O(x4)

]
,(4.12)

which leads to the following formula for the first KK mass:

m1 ∼
√

(1 − 4c2)[1 − cos (2QθW )]
2(1 − a1−2c)

ka →
√

[1 − cos (2QθW )]
ln(a−1)

ka, (4.13)

where the limit c→ 1/2 is written. This result is consistent with the approximation
formula in Ref. 13). In Fig. 1, we show the validity of the approximation by com-
paring it with the exact result. As can be seen in the left figure, the approximation
formula is quite consistent with the exact one. On the other hand, as shown in the
right figure, the approximation becomes worse for a larger x = m1/(ka) as expected.

We also show the θW dependence of the first and second KK masses in Fig. 2 with
fixed c = 0, 0.2, 0.4 and 0.5. The figure shows a similar behavior in c → 0 as in the
limit k → 0 (the flat limit) shown in Ref. 13). Since gauge bosons correspond to c =
1/2, the W -boson mass is suppressed compared with the second KK mass. Noting
that the gauge boson, or correspondingly the left-handed fermion with c = 1/2, has a
flat wave function profile along the fifth dimension, we understand that their coupling
is generally suppressed by the volume suppression factor 1/

√
πR ∝ 1/

√
ln(a−1). On

the other hand, fermions with c = 0 which are localized around the IR brane around
where the Higgs fields are also localized are free of volume suppression. We can see
the suppression in fact appears in Eq. (4.13).

4.2. Antiperiodic fermion

Next, we consider bulk fermions obeying antiperiodic boundary conditions. These
fermions are used to realize a small Wilson line phase (a small VEV of the Higgs
field),6) which is required to construct a realistic model consistent with the elec-
troweak precision measurements.15) Furthermore, the lightest mode of the antiperi-
odic fermion is stable and a good candidate for dark matter.30)

The equation of motion for the fermion on the warped background is the same as
that of the periodic fermion, and thus the wave function is also obtained analytically
using Bessel functions (4.1). The difference comes only from boundary conditions;
the Neumann boundary condition at y = 0, while the Dirichlet boundary condition
at y = πR for Ψu,(

d

dy
ReΨ± + cσ′ReΨ±

)∣∣∣∣
y=0

= 0, ReΨ±∣∣
y=πR

= 0,

∗) For |c| > 1/2, the left-handed fermion localizes around the brane that is the opposite one

where the right-handed fermion localizes. Thus, Yukawa coupling is suppressed by small wave

function overlapping.
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Fig. 2. Masses of first and second KK modes as functions of θW : The fermion mass is fixed
at c = 0, 0.2, 0.4 and 0.5.

(
d

dy
ImΨ± + cσ′ImΨ±

)∣∣∣∣
y=πR

= 0, ImΨ±∣∣
y=0

= 0. (4.14)

Note that the opposite boundary conditions, the Dirichlet boundary condition at
y = 0 and the Neumann boundary condition at y = πR, give the same result as above,
because it can be reproduced by the replacement Ψu ↔ Ψd. Also, the case of c < 0
can be reproduced from the case of c > 0 by the replacement, (Ψu

L, Ψ
d
L) ↔ (Ψd

R, Ψ
u
R).

Thus, we consider the case of c ≥ 0.
As in the case of the periodic fermion, the KK mass spectrum of the antiperiodic

fermion is determined by the zeros of the determinant of the coefficient matrix,

M(x) =

⎛⎜⎜⎝
J̄ πR

C (x) −J̄ πR
S (x) ȲπR

C (x) −ȲπR
S (x)

−c
Q bA/2

Jν(ax) s
Q bA/2

Jν(ax) −c
Q bA/2

Yν(ax) s
Q bA/2

Yν(ax)
s
Q eA/2

Jν(x) c
Q eA/2

Jν(x) s
Q eA/2

Yν(x) c
Q eA/2

Yν(x)
J̄ 0

S (x) J̄ 0
C(x) Ȳ0

S(x) Ȳ0
C(x)

⎞⎟⎟⎠ . (4.15)

Again, the determinant of the matrix, N(x; θW , c, Q) = detM(x), depends on the
Wilson line phase only through the term 2 cos(2QθW )/π2. Once we define the func-
tion Nc(x; θW ) as in Eq. (4.5), it becomes independent of θW . The function is
expressed in a simple form when c is an integer or a half-integer. When c is not a
half-integer, we can find its approximation form for 0 < x � 1/a by expanding the
fermion wave function in terms of Jν and J−ν .

Finally, we find that the Nc of the antiperiodic fermion is given by −Nc of the
periodic fermion. This means that the result of the antiperiodic fermion can be
obtained from that of the periodic fermion by flipping the sign of cos(2QθW ), or
equivalently by the shift θW → θW + π/(2Q) as in the flat case.6) As a result, the
first KK mass of the antiperiodic fermion is approximately given by

m1 ∼
√

(1 − 4c2)[1 + cos (2QθW )]
2(1 − a1−2c)

ka, (4.16)

when m1 � ka.
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4.3. Effective potential

Once the KK mass function is explicitly given, the effective potential for the
Higgs field is obtained using the method developed in the previous section. Then,
the potential is given as

Veff(θW ; c,Q) = −
∑

i

1
2

(ka)4

(4π)2
veff(θW ; c,Q),

veff(θW ; c,Q) = 2
∫ ∞

0
dx x3 ln

[
1 +

cos (2QθW )
N̄c(x; c)

]
, (4.17)

up to the cosmological constant term. Here, i runs over the indices of the spin, gauge
and flavor. The KK mass function on the imaginary axis N̄c(x; c) is defined as

N̄c(x; c) ≡ Nc(ix; c)

= 1 − π2ax2

2 cos2(cπ)
[
I1/2+c(x)I1/2−c(ax) − I−1/2+c(ax)I−1/2−c(x)

]
× [I1/2+c(ax)I1/2−c(x) − I−1/2+c(x)I−1/2−c(ax)

]
,

∼ 1 − πx

cos(cπ)
I−1/2+c(x)I−1/2−c(x)

− a1−2c(2c− 1)(x/2)2−2cπ2I1/2+c(x)I−1/2+c(x)
Γ 2(3/2 − c) cos2(cπ)

. (4.18)

In the derivation of the approximation formula, we have used the relation Jν(ix) =
iνIν(x) and the expansion in Eq. (4.10). In the limit c→ 1/2, the above approximate
formula gives

N̄c(x; 1/2) ∼ 1 − 2xI0(x)K1(x) + 2x
[
γE + ln

(ax
2

)]
I0(x)I1(x). (4.19)

Here, we calculate Higgs mass from the effective potential obtained. To do that,
we have to know the relation between A5 and the four-dimensional Higgs field h. We
set A2

5 = N−1hz2, where N is the normalization factor to have the canonical kinetic
term after the integration of the 5th dimension. From the decomposition, we find

LH = −
∫ πR

−πR

√
Gdy

1
2
tr (FMNFPQ)GMNGPQ �

∫ πR

−πR
dyz2N−2 1

2
(∂μh)2 . (4.20)

Therefore, N = [(1 − a2)/(ka2)]1/2. With the definition of A in Eq. (2.5) and the
effective four-dimensional gauge coupling g2

4 = g2/(2πR), we see ∂2
h = −g2

4(1 −
a2) ln(a)/(2k2a2)∂2

θW
. Therefore, the Higgs mass is given by

m2
h =

d2Veff

dh2
= −g2

4 ln(a)
(ka)2

64π2

∑
i

di

∑
j

d2veff
dθ2

W

, (4.21)

where i(j) runs over the flavor (gauge) index of each multiplet, and di is the number
of the spin degree of freedom; for example, di = 3 for the gauge multiplet and di = −4
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Fig. 3. c dependences of integrand of veff (left figure) and veff (right figure): In the left
figure, we set θW = 0.

for Dirac fermions. Note that the W boson mass is estimated from Eq. (4.13) in the
limit c → 1/2 as m2

W = −(1 − cos θW )(ka)2/ ln a, which is sufficiently smaller than
ka, and thus the approximation is reliable. Then, we obtain

m2
h =

g2
4(ln a)

2

64π2(1 − cos θW )
m2

W

∑
i

di

∑
j

d2veff(θW ; ci, Qa)
dθ2

W

. (4.22)

The c dependence of the integrand and that of veff are shown in Fig. 3. We find
that the effective potential is essentially determined by the contribution of region
x ∼ 1; the other regions, x� 1 and x� 1, are negligible. Also, we can see that the
contribution to the effective potential is smaller for the larger c in the right figure,
which is expected from the fact that the Yukawa coupling becomes weaker.

4.4. Model example

In this subsection, we examine the Higgs mass in a concrete model using the
formulae derived in this and previous sections. For example, we consider the SU(3)
model, where the SU(3) symmetry is broken down to SU(2) × U(1) by the orbifold
breaking. We assume that the components ofA5 corresponding to the SU(3)/SU(2)×
U(1) symmetry have zero modes. We introduce a pair of fundamental fermions with
an antiperiodic boundary condition and an adjoint fermion with a periodic one in
this model. Their parity odd masses are set to be cf and ca, respectively. Then we
find that the effective potential of the Higgs field turns out to be18)

Veff(θW ) =
(ka)4

2(4π)2

[
3
{
veff

(
θW ;

1
2
, 1
)

+ 2veff

(
θW ;

1
2
,
1
2

)}
−8veff

(
θW + π; cf ,

1
2

)
− 4

{
veff (θW ; ca, 1) + 2veff

(
θW ; ca,

1
2

)}]
.

(4.23)

Here we fix the mass of the periodic fermion as ca = 0.48. Then, the critical value
of cf to realize SU(2)×U(1) symmetry breaking becomes c0f ∼ 0.447. In Fig. 4, the
relation between the Higgs mass defined in Eq. (4.22) and θW in vacuum is shown
by tuning cf appropriately. We see that the Higgs mass is certainly large compared
with mW , which is in sharp contrast to that in the flat case.
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Fig. 4. Relation between Higgs mass and θW in vacuum in SU(3) model: Here, we set
mW = 80 GeV, a = a0 = 10−15, and g4 = 0.6516.

4.5. Non-orbifold-like fermions

In the SU(2) model, there are four orbifold-like boundary conditions:(
N,N
D,D

)
,

(
D,D
N,N

)
,

(
N,D
D,N

)
,

(
D,N
N,D

)
, (4.24)

where N (D) indicates the Neumann (Dirichlet) condition, the upper (lower) char-
acters show the conditions for Ψu (Ψd), and the left-side (right-side) characters show
the conditions at the boundary on y = 0 (y = πR). Note that these conditions
are for ΨL, and those for ΨR have opposite conditions. Therefore, the first (third)
boundary condition becomes the second (fourth) one, if we exchange Ψu and Ψd. As
a result, the second (fourth) condition gives the same contribution as the first (third)
one to the effective potential. As can be seen in Eqs. (4.2) and (4.14), the first and
third conditions are nothing but those for the periodic and antiperiodic fermions,
respectively.

Here, we investigate other possibilities, that is, non-orbifold-like boundary con-
ditions. Such conditions are not consistent with the orbifold picture, but are still
allowed if we regard the extra dimension as an interval.31) Once we assign the op-
posite sign for ΨR against ΨL, there are 222

= 16 possibilities, which comes from two
choices, namely, the Neumann or Dirichlet conditions at two boundaries y = 0 and
πR for two components Ψu and Ψd. Among them, the above four are orbifold-like,
and other four conditions have the same forms as those of four conditions in the
remaining eight possibilities by exchanging Ψu and Ψd. Therefore, there are eight
possibilities to examine:(

N,N
N,N

)
,

(
N,N
N,D

)
,

(
N,N
D,N

)
,

(
N,D
N,D

)
,

(
D,N
D,N

)
,

(
D,D
D,N

)
,

(
D,D
N,D

)
,

(
D,D
D,D

)
. (4.25)

These non-orbifold-like boundary conditions can be effectively realized from the
orbifold-like ones by introducing boundary-localized (chiral and SU(2)-breaking)
fermions with infinitely large mixing masses with bulk fermions.32) For instance,
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let us start from the first option in Eq. (4.24), which implies that the right-handed
partner has the second option. Then we introduce boundary fields ψu

R
0 and ψd

L
0 on

y = 0 and ψu
R

πR and ψd
L

πR on y = πR to compose localized mixing mass terms:(√
2m0

Lψ̄
u
R

0
Ψu

L +
√

2m0
Rψ̄

d
L

0
Ψd

R

)
δ(y)

+
(√

2mπR
L ψ̄u

R
πR
Ψu

L +
√

2mπR
R ψ̄d

L

πR
Ψd

R

)
δ(y − πR). (4.26)

When we take the limitm0,πR
R → ∞ (without introducing ψu

R
0,πR), the wave function

of Ψd
R vanishes at both boundaries to avoid the large mass terms. This means that

the boundary conditions of Ψd
R become Dirichlet at both the boundaries, in which

the boundary conditions of Ψd
L change to the Neumann owing to the equation of

motion. Thus, the first boundary condition in Eq. (4.25) is realized. In the same
way, other boundary conditions in Eq. (4.25) can be realized from the orbifold-like
boundary conditions.

To be more concrete, the above localized mass terms modify the boundary con-
ditions (4.2) as(

d

dy
ReΨ + cσ′ReΨ

)∣∣∣∣
y=0+,πR−

∼ −zγμ∂μReΨR|y=0+,πR−

= ∓zγ
μ∂μ

2

√
m0,πR

L

∗
ψu

R
0,πR, (4.27)

ImΨ |y=0+,πR− = ∓1
2

√
m0,πR

R

∗
ψd

L
0,πR

, (4.28)

where the upper (lower) signs correspond to the boundary conditions at y = 0
(y = πR). Because there are discontinuities of the wave function profiles at the
boundaries owing to the mixing masses, we use limits indicated by the superscripts
±, instead of the values on the boundary for the bulk fermions. Namely, for example,
0+ denotes 0 + ε with a real and positive parameter ε → 0. In the first line, we use
the equation of motion to rewrite the left-hand side by the wave function of the
right-handed partner, ΨR. Strictly speaking, the derivative should be the covariant
one for this purpose. Nevertheless we can do it using the non-covariant derivative
because the difference does not contribute to the KK mass function calculated below
(which is already mentioned above). We can remove the localized fermions in the
boundary conditions using their equation of motion,

zγμ∂μψ
0,πR
L = −

√
m0,πR

R ImΨR|y=0,πR , (4.29)

zγμ∂μψ
0,πR
R = −

√
m0,πR

L ReΨ |y=0,πR . (4.30)

Then, we get

zmn ImΨ |y=0+,πR− = ±1
2

∣∣∣m0,πR
R

∣∣∣ ImΨR|y=0,πR , (4.31)

zmn ReΨR|y=0+,πR− = ∓1
2

∣∣∣m0,πR
L

∣∣∣ ReΨ |y=0,πR . (4.32)
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These give four conditions for the four coefficients as before, and we can calculate
the KK mass function as

N(x) =
[ (
axJc−1/2(ax) −

∣∣m̂0
L

∣∣ Jc+1/2(ax)
) (
xJ−c+1/2(x) −

∣∣m̂πR
L

∣∣ J−c−1/2(x)
)

− (xJc−1/2(x) +
∣∣m̂πR

L

∣∣ Jc+1/2(x)
) (
axJ−c+1/2(ax) +

∣∣m̂0
L

∣∣ J−c−1/2(ax)
) ]

× [ (axJc+1/2(ax) +
∣∣m̂0

R

∣∣ Jc−1/2(ax)
) (
xJ−c−1/2(x) +

∣∣m̂πR
R

∣∣ J−c+1/2(x)
)

− (xJc+1/2(x) −
∣∣m̂πR

R

∣∣ Jc−1/2(x)
) (
axJ−c−1/2(ax) −

∣∣m̂0
R

∣∣ J−c+1/2(ax)
) ]

− 2 cos2(cπ)
aπ2x2

(
x2 +

∣∣m̂0
L

∣∣ ∣∣m̂0
R

∣∣) (a2x2 +
∣∣m̂πR

L

∣∣ ∣∣m̂πR
R

∣∣) (cos(2QθW ) − 1) . (4.33)

This function coincides with Eq. (4.5) in the limit of vanishing all mixing masses up
to an overall numerical factor and a factor x4, which indicates that there are four
additional massless modes. These massless modes correspond to the four bound-
ary fermions which we should remove in the case of vanishing mixing masses. If
we introduce one of (m0

L,m
0
R) while the other is zero, the θW -dependent term is

suppressed by 1/m0
L,R compared with other terms when the mixing masses are suf-

ficiently huge. Thus, the dependence of the KK mass function on θW vanishes in
the limit m0

L,R → ∞. The same discussion can be applied to a pair of (mπR
L ,mπR

R ).
Reminding that mL (mR) changes the boundary condition of Ψu (Ψd), we can see
that the dependence remains if and only if the boundary conditions of Ψu and Ψd

are changed at the same time. Interestingly, in such cases, the boundary conditions
return to orbifold-like ones. In other words, for fermions with the non-orbifold-like
boundary conditions, the KK mass function becomes independent of θW , and thus
such fermions do not contribute to the effective potential of θW .

However, this conclusion seems strange, in a sense. This is because the coupling
of the non-orbifold-like fermions to the Higgs field seems nonvanishing. For instance,
let us consider the flat limit k → 0. In this case, the Ψu component of the fermion
with the first boundary condition in Eq. (4.25) interacts with the Higgs field with Ψd

R,
which has a (D,D) boundary condition. It is easy to see that the overlap integral
among the zero mode of Ψu, the lowest mode of Ψd

R, sin(y/R), and the zero mode of
A5 is nonvanishing. The reason the contributions of the non-orbifold-like fermions
vanish might be related to the fact that a (N,N) mode (Ψu) does not couple to a
(D,D) mode (Ψd

R) through θW in the orbifold picture. However, we do not yet have
a clear understanding at this stage, and we leave this as an open question.

Before closing this section, let us comment on Eq. (4.33). In the above discussion,
we use only the limits of m→ 0 or m→ ∞ for examining the Neumann and Dirichlet
boundary conditions. However, we can take a finite value for the mixing mass, and
in fact this is often used in model building in the GH unification scenario to make
unwanted zero modes massive. The expression (4.33) can be used for such cases.

§5. Gauge-Higgs condition

In this section, we examine the GH condition in the warped bacground. The
condition has first been proposed in Ref. 26) in the context of the GH unification
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scenario in the flat background.
The basic idea of the GH condition comes from the fact that, below the com-

pactification scale, the effective theory should be described by only zero modes in
the usual four-dimensional field theory. Since the Higgs field is merely a scalar field
in the effective theory, its potential receives divergent corrections and need to be
renormalized. The cutoff scale of the effective theory is expected to be around the
compactification scale, and the theory is defined by renormalization conditions at the
cutoff scale. We call the condition on the Higgs quartic coupling as the GH condition.
Once we settle these conditions, we can perform analysis in terms of a familiar four-
dimensional framework such as renormalization group equations, which is a powerful
tool for investigating low-energy phenomena of the GH unification scenario.

5.1. GH condition in the flat background

Before going to the discussion of the GH condition in a warped background, we
briefly review the condition in the flat case. In Ref. 26), we have investigated the
effective potential of the Higgs field in the flat five-dimensional space-time. Contri-
butions to the effective potential of the Higgs field from periodic and antiperiodic
fermions are analytically written as (up to constant term)

∞∑
w=1

cos(wx)
w5

= ζR(5) − x2

2!
ζR(3) +

x4

4!
1
2

[
25
6

− ln
(
x2
)]

+ O(x6), (5.1)

∞∑
w=1

cos[w(x− π)]
w5

= −15
16
ζR(5) +

x2

2!
3
4
ζR(3) − x4

4!
ln(2) + O(x6), (5.2)

with the overall coefficient C/2 = 3/(4π2(2πR)4). Additional minus signs appear
for the contribution of bosons.18) Here, ζR(x) is Riemann’s zeta function and x =
Qg42πRh = m1/ΛUV, where Q is the charge, ΛUV = (2πR)−1 is the cutoff scale of
the four-dimensional effective theory and m1 is the mass of the zero mode acquired
after symmetry breaking.

In the quadratic term of x2, the contributions of antiperiodic modes are of the
same order as those from periodic ones, and have opposite signs. Since antiperiodic
fermions have no zero modes (the mass of the lightest mode is of the order of the
cutoff scale), this fact means that the mass parameter can be treated as a free
parameter as long as we are interested in the low-energy effective theory in the GH
unification scenario. Unlike those in the quadratic term, contributions come mostly
from periodic modes in the quartic term when x� 1.

On the other hand, the effective potential is also calculated in the framework of
the effective theory. The contribution to the quartic term from the zero mode of a
periodic fermion with a charge Q turns out to be

Veff

∣∣∣
h4

=
1
4!

[
λ(μ) +

b

2
(Qg4)

4

{
ln
(
h2

μ2

)
− 25

6

}]
h4, (5.3)

where λ(μ) is defined by

λ(μ) =
d4Veff

dh4

∣∣∣∣
h=μ

, (5.4)
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which is the renormalized coupling defined at the scale μ,33) and b = −3/π2 is the
coefficient of the beta function of λ(μ) concerning the Yukawa coupling of the zero
mode with the Higgs field. By comparing this result with Eq. (5.1) (the spin degree
of freedom is 4), we find the renormalization condition as

λ

(
1

Qg4L

)
= λ

(
1

Qg42πR

)
= 0. (5.5)

This is the GH condition in the five-dimensional model in the flat background. Since
usually Qg4 = O(1), the running coupling constant vanishes around the cutoff scale
ΛUV. Practically, we can also find the cutoff scale ΛUV from the fourth derivative of
the effective potential around the origin, which is obtained from Eq. (5.1) as

d4Veff

dh4

∣∣∣∣
h→0

=
b

2
y4 ln

(
m2

1

Λ2
UV

)
, (5.6)

where y = Qg4 is the Yukawa coupling of the zero mode. Interestingly, this is nothing
but the renormalization effect of the coupling from the cutoff scale ΛUV down to the
zero mode mass m1, neglecting the Yukawa coupling flow.

5.2. GH condition in warped background

The GH condition is consistent with the physical speculation that the Higgs self
interaction should vanish above the compactification scale where the five-dimensional
gauge invariance will be recovered. Therefore, it is expected that a similar condition
also holds in the warped case. In such a case, however, it is not clear which scale is
the compactification scale. In fact, the typical scale of the first KK massmKK = πka
is far from the ‘radius’ 1/R. Unfortunately, it is difficult to investigate the effective
potential analytically in the warped case. Instead, we perform numerical analyses
to find the cutoff scale ΛUV. Here, we examine the effective potential induced by a
periodic mode with a charge Q = 1/2,

Veff(θW ; c, 1/2) =
1
2

(ka)4

(4π)2
2
∫ ∞

0
dxx3 ln

(
1 +

cos θW

N̄c(x; c)

)
, (5.7)

where we fix the warp factor to a = a0 = 10−15. The contribution of an antiperiodic
mode is given simply by Veff(θW + π; c, 1/2).

First, let us see the scale dependence of the running quartic coupling defined
in Eq. (5.4). In Fig. 5, we show the fourth derivative of the potential V (4)

eff (θW ) ≡
d4Veff(θW ; c, 1/2)/dθ4

W as a function of θW . In the left figure, V (4)
eff (θW ) is normalized

by the prefactor (ka)4/(32π2). Since

d4

dh4
=
g4
4(1 − a2)2 (ln(a))2

4(ka)4
d4

dθ4
W

, (5.8)

the running coupling in Eq. (5.4) is obtained by multiplying 2(ln(a0)/(16π))2g4
4 ∼

0.94g4
4 to the fourth derivative V (4)

eff (θW ). When c close to 0, the coupling is so large
that the perturbative calculation is not reliable. The reason we show such unreliable
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Fig. 5. Scale dependence of running quartic coupling: The fermion mass is fixed at c =
0, 0.2, 0.4 and 0.5, respectively. In the left figure, the fourth derivative of the potential
is shown as a function of θW , while it is normalized by Veff(0; c, 1/2) in the right figure.

results is to compare them with reliable ones (with c close to 1/2). Since the potential
in the c = 0 case is the same as that in the flat model, the GH condition is given
by that in §5.1. Therefore, with the correspondence 1/R ↔ πka/(1 − a), the GH
condition in Eq. (5.5) holds at μ = ka/(2Qg4(1 − a)) in the c = 0 case. The results
in Fig. 5 show that the potential with a smaller c has a stronger IR divergence. In
other words, the effect of the constant term in V

(4)
eff (θW ) becomes more relevant for

the mode with c closer to 1/2. Thus, the scale of the GH condition is larger for larger
c. This means that there is a nonvanishing threshold effect at μ = ka/(2Qg4(1−a)),
which is the counterpart of the scale in the flat case.

This fact seems to be natural, because, in the warped background, it is well
known that the profiles of KK modes tend to approach the IR (y = πR) brane; thus,
the modes have larger Yukawa couplings with the Higgs field (which also localizes
around the IR brane) than the zero modes. As a result, the contributions of the KK
modes are relatively enhanced, and their effects on quartic coupling are expected to
appear as threshold corrections. These threshold corrections from the KK modes
at the compactification scale are sizable in the warped GH unification models, in
contrast to the flat models.

Next, we discuss contributions to the potential of the antiperiodic modes. The
contributions to the quadratic term (mass parameter) are shown in Fig. 6 (left figure)
using the second derivative of the potential at θW = π as

V
(2)
eff (θW ) ≡ d2Veff(θW ; c, 1/2)

dθ2
W

= −1
2

(ka)4

(4π)2
2
∫ ∞

0
dxx3 1 + N̄c(x; c) cos θW(

N̄c(x; c) + cos θW

)2 , (5.9)

normalized by V
(2)
eff (0) as a function of c. This ratio is nothing but that between

antiperiodic and periodic modes. As can be seen in the figure, the contributions of
antiperiodic modes are comparable to those of periodic ones, as in the flat case.

The contributions to the quartic term of antiperiodic modes are shown in Fig. 6,
where the ratio −V (4)

eff (π)/V (4)
eff (θW ) is depicted as a function of c for θW = 0.1, 0.01

and 0.001. Note that the potential with c = 0 is the same as that in the flat case.
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Fig. 6. Contributions to potential of antiperiodic modes: In the left figure, the contribution
ratio of antiperiodic to periodic modes is shown. In the right figure, the Wilson phase is
set to be θW = 0.1, 0.01 and 0.001.

We see that contributions of antiperiodic modes are suppressed at small θW when
c � 1, as expected. On the other hand, for c close to 1/2, the contributions are
comparable to those of the periodic modes. One of the reasons for this should be the
fact that the mass of the lightest mode of the antiperiodic fermion is much smaller
than the typical KK mass mKK . Also, the result is consistent with the fact that the
threshold corrections from the KK modes are more important for larger c. The figure
implies that the contribution of the running effect below the first KK mass is not
large, which is different from that in the flat case. Unfortunately, it seems difficult
to find an analytical expression for threshold corrections from the KK modes.

§6. Summary and discussion

In this article, we have derived formulae for calculating the effective potential
of the Higgs field in the gauge-Higgs unification scenario in the Randall-Sundrum
background. They can be applied even when we introduce bulk fermions with arbi-
trary parity-odd bulk mass terms and boundary conditions. These formulae will be
useful not only for analyzing the GH unification scenario but also for constructing
realistic models having many attractive features.11)–15)

We have also calculated the contributions to the potential of bulk fermions with
boundary conditions that are not allowed in the orbifold picture. As a result, we
have shown that their contributions vanish even though they seem to couple with the
Higgs field. This might be related to the fact that the orbifold parity forbids coupling
in the orbifold picture, but we have not found a clear reason why the contributions
vanish, and leave this as an open question. Nevertheless, we note that the expression
of the KK mass function, which is used to calculate the effective potential, is useful
for finite values of mixing masses, although we derived it to examine the contribution
of non-orbifold-like fermions in the limit of zero or infinite mixing masses.

Since the formulae allow us to calculate Higgs potential exactly at one-loop level,
the potential properly incorporates its infrared behavior. Thus, we have examined
the GH condition26) in the warped background. In a flat case, the running coupling
of quartic Higgs interaction vanishes at the compactification scale. On the other
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hand, in the warped models, we found that the coupling has a substantial value
already at the scale of typical KK mass. This fact can be understood as threshold
corrections from KK modes, because the interactions of Higgs with KK modes are
strong compared with those with zero modes. Although it is not easy to evaluate
threshold corrections analytically, once we find a way to evaluate them, it will become
possible to investigate GH models on the warped background in the framework of
the well-established four-dimensional field theory. We leave this problem for future
work.
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