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In 1970, Kobayashi and Maskawa concluded that an effective six-quark vertex with a
determinantal form is necessary in the chiral effective models to account for the large mass
of X meson, which is now called η′. The determinantal interaction has an SU(3)L ⊗SU(3)R

symmetry but not U(3)L ⊗ U(3)R, and, hence accounts for the explicit breaking of U(1)A

symmetry in quantum chromodynamics (QCD); the vertex was later derived by ’t Hooft as
an instanton-induced quark interaction. The vertex, which may be called the Kobayashi-
Maskawa-’t Hooft (KMT) term, is widely used in quantitative analyses of hadron physics
and QCD phase transitions at finite temperature and density. An account is made for the
KMT term with recent extensive applications. Described are also personal experiences with
Professor Maskawa and Professor Kobayashi, including an encounter with Professor Maskawa
when the author first presented his work on the KMT term.

Subject Index: 230, 231, 232

§1. Introduction

The pseudoscalar meson η′(958) was called X in the past for some time. It
was difficult to understand its large mass within the chiral SU(3)L ⊗ SU(3)R with
an explicit symmetry breaking term −ε0S0 − ε8S8, which may have been identified
with the quark mass term with Sa = q̄λaq; here, the isospin symmetry is assumed.
Note that the existence of the quarks or ur-baryons was far from being established
in those days. As early as 1970, Kobayashi and Maskawa indicated, in a paper1)

entitled “Chiral symmetry and eta-X mixing”, that this is a serious problem, and
concluded that there should exist a six-quark interaction with a determinantal form

det
i,j

q̄i(1 − γ5)qj + h.c., (1.1)

where h.c. stands for Hermite conjugate. Their analysis was based on the method
of Gell-Mann-Oakes-Renner,2) and a detailed account of the outcome of this vertex
was reported in 1971 by Kobayashi, Kondo and Maskawa.3) This vertex is contained
in instanton-induced quark interaction derived by ’t Hooft in 1976,4) and is often
called the ’t Hooft vertex. However, one now sees that the appropriate name of
this six-fermion determinantal vertex should be the Kobayashi-Maskawa or at least
Kobayashi-Maskawa-’t Hooft term, which we adopt5) and will be abbreviated as the
KMT term or vertex.

The compatibility of the large mass of the η′ with quantum chromodynamics
(QCD) was formulated as the U(1)A problem by Weinberg6) in 1975. The present
understanding of the resolution of the problem is also described in the textbook by
Weinberg7) and also by Fujikawa and Suzuki,8) for example. The basic ingredients
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256 T. Kunihiro

are the U(1)A anomaly for the divergence of the axial current in the flavor singlet
and the instanton configuration9) leading to the θ-vacuum.10) The physical origin
of the large mass of the η′ is thus understood to be due to an explicit breaking of
the U(1)A symmetry. It means that the low-energy effective theory of QCD should
contain a vertex that explicitly breaks the U(1)A symmetry.

An interesting point of the work by Kobayashi and Maskawa is the fact that
their proposal was based on the work by Nambu11) who shared the Nobel prize with
them in 2008. Noting that the original Nambu-Jona-Lasinio (NJL) model11) only
contains the four-fermion interaction and, hence, becomes inevitably U(3)L ⊗U(3)R

invariant even if one imposes SU(3)L ⊗ SU(3)R invariance to the model, Kobayashi
and Maskawa1) concluded that the six-fermion interaction of a determinantal form
should be present in the chiral quark model as given by Nambu-Jona-Lasinio11) for
the η′ to be described in the theory.∗)

The first serious and extensive analyses of such an extended NJL model with the
six-fermion determinantal interaction were carried out around 1987 to 1988 by sev-
eral people including the present author;13)–16) in these analyses, the nonperturbative
vacuum is determined in the self-consistent mean-field theory, and the pseudoscalar
and scalar mesons as collective excited states on top of the vacuum are also calcu-
lated as in the original work,11) and, hence, the model parameters are determined
explicitly. In those days, people became interested in the possible violation of the
Okubo-Iizuka-Zweig rule in the baryon sector, which was prompted partly by the
mysteriously large value of the π-N sigma term ΣπN ,17) which may be related to
the possible strangeness content of the nucleon in the scalar channel; see Ref. 18)
for a recent status of the understanding of this subject. An interesting aspect of
the KMT term is that it can give rise to a flavor mixing in the scalar as well as
in the pseudo-scalar channels as in the η-η′ system and, hence, may be an origin
of a possible OZI rule violation in the baryon sector.13),15),19) An extension of the
model to include the vector and axial vector fields16),20)–22) is reviewed in Refs. 23)
and 24). The flavor mixing in the axial vector channel may be related to the “Spin
Crisis”.25),26)

In this article, we will describe the generalized NJL model with the KMT term
and provide a brief review on how it works as an effective theory of QCD, particularly
in describing the η-η′ system, and the scalar meson dynamics together with other
QCD phenomenology. We shall also provide a sketch on how the chiral quark models
with the anomaly terms are utilized to explore the properties of the quark/hadronic
matter at finite temperature and/or density. The first part of the following will be
based on our previous review;5) see Ref. 5) for the details of this part.∗∗) One can
also refer to Refs. 23), 24) and 27) for a complementary account of the subjects
and useful references. The author’s personal experiences with Professor Maskawa
and Professor Kobayashi will also be described, which include an encounter when
the author made the first presentation of his work on the generalized Nambu-Jona-

∗) The same model was later proposed independently by Mirelli and Schechter in 1976.12)

∗∗) Reference 5) was cited in his Nobel lecture by Professor Y. Nambu, which was presented by

Professor G. Jona-Lasinio.
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Kobayashi-Maskawa-’t Hooft Six-Quark Vertex 257

Lasinio model incorporating the KMT term in 1987.

§2. The NJL model with the KMT term

2.1. The model

The effective model considered by Kobayashi and Maskawa1) was a generaliza-
tion of the Nambu-Jona-Lasinio (NJL) model11) to the three-flavor case with the
anomaly term incorporated in the form of the determinantal interaction:

L = q̄ iγ · ∂q +
8∑

a=0

g
S

2
[(q̄ λaq)2 + (q̄ iλaγ5q)2] − q̄mq + g

D
[det q̄i(1 − γ5)qj + h.c.]

≡ L0 + LS + LSB + LKMT, (2.1)

where the quark field qi has three colors (Nc = 3) and three flavors (Nf = 3), λa

(a = 0 − 8) are the Gell-Mann matrices with λ0=
√

2
31. Although not explicitly

written in their paper, this is exactly the model Lagrangian that Kobayashi and
Maskawa considered in their 1970 paper. Therefore, we call the Lagrangian (2.1) the
Kobayashi-Maskawa-Nambu-Jona-Lasinio (KM-NJL) model.

We emphasize that the model embodies three basic ingredients of QCD, i.e., the
dynamical breaking of chiral symmetry (DBCS), U(1)A anomaly, and the explicit
symmetry breaking due to the current quark masses. Extensive studies using this
model showed5) that the various empirical aspects of QCD are realized through
the interplay among the three ingredients. It was emphasized in Ref. 5) that the
constituent quark model and chiral symmetry are reconciled in a chiral quark model;
the chiral quark model can account for most of the empirical facts on baryons as well
as the low-lying mesons. Furthermore, such an effective model allows us to study
the change in hadron properties in hot/dense medium in a self-consistent manner,
as initiated by T. Hatsuda and the present author for the two-flavor case.28) Before
entering into the physical consequences, let us examine its symmetry properties.

2.2. Symmetry properties

To observe the transformation properties of each term in the KM-NJL model, it
is convenient to introduce the 3×3 bosonic matrices by

Φij = q̄j(1 − γ5)qi = 2q̄jRqiL = q̄jqi + iq̄jiγ5qi, (2.2)

with (Φ†)ij = q̄j(1+γ5)qi = 2q̄
jL

q
iR

, where q
iL

≡ 1/2 · (1−γ5) qi and q
iR

≡ 1/2 · (1+
γ5) qi are the left- and right-handed fields, respectively. We note that

q̄
R
λaqL

= Tr[λaΦ]/2 ≡ Φa and q̄
L
λaqR

= Tr[λaΦ
†]/2 ≡ Φ†

a, (2.3)

and accordingly, q̄λaq = (Φ†
a + Φa)/2 and q̄iγ5λaq = i(Φ†

a − Φa)/2. Then, the La-
grangian is cast into a form reminiscent of the linear σ-model:

LS + LSB + LKMT = gSTr(Φ†Φ) − 1
2
Tr[m(Φ + Φ†)] + gD(detΦ + h.c.). (2.4)
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Now the chiral SU(3)L ⊗ SU(3)R transformation is defined by

q
iL

→ [U(θL)]ijqjL
≡ LijqjL

, q
iR

→ [U(θR)]ijqjR
≡ RijqjR

, (2.5)

with U(θ) = exp(i
∑8

a=1 θaλa/2), the determinant of which is unity. Here, the
repeated suffix implies a summation over it. Under the SU(3)L ⊗ SU(3)R transfor-
mation, the bosonic operators are transformed as

Φij → LikΦklR
†
lj, Φ†

ij → RikΦ
†
klL

†
lj, (2.6)

which shows that they are representations (3, 3̄) and (3̄, 3) of SU(3)L ⊗ SU(3)R,
respectively. Thus, it is easily seen that LS has an SU(3)L ⊗ SU(3)R invariance. A
notable point is that LS is also automatically invariant under the U(1)L ⊗ U(1)R =
U(1)V ⊗ U(1)A transformation defined by

qL → eiα0/2qL , qR → eiβ0/2qR . (2.7)

In fact, under this transformation, the bosonic variables are transformed as

Φ → ei(α0−β0)/2Φ, Φ† → e−i(α0−β0)/2Φ†. (2.8)

Conversely, it is impossible to construct a four-fermion vertex that is invariant under
SU(3)L ⊗ SU(3)R but not U(1)A. This point was emphasized by Kobayashi and
Maskawa1) and constitutes the basis of their proposal of the six-fermion vertex for
accounting for the large mass of the X, i.e., the η′.

In fact, the determinantal terms detΦ and detΦ† are not invariant for the U(1)A

transformation, although they are invariant under SU(3)L ⊗ SU(3)R because they
are transformed as

detΦ → e3i(α0−β0)/2 detΦ, detΦ† → e−3i(α0−β0)/2 detΦ†, (2.9)

which shows that LKMT is not invariant unless α0 = β0, i.e., U(1)V transformation.
Thus, one sees that the LKMT vertex takes care of the U(1)A anomaly. In short, (i)
L0 and LS are invariant under U(3)L ⊗ U(3)R transformation, while (ii) LKMT is
invariant under U(1)V ⊗ SU(3)L ⊗ SU(3)R transformation but not invariant under
U(1)A transformation.

LSB is the explicit SU(3)V breaking part with the current quark masses:

LSB = −q̄mq = −
∑

a=0,3,8

maSa, (2.10)

where m0 = (mu+md+ms)/
√

6, m3 = (mu−md)/2 and m8 = (mu+md−2ms)/2
√

3
with Sa = q̄λaq. If we assume the isospin symmetry, the mass term is reduced to
LSB = −ε0S0 − ε8S8 with ε0,8 being identified with m0,8.

The fact that LKMT represents the U(1)A anomaly can be seen in the anomalous
divergence of the flavor singlet axial current

∂μAμ
5 = 2iNfg

D
(detΦ − h.c.) + 2iq̄mγ5q, (2.11)
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Kobayashi-Maskawa-’t Hooft Six-Quark Vertex 259

with Aμ
5 = ūγμγ5u + d̄γμγ5d + s̄γμγ5s. This equation is to be compared with the

usual anomaly equation 29) written in terms of the topological charge density of the
gluon field ,4),7),8)

∂μAμ
5 = 2Nf

g2

32π2
F a

μνF̃
μν
a + 2iq̄mγ5q. (2.12)

Thus, one may say that the effect of the gluon operator g2

32π2 F a
μνF̃

μν
a is simulated by

the determinantal operator i(detΦ− h.c.) = −2gD Im(detΦ) in the quark sector. Note
that the anomaly term LKMT has a dimension 9. Away from the chiral limit, there
arise other instanton-induced dimension-9 operators that break U(1)A symmetry but
are proportional to the current quark masses.30) The effects of such extra terms are
discussed in Ref. 21).

2.3. Dynamics of Kobayashi-Maskawa-Nambu-Jona-Lasinio Lagrangian

So far we have discussed the symmetry properties of each term of the generalized
Nambu-Jona-Lasinio model that Kobayashi and Maskawa proposed as the low-energy
effective model. What is their dynamical role? It is easily verified that LS can be
decomposed into ∼ (ūΓu)2 + (d̄Γd)2 + (s̄Γ s)2 without the flavor mixing term, like
(ūΓu)(d̄Γd) with Γ = 1 or γ5, although there are terms like (ūΓd)(d̄Γu), and, hence
does not cause a flavor mixing. On the other hand, the KMT term can cause a
flavor mixing when the chiral symmetry is dynamically broken; indeed, it induces
effective 4-fermion vertices such as 〈d̄d〉(ūu)(s̄s) and −〈d̄d〉(ūiγ5u)(s̄iγ5s), where the
former (latter) gives rise to a flavor mixing in the scalar (pseudo-scalar) channels.
This flavor mixing in the pseudoscalar channel is found to be the origin of lifting of
the η′ mass to as high as 1 GeV.

The vacuum of this model Lagrangian is determined in the self-consistent mean
field (SCMF) theory13),14) as is done for the usual NJL model,11),31) although the
six-fermion interaction causes an additional complication in the analysis. The La-
grangian in the SCMF approximation reads

LMFA = q̄(iγ · ∂ − M )q − g
S
Tr(φ†φ) − 2g

D
(detφ + c.c.). (2.13)

Here, the four-fermion and six-fermion interactions are rewritten in the present ap-
proximation as

q̄iqiq̄jqj → 〈q̄iqi〉q̄jqj + 〈q̄jqj〉q̄iqi − 〈q̄iqi〉〈q̄jqj〉,
q̄iqiq̄jqj q̄kqk →

∑
i,j,k; cyclic

〈q̄iqi〉〈q̄jqj〉q̄kqk − 2〈q̄iqi〉〈q̄jqj〉〈q̄kqk〉. (2.14)

The φ in (2.13) is a diagonal 3×3 c-number matrix defined in terms of the quark con-
densates; φ = 〈Φ〉0 ≡ diag(〈ūu〉, 〈d̄d〉, 〈s̄s〉). The “constituent quark mass matrix”
M = diag(Mu, Md, Ms) is given in terms of the condensates,

Mu = mu − 2g
S
α − 2g

D
βγ,

Md = md − 2gSβ − 2gDαγ,

Ms = ms − 2g
S
γ − 2g

D
αβ, (2.15)
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with (α, β, γ) ≡ (〈ūu〉, 〈d̄d〉, 〈s̄s〉). The respective quark condensate is, in turn, given
with Mi,

〈q̄iqi〉 = −2Nc

∑
|p|<Λ

Mi/
√

M2
i + p2. (2.16)

Here, the three momentum cutoff Λ is introduced. We call Eq. (2.16) together
with Eq. (2.15) the gap equation because of its resemblance to the gap equation
in the theory of superconductivity.32) Note that the vacuum condensates and the
constituent quark masses with different flavors are all coupled with each other owing
to the KMT term. To determine these values in terms of the coupling constants,
current quark masses, and the cutoff, one must solve this nonlinear coupled equation,
(2.16) and (2.15). One should verify that the solution of this gap equation really gives
the true vacuum state by evaluating the vacuum energy or the effective potential,

V(φ) = iNcTr
∫

d4p

(2π)4
ln
(

p · γ − M

p · γ − m

)
+ g

S
(α2 + β2 + γ2) + 4g

D
αβγ. (2.17)

Here, the first term represents the difference in the energy densities of the nonper-
turbative and perturbative Dirac seas and the second and third terms denote the
repulsive interaction energy with which the double counting is avoided of the at-
tractive interaction energy between quarks through the four-fermion and six-fermion
interactions, respectively. The stationary condition, ∂V(φ)/∂φ = 0 , is found to be
equivalent to the gap equation, Eq. (2.16) with Eq. (2.15).

Once the vacuum is thus determined, one can discuss the meson states as q-q̄
collective excited states on top of the vacuum. The residual interactions that develop
the q-q̄ collective excitations are the following effective four-quark interactions,

Lres = g
S

: Tr(Φ†Φ) :

+g
D

:
[
Tr(φΦ2) − Tr(φΦ)TrΦ − 1

2
TrΦ2Trφ +

1
2
Trφ(TrΦ)2 + h.c.

]
:

+g
D

: (detΦ + h.c.) :, (2.18)

where the normal ordering is taken with respect to the Fock vacuum of LMFA, and
we have omitted the Fock terms.

The model can be utilized to describe the low-lying pseudoscalar mesons and the
η′ as well as the scalar mesons and other QCD phenomenology. As we shall see, the
sign of the KMT coupling constant gD is found to be negative to reproduce the mixing
properties of the η-η′. This sign assignment is consistent with the identification of
the KMT term as the instanton-induced vertex.∗) First, we shall show some details
on how the KMT term can account for the η-η′ system.

∗) The sign of gD is positive for the two-flavor case, because it is given by 〈s̄s〉 · gD .
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§3. Flavor mixing of η and η0 mesons

The relevant interaction in the η-η′ channel is found to be

Lη
res =

1
2

∑
a,b=8,0

: ηaG
P
abηb :, (3.1)

where ηa ≡ q̄iγ5λaq, and GP
ab denotes the coupling constant in the flavor basis,

GP =

(
g

S
+ 1

3(2α + 2β − γ)g
D

−
√

2
6 (2γ − α − β)g

D

−
√

2
6 (2γ − α − β)gD gS − 2

3(α + β + γ)gD

)
. (3.2)

The coupling among the modes η0 and η8 arises from both the SU(3)V breaking and
the anomaly terms; here, we assume the isospin symmetry (α = β). The effect of
large ms is primarily responsible for mixing the octet (η8) and singlet (η0) modes to
make the physical η and η′ mesons. One finds that the gD contribution is positive
in GP

88 but is negative in GP
00 because g

D
< 0; accordingly,

GP
00 ≡ gS − 2

3
(α + β + γ)gD < GP

88 ≡ gS +
1
3
(2α + 2β − γ)gD . (3.3)

This inequality implies that the mass of the singlet meson, η0 = (ūiγ5u + d̄iγ5d +
s̄iγ5s)/

√
3, is larger than the octet one, η8 = (ūiγ5u + d̄iγ5d − 2s̄iγ5s)/

√
6, since

the binding force is weaker in the singlet channel. Furthermore, noting that the g
D

dependence is strongest in GP
00, one can see that the mass of η0 is most sensitive to

the strength of the KMT term.
In the flavor basis, (ūiγ5u, d̄iγ5d, s̄iγ5s), the coupling constant matrix Gηπ0 for

η mesons and π0 reads

Gηπ0 = 2

⎛
⎝ g

S
−g

D
γ −g

D
β

−g
D
γ g

S
−g

D
α

−g
D
β −g

D
α g

S

⎞
⎠ . (3.4)

The non-diagonal terms in Gηπ0 are responsible for the flavor mixing and, hence,
one sees that not only the strength of the anomaly term g

D
but also the quark

condensates (α, β and γ) affect the flavor mixing in the π0 and η-η′ system.
Now, the (un-normalized) propagator of the composite η-system in the SU(3)V

basis reads

D(q2) = −G−1
P

(
1

1 + GP ΠP (q2)

)
, (3.5)

where (ΠP )ab is the polarization tensor. The mixing angle θη between the η and η′

is obtained so that D−1(q2) is diagonalized as

T (θη)D−1(q2)T (θη)−1 = diag(D−1
η (q2), D−1

η′ (q2)), (3.6)

where the orthogonal matrix T (θη) is given by

T (θη) =
(

cos θη − sin θη

sin θη cos θη

)
. (3.7)
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Note that the mixing angle is inevitably energy-dependent in such a dynamical the-
ory.

θη is determined through a competition between the anomaly (KMT term)
and the explicit SU(3)V -symmetry breaking (ms 	 mu,d); the former prefers pure
SU(3)V states, i.e., small |θη| because of the large u ↔ s and d ↔ s transitions,
while the latter prefers the mass eigenstates, i.e., large |θη|. In fact,

• if the KMT term is absent (gD = 0), GP = gS · 1 and the mass eigenstates are
realized, leading to the ideal mixing θη = −54.75◦; η = (ūiγ5u+ d̄iγ5d)/

√
2 and

η′ = s̄iγ5s. On the other hand,
• if g

D
�= 0 but ms = mu,d, θη = 0◦ and the flavor eigenstates are realized as

η = η8 = (ūiγ5u+d̄iγ5d−2s̄iγ5s)/
√

6 and η′ = η0 = (ūiγ5u+d̄iγ5d+s̄iγ5s)/
√

3.
An explicit calculation5),14),52) for the general case gives the results for the

mixing angle at the energy of η as θη(m2
η) = −20.9◦, with mη = 486.5 MeV and

mη′ = 957.5 MeV (fitted).
The parameters of the KM-NJL model to be determined are as follows: The

current quark masses m = diag(mu, md, ms), the coupling constants g
S

and g
D
, and

the momentum cutoff Λ characterizing the scale of the chiral symmetry breaking.
For mu and md, we assume the SU(2)V invariance and define m̂=(mu+md)/2. These
parameters are determined5),14),52) so as to reproduce the four basic quantities

mπ = 138 MeV, fπ = 93 MeV, mK = 495.7 MeV, and mη′ = 957.5 MeV. (3.8)

We have adopted 5.5 MeV as a value for m̂ at 1 GeV scale in the following. Then,
the resulting parameter set reads

Λ = 631.4 MeV, g
S
Λ2 = 3.666, g

D
Λ5 = −9.288, ms = 135.7 MeV, (3.9)

where we have used a three-momentum cutoff scheme.

§4. The KMT term in scalar meson dynamics

As was mentioned earlier, the anomaly term of the determinantal form also
gives rise to a flavor mixing in the scalar as well as in the pseudo-scalar channels.
The scalar mesons may constitute a nonet as the low-lying pseudo-scalar mesons
do, although some slight difference is surely present because of the absence of con-
straints, as given by the axial anomaly, in the scalar channel. Actually, the possible
existence of the low-lying scalar mesons and their SU(3)V nonet scheme were quite
controversial, although there were some pioneering works33),34) that emphasize the
physical significance of the scalar meson, particularly the σ meson in QCD, which
has (approximate) chiral symmetry as a fundamental property; see also Ref. 35).
The situation has changed completely now since the two scalar mesons σ and κ have
been established experimentally.36)–40)

The low-lying scalar mesons have attracted renewed interest since the 1990s
when extensive analyses claimed the existence of the σ meson pole in the complex
energy plane of the S-matrix for the π-π scattering in the I = J = 0 channel.41)–44) In
these analyses, the significance of respecting chiral symmetry, unitarity, and crossing
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symmetry was recognized and emphasized to reproduce the phase shifts in both the
σ (s)- and ρ (t)-channels with a low-mass σ pole.45) One of the most elaborate
analyses46) identifies the σ pole at Mσ = 441− i272 MeV. The existence of such low-
lying scalar mesons can be a puzzle in QCD.47),48) In the nonrelativistic constituent
quark model,49) the meson with the quantum number JPC = 0++ is in the 3P0 state,
which normally implies that the mass lies in the region from 1.2 to 1.6 GeV. Several
mechanisms have been proposed to lower the mass with an amount as large as 600
– 800 MeV; see Ref. 47) for the issues concerning the low-lying scalar mesons. A
first idea was a diquark-anti-diquark (or tetraquarks) structure proposed by Jaffe,50)

who showed that the color magnetic interaction between the diquark and the anti-
diquark gives a sufficiently large attraction to decrease the masses of the scalar
mesons to approximately 600 MeV. Another time-honored idea is attributable to
Nambu,11) in which the smallness of the mass is attributed to the possible collective
nature of the scalar mesons as possessed by the pion. It is well known that the
scalar meson appears as a consequence of the chiral symmetry and its dynamical
breaking as the pion does, and the mass of the sigma satisfies the Nambu relation,51)

mσ = 2Mf , with Mf being the dynamically generated fermion (quark) mass, which
should be valid within any Nambu-Jona-Lasinio type model. If we put Mf = 300
MeV, mσ becomes 600 MeV, in fairly good agreement with the experiment. It is
shown that this feature essentially persists even when the U(1)A anomaly term is
incorporated although there arises a small but sizable flavor mixing between the
σ ∼ (ūu + d̄d)/

√
2 and f0 ∼ s̄s ;14),52) see also some subsequent works.53)–55) The

wave functions of scalar mesons should also have components of meson-resonance
states as these states are seen through the π-π or π-K scattering.

Although the reality should be that the wave functions of these mesons are linear
combinations of these components, the most popular idea is the tetraquarks.50),56)–58)

In this scheme, the SU(3) nonet structure is composed of the quark content as
follows; σ = [ud][ūd̄], κ0 = [su][ūd̄], κ− = [sd][ūd̄], f0 = ([su][s̄ū] + [sd][s̄d̄])/

√
2,

a+
0 = [su][s̄d̄], and other members, κ+,−, a0,−

0 , are constructed in a similar manner.
The merit of the tetraquark scheme lies in the fact50) that it can naturally

identify the nonet scheme in the scalar mesons of the masses of less than 1 GeV
and also explain the multiplet scheme that has an inverted form of the vector-meson
nonet, i.e., the ρ, ω, K∗, and φ. However, there are at least two problems to
be clarified to establish this scheme:59) (i) If the flavor mixing is ideal as given
above, the f0 → 2π coupling vanishes in contrast to that in the experiment, and the
a0 → ηπ coupling is too large to be consistent with the experimental data. (ii) As
is mentioned above, there should be a mixing between the tetraquark and qq̄ states
more or less to make the physical states, which may possibly imply the existence
of the scalar mesons mainly composed of qq̄ with a small mixture of the tetraquark
states. Although there is some work on these problems,60) several people59),61) have
recently shown that the KMT term in the scalar meson dynamics can nicely resolve
these problems. By making a Fiertz transformation, one can see that the KMT term
contains a tetraquark-qq̄ coupling,

L4q−2q = G4q−2qTr
(
S̃S
)
, (4.1)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/122/1/255/1911296 by guest on 20 April 2024



264 T. Kunihiro

where S̃ij = [d̄]i[d]j and Sij = q̄jqi with [d]iα = εijkεαβγ q̄jβ
c γ5q

kγ being the spin-
0 diquark operator. The Latin and Greek indices denote flavor and color state,
respectively, and qc is the charge conjugate of the quark field. This form of the
vertex was first considered in Ref. 56) in the context of the scalar meson mixing.∗)
Although the coupling constant G4q−2q is in principle given by the KMT coupling g

D
,

the phenomenological analysis indicates56) that |G4q−2q| � 0.6 GeV2. See Refs. 59)
and 61) for the details of the roles of the KMT vertex in the tetraquark-qq̄ mixing
and the resulting phenomenology for the scalar meson dynamics.

§5. Other phenomenology with the KMT term

It has been shown that the KM-NJL model well describes the vacuum properties
related to chiral symmetry and its spontaneous breaking including their flavor de-
pendence.5),13),14) We have seen that the model gives a systematic description of the
low-energy hadrons in the pseudo-scalar and scalar channels. The model can be a
good starting point even for the octet and decuplet baryons;5),66),∗∗) one can use the
vertex to analyze the possible violation of the OZI rule in the baryon sector. A funda-
mental reason for such successes of the KM-NJL model lies in the fact that the model
can be regarded as a field theoretic version of the constituent quark model under the
identification of the constituent quark masses with those generated dynamically by
the chiral symmetry breaking: The new ingredients of the KM-NJL model beyond
the conventional constituent quark model are (i) it gives a self-consistent description
of the vacuum and the excited states (hadrons), and (ii) the model properly takes
into account the collective nature of the vacuum and the mesons. These points are
emphasized in Ref. 5). The recent development of the phenomenology based on the
KMT term may be seen in Ref. 71) and the references cited therein.

§6. Application to finite temperature and density systems

The role of the U(1)A anomaly at finite temperature T and/or baryon densityρB

or the chemical potential μ is a big issue, and there are many studies on this problem;
see, for example, Refs. 72)–74). As an effective model embodying the U(1)A anomaly,
the KM-NJL model is also applied to the finite temperature and density. Here, we
will pick some topics on these subjects.

6.1. Phase diagram

In Ref. 75), the quark condensates and meson excitations in the hadronic phase
at finite temperature T are investigated by the present author in the KM-NJL model
for the first time; see also Refs. 13) and 76). It was shown that the order of the chiral
transition is of crossover against an expectation that the cubic term owing to the
KMT term would lead to a first-order phase transition. This is because the explicit

∗) We remark that the vertex in the form of Eq. (4.1) was also considered in the context of the

color superconductivity in dense quark matter;62)–65) see §6.
∗∗) See also Refs. 67)–69), in which the role of the instanton-induced interaction is examined for

the existence or nonexistence of the H-dibaryon.70)
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symmetry terms owing to the current quark masses, particularly that of the strange
quark, are so large that the order of the phase transition becomes smooth. This
is the result within the mean-field approximation. Thus, it would be intriguing to
apply the functional renormalization group to explore the chiral phase transition
with the KMT term and the explicit breaking with the current quark masses.

The mean field theory at finite T and μ goes much the same way as that at zero
temperature discussed in a previous section: The vacuum expectation value 〈O〉 is
replaced by the statistical average 〈〈O〉〉. Then, the quark condensates as the varia-
tional parameters are now T - and μ-dependent; 〈〈ūu〉〉 ≡ α̃, 〈〈d̄d〉〉 ≡ β̃, 〈〈s̄s〉〉 ≡ γ̃.
Thus, the Hamiltonian to be used in this approximation has the same form as that
at zero temperature, with the quark mass matrix M = diag(Mu, Md, Ms) given
by Eq. (2.15) but now being T - and μ- dependent: Mu = mu − 2g

S
α̃ − 2g

D
β̃γ̃,

Md = md − 2gS β̃ − 2gD α̃γ̃, and Ms = ms − 2gS γ̃ − 2gD α̃β̃. We note again that the
contribution of the anomaly term to the constituent quark masses is dependent on
the condensates of other flavors. It indicates that a change, say, in 〈〈ūu〉〉 causes a
change in Ms and accordingly in 〈〈s̄s〉〉, and vice versa. Thus, the properties of the
strange quark can change even in the matter composed of the u and d quarks, i.e.,
nuclear matter.

The thermodynamical potential in the mean-field approximation can be readily
calculated with

KMFA = HMFA −
∑

i=u,d,s

μiNi. (6.1)

The result is

ΩMFA(α̃, β̃, γ̃) = V(α̃, β̃, γ̃) · V − 2NcT
∑

i=u,d,s,|p|<Λ

[ln{1 + exp(−e
(−)
ip /T )}

+ ln{1 + exp(−e
(+)
ip /T )}], (6.2)

where e
(±)
ip = Eip ±μi with Eip =

√
M2

i + p2 and V being the volume of the system,
and

V(α̃, β̃, γ̃) = −2Nc

∑
i=u,d,s

∫ Λ dp

(2π)3
Eip + {g

S
(α̃2 + β̃2 + γ̃2) + 4g

D
α̃β̃γ̃} (6.3)

is the vacuum energy term, which has the same form as the effective potential at
T = 0, although the condensates are now temperature-dependent. We have ne-
glected the constant term Ω(0, 0, 0), which is irrelevant for the following argument.
The equilibrium state can be determined as the point where the thermodynamical
potential takes the minimum with α̃, β̃, and γ̃ as the variational parameters:

∂ΩMFA

∂Qi
= 0, (Qi = α̃, β̃, γ̃) (6.4)

which ensures that the condensates assumed are the statistical averages calculated
with the corresponding mean-field Hamiltonian.
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A numerical calculation75),76) shows that the thermodynamical potential
Ω(α̃, β̃, γ̃) as a function of the condensates has only one minimum for all the tem-
peratures with vanishing chemical potentials. This implies that the phase transition
described in this model is a smooth one, or a crossover.75) However, the transition
turns out to be a first-order one at finite density with low temperatures (T ≤ 29
MeV ≡ Tc1) like a liquid-gas phase transition: At T = 0, a chirally restored phase
with a high density (ρB ∼ 6ρ0 , ρ0 = .17 fm−3) coexists with a chirally broken phase
with a small density. As T increases, the difference in the densities of the coexisting
phase becomes smaller and smaller; then, at T = Tc1, the phase transition ceases
to be a first-order one. For T > Tc1, the phase transition is a smooth one, and the
pressure increases monotonically as the density is increased.75),76)

6.2. The mesonic excited states; effective restoration of U(1)A symmetry

Now let us proceed to the examination of the meson states as collective excita-
tions in the system.

The collective excitations are generated primarily by the four-fermion interac-
tions; the effective coupling constants Gα in the various channels are tabulated in
Table 3.1 in Ref. 5). For the η-η′ channel, the coupling matrix is given in Eq. (3.2)
or Eq. (3.4). Note, however, that the condensates appearing there are now T - and
μi-dependent.75) Furthermore, since the condensates are multiplied by g

D
there,

the net effects of the anomaly as manifested in the mixing properties of the η and
η′ mesons should become smaller when T is increased. This means that the chiral
restoration effectively causes a partial restoration of the U(1)A symmetry.75)

The information of collective excitations is all contained in the corresponding
retarded Green’s functions or the response functions given by

Rαβ(ω, q) = −i

∫
d4x

(2π)4
e−iq·xθ(t)〈〈[OKα(t, x), OKβ(0,0)]−〉〉, (6.5)

where

OKα(t, x) = q̄
K

(t, x)Γαq
K

(t, x) − 〈〈q̄
K

(t, x)Γαq
K

(t, x)〉〉, (6.6)

with qK (t, x) = exp(−iKt)q(0, x) exp(iKt) being the real-time operator. Here,
Γα(Γβ) denotes a product of Dirac and Gell-Mann matrices that specifies the quan-
tum numbers of the collective modes; for example, Γα = Γβ = iγ5λ4±i5 for kaons
K±. For the sigma mesons and η and η′ mesons, the response functions become
matrices owing to the octet-singlet couplings. The poles of the response function (or
the determinant of the response functions for sigma and η mesons) give the disper-
sion relations ωα = ωα(q) of the mode. To evaluate the response function, one may
use the imaginary-time formalism.

It was shown75) that the η and η′ mesons change their nature owing to both the
temperature dependence of the quark condensates and the possible decrease in the
KMT coupling constant gD with T . The coupling constant gD of the KMT term may
be dependent on temperature and baryon chemical potential because the instanton
density is dependent on them.73),74) When such a possible temperature dependence
is considered, the mixing angle θη can also be T dependent, and θη increases in
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the absolute value and the mixing between the η and η′ approaches the ideal one.
Although the η0 component in the physical η′ decreases as T is increased, the η′ mass
decreases gradually with increasing T , because the η0 tends to acquire the nature of
the ninth Nambu-Goldstone boson of the SU(3)L ⊗ SU(3)R ⊗U(1)A symmetry and
decreases its mass rapidly. This tendency is also observed with an explicit use of
the instanton-induced interaction.73),77) This is an effective “restoration” of U(1)A

anomaly at finite temperature as seen in the η-η′ spectrum, which was first suggested
by Pisarski and Wilczek72) using a linear σ model with a determinant term in the
chiral limit. Such an anomalous decrease in the η′ mass might have been observed
in the relativistic heavy ion collisions at RHIC.78)

6.3. Possible temperature and density dependence of the KMT coupling g
D

The temperature dependence of gD can be deduced by utilizing the lattice data,
as was done by Fukushima, Ohnishi, and Ohta.79) The finite density case is examined
in Ref. 80). The possibility of the effective restoration of the chiral U(1)A anomaly
in finite nuclei is discussed in Ref. 81) where a possibility to create bound states
of the η′(958) meson in nuclei is examined. Further developments in this direction
may be found in Refs. 82) and 83). The density dependence of the coupling constant
gD has also been considered84) for exploring whether the QCD critical point sug-
gested in some effective models85) can actually be absent as is shown in some lattice
simulation.86)

6.4. Incorporation of color superconductivity; the U(1)A anomaly versus vector in-
teraction

At extremely high density with moderate temperature, various forms of color
superconductivity may occur; see Refs. 27) and 87) for the recent reviews. In the
three-flavor case in the chiral limit, the most symmetric pairing can be realized, which
is called the color-flavor locked (CFL) phase.62) On the basis of the pattern of the
symmetry breaking in the CFL phase, Schafer and Wilczek88) suggested a hadron-
quark continuity, i.e., the transition from hadron to quark matter can be smooth.
As was stated before in the context of the tetraquark structure of the scalar mesons,
a Fiertz transformation of the KMT term gives a tetraquark-qq̄ coupling that breaks
the U(1)A symmetry.62)–65) It was speculated65) that the existence of such a vertex
would give rise to another QCD critical point in the low-temperature region and
can be essential to realize the hadron-quark continuity.88) Here, we remark that the
possible existence of multiple critical points in QCD phase diagram was first shown
in Ref. 89) where the vector interaction plays the essential role; see also Ref. 90).
The combined effects of the KMT term as well as the vector interaction on the QCD
phase diagram have been recently examined in Ref. 91), together with the charge
neutrality and the beta equilibrium constraints.

§7. Concluding remarks

In the present article, we have described the significance of the work by Kobayashi
and Maskawa in 1970,1) which introduced the determinantal six-quark interaction
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to account for the large mass of X meson, which is now called the η′, although
the determinantal term is often called the ’t Hooft vertex because it can be derived
from the instanton-induced interaction. Then, we proposed to call the determinantal
six-quark interaction the Kobayashi-Maskawa-’t Hooft (KMT) term. We have also
indicated that the effective Lagrangian suggested in the Kobayashi-Maskawa paper
in 1970 is actually the generalized Nambu-Jona-Lasinio model with the KMT term,
which has now been widely used both in QCD phenomenology and in the extensive
study of the condensed matter physics of QCD at finite temperature and density.
Some focus was put on the recent active studies on the scalar meson dynamics with
diquark correlations, which, in turn, can give rise to color superconductivity in high-
density quark matter.

Finally, I wish to tell my personal experiences with Professor Maskawa and Pro-
fessor Kobayashi, particularly that related to their work.1) I gave a talk on my work
on the generalized NJL model with the KMT term at a workshop held at the Re-
search Institute for Fundamental Physics (RIFP)∗) from November 4 to 6, 1987. My
talk13) entitled “An Effective Theory of QCD — SU(3)-Nambu-Jona-Lasinio Model
Incorporating the Anomaly Term —” consisted of a part that corresponds to §§2
and 3 in the present article and a sketch on the application of the model to finite
temperature and density,75),76) together with a discussion on the vector mesons. The
proceedings of the meeting were published in a Japanese journal called Soryushiron
Kenkyu13) in July 1988. I became aware of the work by Kobayashi and Maskawa1)

and the subsequent work by Kobayashi-Kondo-Maskawa3) after the domestic meet-
ing, and therefore had not cited their papers in the proceedings.13) Although I do
not remember exactly, my collaborator, Tetsuo Hatsuda, might possibly have told
me of their papers; although he was involved in other projects92) at KEK as a post-
doc there, he kindly helped me by my request after the meeting at RIFP to rapidly
finalize the paper,14) which was submitted at the very end of 1987. I remember
that in a certain meeting held at RIFP in July or August, 1988, Professor Maskawa
sat next to me and, to my surprise, talked to me, and we chatted (in Japanese, of
course), roughly as follows:
Maskawa: Are you the author who did the analysis of the determinantal interaction
that is reported in the latest Soken?∗∗)

T. K.: Yes, I am.
Maskawa: Some years ago, we made an analysis of the η′ and concluded that there
must be a six-fermion determinantal interaction for describing the η′.
T. K.: I know of your papers.
This brief chat with Professor Maskawa was a significant event and of great encour-
agement to me, since I had been feeling that my works were not fully appreciated,
although I had a strong confidence in my work, particularly in that presented in the
meeting at RIFP, as is described in the Introduction of the proceedings.13) Professor
Maskawa happened to be the director of YITP when I earned a position there in
2000. Unfortunately, I failed to ask him whether he remembered the event described

∗) The former and original name of the Yukawa Institute for Theoretical Physics (YITP).
∗∗) An abbreviation of Soryushiron Kenkyu in Japanese.
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above.
Professor Kobayashi was the supervisor of our exercise class on electromagnetism

when I was a student at Kyoto University. He was still young and an assistant
professor then. Tetsuo Matsui, a former classmate of mine and now at the University
of Tokyo, was brave enough to ask Professor Kobayashi to tutor our group who
planned to read the textbook on quantum mechanics of Dirac. He kindly accepted
our request. That was from 1972 to 1973, which means that although he might have
been busy developing the Kobayashi-Maskawa theory on the CP violation,93) he
was kind enough to take the time to supervise us in reading a textbook on quantum
mechanics. I was fortunate that Professor Kobayashi was also in charge of the
seminar on elementary particle physics when I entered the graduate school of Kyoto
University. Moreover, he chose the paper by Nambu-Jona-Lasinio11) as one of the
papers that we were to read and report in the course. I now appreciate how much
my career is owed to these two great physicists. It is a great honor and pleasure
for me to contribute to this special issue to celebrate the Nobel Prize awarded to
Professor Maskawa and Professor Kobayashi by writing an article on the subject
through which I crossed paths with them.
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