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The α-α transition operator-effective interaction, tαα(E,�r) has been evaluated using
phenomenological α-α optical potentials at several bombarding energies, Eα from 77 to
200 MeV. The results are obtained by solving the Schrödinger equation with appropriate
optical potentials for various partial waves and then clubbing these with their respective
optical potentials and initial state plane waves. The change of the α-α optical potential with
or without hard core has been shown to influence the effective α-α t-matrix interactions
drastically. The behaviour of the calculated tαα(E,�r) effective interaction indicates towards
a solution of the large anomalies found in the (α, 2α) reaction analyses.

§1. Introduction

Quasifree proton knockout, (p, 2p) reaction has been proved to be a powerful
tool for the investigation of proton hole states in light and medium mass nuclei.1)–7)

Similar method of knockout has been applied for the study of α-clustering in light
and medium mass nuclei through quasifree α-knockout in (p, pα) and (α, 2α) reac-
tions.8)–13) The zero range distorted wave impulse approximation (ZR-DWIA) has
been the main reaction model for the analysis of these reactions. The extracted ab-
solute α-clustering spectroscopic factors from the (p, pα) reactions have been found
to be in reasonable agreement with the nuclear structure calculations.10),11),14) In
the case of (α, 2α) reactions however, there arise orders of magnitude anomalies in
the extracted α-spectroscopic factors.12),13),15),16) For the (α, 2α) reactions even
the shapes of the energy sharing spectra have large mismatch between the ZR-
DWIA predictions and the corresponding data (especially for spectra which have
pronounced structure, such as for � �= 0 knockout).15),16) So far it has remained a
puzzle that the ZR-DWIA formalism which seems to work nicely for the (p, 2p) and
(p, pα) reactions fails miserably in its predictions for the (α, 2α) and other knockout
reactions involving the alpha particle beams.17)–19) However, at 200 MeV in the case
of 9Be(α, 2α)5He and 12C(α, 2α)8Be reactions20),21) there were hardly any discrep-
ancies observed between the ZR-DWIA predictions and the data. No explanation
has been forthcoming to understand this sharp energy dependence20),21) as well large
anomalies found in the analyses of data up to 140 MeV.10),12),13)

While the inputs to the ZR-DWIA calculations are generally well defined it is
worth verifying some of the basic simple minded approximations made within the ZR-
DWIA formalism. One of the basic approximations which has been explicitly made
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1194 A. K. Jain and B. N. Joshi

use of is the factorization approximation.10),22) Here it has been clearly assumed that
the α-α t-matrix interaction operator called the effective α-α interaction (which is
responsible for the transfer of large energy and/or momentum) is sufficiently short
ranged so that the optical distortions do not change significantly over this range.
An empirical test of this factorization approximation for the (α, 2α) reactions was
obtained from an entity derived from the (α, 2α) data as a function of θαα. Indeed,
as expected, this entity had been found to be following the proper trend over three
orders of magnitude variations of dσ

dΩ |αα.12) A further check has also been obtained
through the appearance of the 19.8 MeV α-α resonance in the (α, 2α) data.8),9)

Theoretically it has been argued by Jackson and Berggren3)and Jacob and
Maris1) that the factorization arises not only due to the short range nature of the
t-matrix effective interaction but also due to the constancy of the optical distortion
factors over the significant range of the t-matrix effective interaction. For example
in the extreme case of no optical distortions or plane waves the factorization would
be exact even when the t-matrix effective interaction is of sufficiently large range.
However, the ratio of the plane wave to the distorted wave cross sections ( σPW

σDW
,

Table II of Ref. 10)) is more than 3-orders of magnitude at medium energies and
the plane wave impulse approximation, PWIA analyses give much less anomalous
results than the ZR-DWIA analyses. This is an indication that somehow ZR-DWIA
is overestimating the distortion effects. Thus actually the results include much less
distortion effects in the data than what had been incorporated through the ZR-
DWIA.16) Extending this argument further one may conclude that the observed
empirical factorization8),9),12) results from lesser optical distortions than from the
short range nature of the t-matrix effective interaction. Therefore necessitating a
thorough examination of the zero-range approximation in the ZR-DWIA through a
study of the nature of the t-matrix effective interaction.

One of the important findings of the study of (p, 2p) reactions using zero range-
DWIA and finite range-DWIA formalisms by Kudo and Miyazaki,23) Ikebata5) and
Cooper and Maxwell24),25) has been the demonstration of large differences in both
the shapes as well as magnitudes of the zero range and finite range results. However,
they could do the finite range DWIA (p, 2p) calculations because one of the essential
ingredients, i.e the p-p t-matrix effective interaction was available from the works of
Love and Franey.26),27) For the (α, 2α) reaction however, the α-α t-matrix effective
interaction, tαα(E,�r) is an essential ingredient for the finite range-DWIA calcula-
tions. These α-α t-matrix effective interactions are not available in the literature and
through this paper we report our calculations on these α-α t-matrix effective inter-
actions. Our study of the α-α t-matrix effective interaction will indicate whether the
factorization is a result of the short range nature of the t-matrix effective interaction
or it is because of the weaker distortions. A short ranged α-α t-matrix effective
interaction will indicate the validity of the zero range-DWIA while a longer ranged
one will suggest using a finite range-DWIA analysis which will correspond to weak
optical distortions.

The main purpose of the present work is to find out the extent to which the
α-α t-matrix effective interaction, tαα(E,�r) differs from δ(r) in the region where
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Effective α-α t-Matrix Interaction at Medium Energies 1195

the (α, 2α) reactions show large anomalies. In §2 the formalism is presented for the
evaluation of tαα(E,�r). In §3 the nature of the realistic α-α optical potentials is
discussed. The calculations, results and discussions are included in §4 and finally
the conclusions are presented in §5.

§2. Formalism for α-α transition operator t¸¸(E, �r)

In terms of the Møller wave operators, Ω± and scattering potential, V the ef-
fective interaction operators T± are defined28) as

T± = V Ω±.

Here Ω± are such that they transform the plane wave states, Φ into scattering
states, Ψ±.

For α-α scattering the potential, V (�r) is central, V (r) (which may be energy and
� dependent) and the solution of the corresponding Schrödinger equation in terms
of partial waves is,

Ψ±
αα(�r) =

∑
�=0,2,4,..

i�(2� + 1)
u�(kr)

kr
eiσ�P�(r̂). (2.1)

Only even partial waves, � (= 0, 2, 4, ..) contribute to the Ψ±
αα(�r) because of the

symmetric nature of the α-α scattering state. Here �k, r, and r̂ are the wave vector of
the relative α-α motion, α-α separation and the angle between �k and �r respectively.
The radial wave function, u�(kr) is the solution of the radial Schrödinger equation
and σ� is the Coulomb phase shift. The α-α t-matrix effective interaction, t+αα(E, �r)
will now take the form as

t+αα(E,�r) =e−ikzV (�r)Ψ+
αα(�r) (2.2)

≡
∑

L=0,1,2,3...

tL(E, r)PL(r̂). (2.3)

Here it is to be noted that all the multipoles, L-values (= 0, 1, 2, 3,...), even
as well as odd contribute in the expansion of Eq. (2·3) of α-α t-matrix effective
interaction. This arises because the partial wave expansion of plane wave, e−ikz of
Eq. (2·2) will contain all partial waves, even as well as odd, which combining with the
even partial waves of Ψ±

αα(�r) will lead to a combination of even and odd multipoles in
the expansion of the t-matrix effective interaction. The assumption of even L-values
in the expansion of the t-matrix effective interaction by Sharma and Jain29) is not
correct. Now the t-matrix is given by

t+αα(E,�r) = e−ikz
∑

�=0,2,4,..

V�(r)i�(2� + 1)
u�(kr)

kr
eiσ�P�(r̂). (2.4)

The tL(E, r) of Eq. (2·3) (which are used to calculate the differential cross section
for elastic scattering) can be evaluated by expanding e−ikz in terms of partial waves.
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Then

tL(E, r) =
2L + 1

2

∫ +1

−1
P ∗

L(cos θ)t+αα(E,�r)d(cos θ)

=
2L + 1

2

∑
�,m

V�(r)i�(2� + 1)
u�(kr)

kr
jm(kr)(−i)m(2m + 1)

eiσ�

∫ +1

−1
P ∗

L(cos θ)P�(cos θ)Pm(cos θ)d(cos θ). (2.5)

Here jm(kr) is the spherical Bessel function. It can be easily seen that while �
in Eq. (2·1) takes on even values due to the symmetry of the α-α wave function, the
L in Eq. (2·3) will have both even as well as odd values due to the asymmetry of
e−ikz. The scattering amplitude for elastic scattering at angle ΘC.M. is given by

f(ΘC.M.) = − μ

2π�2
Tfi(�kf , �ki),

where μ is the reduced mass and

Tfi(�kf , �ki) = 〈Φf (�kf ) | t+αα(E,�r) | Φi(�ki)〉, (2.6)

with the Φ representing the plane wave states. Now

f(ΘC.M.) = − μ

2π�2

∫
e−i�kf .�r

∑
L=0,1,2,3...

tL(E, r)PL(r̂)ei�ki.�r �dr.

The elastic angular distribution, σ(ΘC.M.) was obtained using either the con-
ventional phase shifts from the α-α optical potentials or the α-α t-matrix effective
interaction, tαα(E,�r) of Eqs. (2·3) to (2·6) evaluated from the same realistic α-α
optical potentials.

§3. α-α optical potentials

For the evaluation of the α-α t-matrix effective interaction, tαα(E,�r) one of the
main input requirements is the realistic α-α interaction between the two alphas. The
second requirement is the symmetry of the system which in α-α case, requires the
α-α relative wave function to be symmetric in the exchange of the two alphas. The
realistic interaction between the two alphas can be obtained by fitting the α-α elastic
scattering phase shift data by phenomenological optical potential (which represents
our realistic interaction). It is well known that optical model potential obtained by
this procedure is not unique. These optical model potentials have continuous as well
as discrete ambiguities in their various parameters.

Theoretically, however, one can obtain the optical potentials microscopically us-
ing various prescriptions, models and assumptions. A special characteristic of nuclear
scattering involving two complex particles, such as the two alphas, is that the Pauli
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Effective α-α t-Matrix Interaction at Medium Energies 1197

Fig. 1. Typical α-α real optical potentials Vα−α(r) � independent fully attractive as well as �

dependent with a repulsive core (for � = 0, 2, 4, 6, 8 and 10) (a) for Eα = 119.86 MeV and (b)

for Eα = 200 MeV.

Fig. 2. Comparison of the calculated α-α elastic scattering angular distributions with the data (a)

using � dependent α-α optical potentials with repulsive core at Eα = 77.5, 99.6, 119.86 and 200

MeV, and (b) using � independent fully attractive α-α optical potentials at Eα = 119.86 MeV

and 200 MeV.

exclusion principle forbids the formation of compound cluster states with certain in-
tercluster quantum numbers. For the excluded compound states the phase equivalent
two-body potential should have a repulsive core arising from a nonlocal term. The
source of this is the Pauli exclusion principle in the resonating group method, (RGM)
of Wildermuth et al.30) and Aoki and Horiuchi31) or in the orthogonality condition
model, (OCM) of Saito, Okai, Tanaka, Tamagaki and others.32)–34) These equivalent
local optical potentials with very short range hard cores are energy independent and
angular momentum dependent.31)–34) However these local potentials do not contain
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1198 A. K. Jain and B. N. Joshi

Fig. 3. Effective α-α t-matrix interaction, tL(r) vs r at 119.86 MeV for many L-values, (a) us-

ing V�,α-α(r) with repulsive core with a longer range attraction, and (b) using an all through

attractive Vα-α(r).

Fig. 4. Effective α-α t-matrix interaction, tL(r) vs r at 200 MeV for many L-values, (a) using

V�,α-α(r) with repulsive core with a longer range attraction, and (b) using an all through at-

tractive Vα-α(r).

such a strong and “long range” repulsive force as that of the phenomenological α-α
potentials of Darriulat et al.35) On the other hand, it has been advocated by Neu-
datchin et al.36) that one should use energy dependent deep attractive potentials
containing forbidden bound states. It had been shown that a choice of the real part
as a sum of two attractive Woods-Saxon potentials,37),38) provide excellent fits to
the α-α scattering data over a wide range of energies. Thus these two types of α-α
potentials widely differ in their nature in terms of their shape (see Figs. 1(a) and
(b)), their energy and orbital angular momentum dependence but they all reproduce
the elastic scattering angular distributions very well (see Figs. 2(a) and (b)).

There have been a lot of discussions31),33),34),36),39)–41) on the merits and demer-
its of both types of these optical potentials citing their dynamical versus static Pauli
correlation nature. Without digressing much from the main point of our discussion
we emphasize that so far for other applications there has been no way to choose one
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Effective α-α t-Matrix Interaction at Medium Energies 1199

type of the optical potential to be more suitable in comparison to the other from
the analysis of the elastic scattering data alone, as witnessed in Figs. 1 and 2. How-
ever it is expected, from the definition of the t-matrix effective interaction, Eq. (2·2)
(being the product of a plane wave, Vαα(r) and Ψ±

αα(�r)), that these tαα-may be dras-
tically different from their respective realistic interactions. The use of these different
t-matrix effective interactions in a finite range-plane wave impulse approximation,
FR-PWIA analysis of knockout reactions will not differentiate between them due to
the applicability of the exact factorization. However in the distorted wave case the
FR-DWIA analyses are expected5),23)–25) to differ significantly from the ZR-DWIA
analyses. In fact, different FR-DWIA results were obtained23),24) for the (p, 2p) re-
actions by the use of different t-matrices.26),27) We have therefore calculated the
t-matrix effective interactions using the two types of realistic α-α interactions, (1)
Attractive but with a repulsive core and (2) all through Attractive. The available real
(� -dependent) α-α potentials35),37),38) (1) having repulsive core with a longer range
attraction and the other (2) bearing an all through attractive nature are seen for
Eα = 119.86 MeV and 200 MeV in Figs. 1(a) and 1(b) respectively. Both of these
real optical potentials along with their mild imaginary counterparts35),37) provide
angular distributions at 119.86 and 200 MeV which reproduces the α-α scattering
data rather well in Fig. 2.35),37) It is to be remarked that the angular distributions
are quite similar from 77.55 MeV to 200 MeV, the attractive �-independent optical
potentials for 120 MeV and 200 MeV are quite different from the �- dependent opti-
cal potentials with repulsive core. As the fully attractive Vαα(r) are not available in
the literature for 77.55 MeV and 99.6 MeV here we compare the tαα(r) results for
two the types of potentials for large number of L-values for Eα = 119.86 MeV and
200 MeV in Figs. 3 and 4. It is seen that qualitatively the repulsive core results for
tαα(r) are pushed out to larger r’s in comparison to the tαα(r) results corresponding
to the all through attractive Vαα(r). The peak of the repulsive core results is seen to
be shifted to r ∼ 1.7 fm while the results for the all through attractive Vαα(r) peak
at r = 0.

§4. Calculation of t¸¸;L(E, �r), results and discussion

Evaluation of the α-α t-matrix effective interaction, tαα(E,�r) is done at four α-
laboratory energies Eα, 77.55, 99.60, 119.86 and 200 MeV where the (α, 2α) reaction
results were existing on various target nuclei.12),15),20),21) For the evaluation of
tαα,L(E, r) the Schrödinger equation is solved with initial state boundary condition
for given α-α centre of mass energy and optical potential. The various radial wave
functions u�(kr) for different even partial waves were obtained. These u�(kr) are
multiplied with respective optical potentials, V�(r) the spherical Bessel functions,
jm(kr) and various constants for every L of tαα,L(E, r) in Eq. (2·5), the product of the
three P�(cos θ) integrated over θ and then summing over � and m gives the tαα,L(E, r).
From Eq. (2·5) it is clear that for any L-value of tL(E, r) contributions from various
�-values, the realistic interaction V�(r) and u�(kr)

kr will contribute. Moreover while
�-values of the partial waves in the wave function Ψ+(�r) are restricted to be only
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1200 A. K. Jain and B. N. Joshi

Fig. 5. (a) Real part of the α-α t-matrix effective interaction, tαα,L(E, r) for L = 0 using V�,α-α(r)

with a repulsive core at Eα = 77.55, 99.6 and 119.86 MeV and using an all through attractive

Vα-α(r) at Eα = 200 MeV. (b) Same as for Fig. 5(a) except that it is for the imaginary part of

the α-α t-matrix effective interaction, tαα,L(E, r) for L = 0.

Fig. 6. Same as for Fig. 5 but for L = 1.

even values, the multipole L-values of tL(E, r) can take even as well as odd values.
This arises when in Eq. (2·3) both even and odd partial waves of the partial wave
expansion of e−ikz couple with the even partial waves of V (r)Ψ+

αα(�r).
The tL(r) results are plotted as a function of r(r = rαα) in Figs. 5(a) and (b)

to Figs. 8(a) and (b) for the chosen energies and the multipole L-values from 0, 1, 2
and 3 respectively. In Figs. 5(a) to 8(a) only real values of tL(r) are plotted while in
Figs. 5(b) to 8(b) only imaginary values of the tL(r) are plotted. A comparison of
the even and odd L-value contributions to the α-α t-matrix effective interaction in
Figs. 5(b) to 8(b) gives the feeling that for lower energy cases and except for L = 0
monopole case most of the �mtL(r) are largely positive.

It is seen in Figs. 5 to 8 that when all through attractive potentials are employed
the tL(r) results are strikingly different from the tL(r) results of Vα-α(r) with a
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Effective α-α t-Matrix Interaction at Medium Energies 1201

Fig. 7. Same as for Fig. 5 but for L = 2.

Fig. 8. Same as for Fig. 5 but for L = 3.

shorter range repulsive core. Moreover as seen in Figs. 5(a) and (b) the results of
t0(r) (both real as well as imaginary components) with attractive Vα-α(r) have a
very prominent peak at r = 0. This is only to be expected from an all through
attractive potential (as at 200 MeV and 120 MeV) because the � = 0, s-wave in
Ψ+

αα(�r) does not have to overcome the centrifugal barrier resulting in both V0(r) and
u0(kr)

kr peaking at r ∼0. In contrast to this, all the lower energy L = 0 results using
repulsive core Vα-α(r) as seen in Fig. 5 here have almost negligible contributions
close to r = 0. This again is to be expected as the repulsive core in the V0(r) optical
potentials will lead to negligible radial functions, u0(kr)

kr at short α-α separation in
the repulsive core region. It is to be emphasized that in the α-α elastic scattering
around ΘC.M. ∼ 90◦, the largest contribution comes from the � = 0 partial wave
(although the collective contribution from larger partial waves is significant). It is to
be recalled that the ZR-DWIA analyses of the symmetric coplanar data containing
the zero recoil momentum uses the ΘC.M. ∼ 90◦ free α-α elastic scattering cross
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sections as input. As these 90◦ results are affected strongly by the L = 0 t0(r), the
wild difference between the (α, 2α) results at 200 MeV and at lower energies may be
associated to the different finite range nature of the tL(r) at these energies arising
from the change of the nature of Vα-α(r).

Thus on the basis of the present knowledge of the tαα(r) it is but natural that
the FR-DWIA results for (α, 2α) reactions on any target nucleus where Vα-α(r) is
all through attractive (at 200 MeV) are expected to be different where Vα-α(r) has
short range repulsion (as at lower energies, 77.55, 99.60 and 119.86 MeV).

It has indeed been found by us in very preliminary FR-DWIA calculations that
the α-α vertex is much more important in explaining the (α, 2α) reaction anom-
alies12),20),21) than the α-residual nucleus vertex. As the FR-DWIA calculations we
have performed are very cumbersome, time-consuming and require huge resources in
terms of computer hardware, so far we could only achieve very preliminary results
vindicating only our initiative in this venture.

Invariably the ZR-DWIA analyses provide α-clustering probabilities that are
energy dependent. The higher the energy one uses the lesser the anomaly one gets
in the ZR-DWIA analyses of the (α, 2α) reactions. Qualitatively this result can also
be seen to arise when one compares the lower energy (77.55, 99.60 and 119.86 MeV)
tL(r) results amongst themselves. It is seen in Figs. 5 to 8 that for repulsive core
results themselves there is a gradual shift of the tL(r) vs r curves towards lower values
of r as the energy increases. This qualitatively amounts to improved applicability of
the ZR-approximation with increasing incident energy.

Due to the simple structure of the � = 0 (here � = 0 is meant to be the orbital
angular momentum of the bound α-residual nucleus state of the target nucleus)
(α, 2α) knockout spectra one may not be able to envisage the influence of the finite
range form of the t-matrix α-α effective interaction on the shape of these spectra.

Fig. 9. 3S α-12C g.s. intercluster bound wave function for 16O using different Woods-Saxon wells

of various radii (RSW = r0 × 121/3). Continuous line ( ) with r0 = 2.52 fm. Dotted line

(· · · · ·) using r0 = 1.09 fm. Dashed line ( ) same as with r0 = 1.09 fm but shifted by 2 fm.

Histogram of Δσ (change in calculated 16O(α, 2α)12C cross section) for 0.5 fm change in cutoff

in ZR-DWIA using r0 = 2.52 fm.
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However, for the � = 1 (α, 2α) knockout spectra which have characteristic pronounced
structures, the 7Li(α, 2α)3H reaction data12) at lower energies have witnessed lesser
influence of optical distortions16) (dip at small recoil momenta is very pronounced in
the 77 MeV data as compared to the 119.86 MeV data) contrary to the zero range
DWIA predictions. This indicates that the zero range assumption for the t-matrix
α-α effective interaction amounts to larger distortion in the DWIA analyses of the
7Li(α, 2α)3H data suggesting a proper finite range analysis to resolve the anomalies.

In Fig. 9 various bound state wavefunctions are shown which had been used
earlier to analyse the α-knockout from 16O-nucleus.12) Using a realistic bound state
well radius of r0×12

1
3 , with r0 = 1.09 fm yields an unrealistic α-spectroscopic factor

of about two orders of magnitude too large10) in comparison to the expectations
based on the shell model estimates. In order to circumvent such large spectroscopic
factors in general, Wang et al.12) and Chant et al.13) increased the radius parameter
(α-residual nucleus vertex) r0 from 1.09 to 2.52 fm and got the α-spectroscopic
factors which were consistent with data of (p, pα) and (α, 2α) reactions as well as
with the shell model theory. It is also seen in Fig. 9 (histogram, r.h.s. scale) that for
the 16O(α, 2α)12C g.s. reaction at 140 MeV the zero recoil momentum ( �K12C∼ 0)
contributions to the (α, 2α) cross section are localized beyond R1C ∼5 fm. It is
interesting to note that the bound state intercluster wave function, u0(R1C) is also
nicely overlapping with the corresponding u0(R1C) for r0 = 1.09 fm but which is
shifted by ≈ 2 fm in the region where the reaction, Δσ is localized. At this stage
it is only to be visualized that this shift is akin to the shift one observes in Figs. 3
and 4 for the tL(r) vs r for repulsive and attractive realistic interactions Vαα(r)

Fig. 10. Schematics of incident α0 knocking

out the bound α1 from inside the nucleus

due to α-α repulsion.

respectively. It is to be conceived (see
Fig. 10), that if tαα(r) is shorter ranged,
as in the case of fully attractive Vαα(r),
then for the knockout to occur the in-
cident α- has to enter and then emerge
from the strong absorption region where
the α- is bound with the target, thus val-
idating the large distortion effects of the
ZR-DWIA. On the contrary when the
tαα(r) is longer ranged, as is the case
with Vαα(r) with repulsive core then for
the knockout to occur the incident α-
can knockout the bound α-cluster even without entering the strong absorption re-
gion. In this case the cross section is expected to be comparatively large due to the
reduced attenuation in the incoming and emerging α-particles as witnessed in the
lower energy (α, 2α) results.

Another point worth attention that has emerged from the present study is that
almost twice as many multipole L-values are required with the α-α effective interac-
tion to fit the elastic scattering data than the corresponding � in the realistic optical
potential interaction. This is the result of a certain partial wave, say Lmax, of Ψ+

αα(�r),
lying in the optical potential range, coupling their angular momentum with a similar
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partial wave of the plane wave expansion, e−ikz lying in the same range. Naturally
the angular momentum coupling will permit double the angular momentum values
in the same radial zone.

§5. Conclusions

From the present study of the evaluation the effective α-α t-matrix interaction
at different energies few points have emerged very clearly. In the ZR-DWIA the
t-matrix α-α effective interaction is assumed to be a δ-function while this has been
calculated here and is shown to be fairly long ranged. This, as discussed in the
Introduction, indicates that the factorization obtained in the (α, 2α) reactions is not
a result of the zero range α-α vertex. With the finite longer range α-α vertex found
in the present work the factorization should be a result of weak optical distortions
only. The results obtained in the past using the ZR-DWIA analyses indicating the
strong optical distorions is in fact the result of not accounting the finite range effects
of tαα(�r) as worked out in this report. The indications of this happening had been
seen and reported earlier16),42) proving thereby that the zero range approximation
for the t-matrix α-α effective interaction is a very crude approximation.

One of the notable points that has come out here, contrary to the previous
assumption,29) is that while there are only even �-values in the realistic interaction
arising out from the symmetric nature of the colliding system the α-α t-matrix
effective interaction contains both even as well as odd L-values. The symmetric
character of the wave function is reflected in the strong correlations between various
tαα,L(r). Another point concerns the differences between the effective interactions
obtained from fully attractive and from repulsive core realistic interactions. While
the t0(r) for the fully attractive Vαα(r) is peaked at r = 0 the t0(r) for Vαα(r)
with a repulsive core is peaked away from the r = 0, the shift is about the size of
the repulsive core. For other L-values all the tL(r) whether from attractive or from
repulsive core Vαα(r) are peaked away from r = 0. In general the tL(r) corresponding
to the repulsive core Vαα(r) are peaked more outside in comparison to the ones
obtained from fully attractive Vαα(r). In terms of the energy dependence it is found
that the lower energy tL(r) are pushed out more in comparison to the ones for higher
energies. Another significant finding of the present study is that the maximum
L-values for tL(r) that contributes significantly to the elastic scattering angular
distribution is almost double the maximum �-values that contribute from the realistic
interaction. Use of the evaluated tL(r) in very preliminary FR-DWIA calculations
indicates that the anomalies found in various (α, 2α) reactions may find a reasonable
solution in terms of the finite range effects and the energy dependence of the effective
α-α t-matrix interaction at the α-α knockout vertex.
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