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We present full accounts of a method to extract nucleon-nucleon (NN) potentials from
the Bethe-Salpter amplitude in lattice QCD. The method is applied to two nucleons on
the lattice with quenched QCD simulations. By disentangling the mixing between the S-
state and the D-state, we obtain central and tensor potentials in the leading order of the
velocity expansion of the non-local NN potential. The spatial structure and the quark mass
dependence of the potentials are analyzed in detail.
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§1. Introduction

The origin of the nuclear force is one of the major unsolved problems in particle
and nuclear physics even after the establishment of the quantum chromodynamics
(QCD). Although the nuclear force is still not well-understood theoretically, a large
number of proton-proton and neutron-proton scattering data as well as deuteron
properties have been accumulated and summarized e.g. in the Nijmegen database.1)

To describe the elastic nucleon-nucleon (NN) scattering at low-energies below the
pion production threshold together with the deuteron properties, the notion of the
NN potential (either in the coordinate space or in the momentum space) turns
out to be very useful:2) it can be determined phenomenologically to reproduce the
scattering phase shifts and bound state properties either through the Schrödinger
equation for the NN wave function or through the Lippmann-Schwinger equation
for the NN T -matrix. Once the potential is determined, it can be used to study
systems with more than 2 nucleons by using various many-body techniques.

Phenomenological NN potentials which can fit the NN data precisely (e.g.
more than 2000 data points with χ2/dof � 1) at Tlab < 300 MeV are called the high-
precision NN potentials: They include the potentials such as CD-Bonn,3) Argonne
v18,4) and Nijm I, Nijm II and Reid93.5) Also systematic low energy construction of
the nuclear force on the basis of the chiral perturbation theory is being developed.6),7)

The phenomenological NN potentials in the coordinate space are known to
reflect some characteristic features of the NN interaction at different length scales:2)

(i) The long range part of the nuclear force (the relative distance r > 2 fm) is
dominated by the one-pion exchange introduced by Yukawa.8) Because of the
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pion’s Nambu-Goldstone character, it couples to the spin-isospin density of the
nucleon and hence leads to a strong spin-isospin dependent force, namely the
tensor force.

(ii) The medium range part (1 fm < r < 2 fm) receives significant contributions
from the exchange of two-pions (ππ) and heavy mesons (ρ, ω, and σ). In
particular, the spin-isospin independent attraction of about 50 – 100 MeV in
this region plays an essential role for the binding of atomic nuclei.

(iii) The short range part (r < 1 fm) is best described by a strong repulsive core as
originally introduced by Jastrow.9) Such a short range repulsion is important
for the stability of atomic nuclei against collapse, for determining the maximum
mass of neutron stars, and for igniting the Type II supernova explosions.10)

(iv) There is also a strong attractive spin-orbit force in the isospin 1 channel at
medium and short distances. This leads to the 3P2 neutron pairing in neutron
matter and hence the neutron superfluidity inside neutron stars.10)

A repulsive core surrounded by an attractive well is in fact a common feature of
the “effective” potential between composite particles. The Lenard-Jones potential
between neutral atoms or molecules is a well-known example in atomic physics. The
potential between 4He nuclei is a typical example in nuclear physics. The origin of the
repulsive cores in these examples is known to be the Pauli exclusion among electrons
or among nucleons. The same idea, however, is not directly applicable to the NN
potential, because the quark has not only spin and flavor but also color which allows
six quarks to occupy the same state without violating the Pauli principle. To account
for the repulsive core of the NN force, therefore, various ideas have been proposed as
summarized in Ref. 11): exchange of the neutral ω meson,12) exchange of non-linear
pion field,13) and a combination of the Pauli principle with the one-gluon-exchange
between quarks.14) Despite all these efforts, convincing account of the nuclear force
has not yet been obtained.

In this situation, it is highly desirable to study the NN interactions from the
first principle lattice QCD simulations. A theoretical framework suitable for such
purpose was first proposed by Lüscher:15) For two hadrons in a finite box with the
size L×L×L in periodic boundary conditions, an exact relation between the energy
spectra in the box and the elastic scattering phase shift at these energies was derived:
If the range of the hadron interaction R is sufficiently smaller than the size of the box
R < L/2, the behavior of the two-particle Bethe-Salpeter (BS) wave function ψ(r)
in the interval R < |r| < L/2 under the periodic boundary conditions has sufficient
information to relate the phase shift and the two-particle spectrum.

Lüscher’s method bypasses the difficulty to treat the real-time scattering process
on the Euclidean lattice.∗) Furthermore, it utilizes the finiteness of the lattice box
effectively to extract the information of the on-shell scattering matrix and the phase
shift. This approach has been applied to extract the NN scattering lengths in the

∗) There are several studies of the NN interactions on the lattice, which do not rely on Lüscher’s

method. One uses the Born-Oppenheimer picture, i.e., if one of the three quarks inside the baryon

is infinitely heavy, one may define the potential between baryons a la Born-Oppenheimer.16) This

is, however, not applicable to the nucleons with light quarks. The other employs the strong coupling

limit, which has been proposed quite recently.17)
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quenched QCD simulations18) and in the (2+1)-flavor QCD simulations with the
mixed action.19)

Recently, the present authors proposed a closely related but an alternative ap-
proach to the NN interactions from lattice QCD.20),21) The starting point is the
same BS wave function ψ(r) as discussed in Ref. 15). Instead of looking at the
wave function outside the range of the interaction, we consider the internal region
|r| < R and define the energy-independent non-local potential U(r, r′) from ψ(r) so
that it obeys the Schrödinger type equation in a finite box. Since U(r, r′) for strong
interaction is localized in its spatial coordinates due to confinement of quarks and
gluons, the potential receives finite volume effect only weakly in a large box. There-
fore, once U is determined and is appropriately extrapolated to L → ∞, one may
simply use the Schrödinger equation in the infinite space to calculate the scattering
phase shifts and bound state spectra to compare with experimental data. Further
advantage of utilizing the potential is that it would be a smooth function of the
quark masses so that it is relatively easy to handle on the lattice. This is in sharp
contrast to the scattering length which shows a singular behavior around the quark
mass corresponding to the formation of the NN bound state.∗)

Since we consider the non-asymptotic region (|r| < R) of the wave function, the
resultant potential U and the T -matrix are off-shell. Therefore, they depend on the
nucleon interpolating operator adopted to define the BS wave function. This is in a
sense an advantage, since one can establish a one-to-one correspondence between the
nucleon interpolating operator and theNN potential in QCD, which is not attainable
in phenomenological NN potentials. It also implies that the NN potential on the
lattice and the phenomenological NN potentials are equivalent only in the sense that
they give the same observables, so that the comparison of their spatial structures
should be made only qualitatively.

The purpose of this paper is twofold: First, we will present a theoretical foun-
dation of our method to extract the NN potentials from lattice QCD. Then, we
will give a full account of the application of the method to the quenched lattice
QCD simulations. Once our method in lattice QCD is proved to work in the NN
system, it will have various applications not only to nuclear many-body problems
but also to hyperon-nucleon, hyperon-hyperon and three-nucleon interactions which
have much less experimental information than the NN systems. A first attempt to
the hyperon-nucleon potential has been already reported in Ref. 24), and more on
hyperons will appear in the future publications.

This paper is organized as follows. In §2, we illustrate the derivation of the
two-body and many-body potentials from the wave function in quantum mechanics.
In §3, the idea in the previous section is generalized to the interaction of composite
particles in field theory. In §4, we classify the general structure of the NN potential
in the velocity expansion and show the procedure to determine each term. In §5, the
method to determine the NN potential from the lattice QCD data is discussed in

∗) Similar situation is well-studied in connection with the BEC-BCS crossover in cold fermionic

atoms,22) where the external magnetic field plays a role of the quark mass in QCD. For seminal

suggestion on the rapid quark-mass dependence of the NN scattering length, see Ref. 23).
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detail for the effective central potential at low energy. We also discuss the method
to extract the tensor potential in our approach. In §6, NN potentials obtained
from the quenched lattice QCD simulations are presented. Section 7 is devoted to
summary and concluding remarks. In Appendix A, a field-theoretical derivation of
the asymptotic BS wave function at large distance is presented. In Appendix B,
the way to make general decomposition of the NN potential (the Okubo-Marshak
decomposition25)) is reviewed. In Appendix C, matrix elements of the general NN
potential are presented. In Appendix D, heat-kernel representation of the Green’s
function is presented.

§2. Non-local potential in quantum mechanics

2.1. Two-body force

To show the basic concept of the non-local potential in a finite box with the
size L× L× L, we start with a non-relativistic two-body problem described by the
stationary Schrödinger equation:

(∇2 + k2
n)ψn(r) = 2μ

∫
U(r, r′)ψn(r′)d3r′, (2.1)

where r is the relative coordinate of the two spinless and non-relativistic particles,
and kn is related to the discrete energy eigenvalues En = k2

n/(2μ) (n = 0, 1, 2, · · · )
with μ being the reduced mass. The wave function obeys the periodic boundary
condition. The non-local potential U(r, r′)∗) is assumed to be energy-independent
and Hermitian, U∗(r′, r) = U(r, r′), so that the discrete energy eigenvalues En are
real and corresponding eigenfunctions can be made orthonormal. For the scattering
states (bound states) in the infinite volume, we have E(L→ ∞) > 0 (E(L→ ∞) <
0). On the other hand, negative En(L) in the finite volume does not necessarily
imply the existence of the bound state at L→ ∞.

We consider the potential whose spatial extension is sufficiently small in the sense
that U(r, r′) is exponentially suppressed for {|r|, |r′|} > R with R being smaller than
L/2. We define the “inner region” by Ωin = {r ∈ L3| |r| < R}. Then, the wave
function in the “outer region” Ωout = L3 − Ωin satisfies the Helmholtz equation,
(∇2 + k2

n)ψn(r) = 0, with the periodic boundary condition.
Let us consider the following inverse problem: Suppose we have no information

about U except that it is smooth and short ranged, while we know linearly indepen-
dent wave functions ψn(r) and associated energy En = k2

n/(2μ) in a finite box for
n ≤ nc.∗∗) Now, we introduce the following function:

Kn(r) =
1
2μ

(∇2 + k2
n)ψn(r) = 〈r|(En −H0)|n〉, (2.2)

where H0 is the non-relativistic kinetic energy operator satisfying 〈r|H0|n〉 =
∗) Here we use the standard term “non-local” in the sense that U(r, r′) cannot be written as

V (r)δ(r − r′).
∗∗) This is more luxurious situation than the usual inverse scattering problem where only the

scattering phase shifts in the outer region are available.
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−1
2μ∇2ψn(r). Since (∇2 + k2

n) removes the non-interacting part of the wave func-
tion, Kn(r) is non-vanishing only in the inner region Ωin irrespective of the sign of
k2

n.
By taking into account the fact that ψn(r) = 〈r|n〉 may not be orthonormal, we

introduce the norm kernel Nnn′ ≡ 〈n|n′〉 =
∫
d3rψ∗

n(r)ψn′(r), so that the projection
operator to the space spanned by the wave functions with n ≤ nc reads P (nc) =∑nc

n,n′ |n〉N−1
nn′〈n′| ≡

∑nc
n Pn. Then, an energy-independent and non-local potential

can be defined as

U(r, r′) = 〈r|
[

nc∑
n

(En −H0)Pn

]
|r′〉 =

nc∑
n,n′

Kn(r)N−1
nn′ψ

∗
n′(r′), (2.3)

which leads to the Schrödinger equation Eq. (2.1) for ψn≤nc(r). If we apply a unitary
transformation A to the wave function, ψ → ψ′ = Aψ, the non-local potential is
modified as U → U ′ = AUA†. Such unitary transformation does not affect the
observables, while it changes the spatial structure of the wave function and the non-
local potential.

If En are all real and Nnn′ = δnn′ , the potential U =
∑nc

n (En −H0)Pn becomes
a hermitian operator 〈n|U |n′〉∗ = 〈n′|U |n〉 in the subspace n ≤ nc. Otherwise,
the hermiticity is not obvious and should be checked case by case. In field theory
discussed later, ψn(r) corresponds to the equal-time Bethe-Salpeter amplitude in a
finite box and Enc corresponds to the threshold energy Eth of inelastic channels.

In practice, the potential defined in Eq. (2.3) has limited use, because the number
of states satisfying the condition E ≤ Eth is not generally large for lattice QCD in a
finite box. This problem can be evaded when we focus on the low-energy scattering
with E sufficiently smaller than the intrinsic scale of the system or the scale of the
non-locality of the potential. In such a case, the velocity expansion of U(r, r′) in
terms of its non-locality is useful:26) For example, a spin-independent potential with
hermiticity, rotational invariance, parity symmetry, and time-reversal invariance can
be expanded as

U(r, r′) = V (r,v)δ(r − r′), (2.4)

V (r,v) = V0(r) +
1
2
{Vv2(r),v2} + V�2(r)L

2 + · · · , (2.5)

where v = p/μ and L = r × p with p = −i∇. Each coefficient of the expansion is
the local potential and can be determined successively by the wave functions at low
energies: For example, if we have five wave functions corresponding to En=0,1,2,3,4,
we obtain

(En −H0)ψn(r) =
[
V0(r) +

1
2
{Vv2(r),v2} + V�2(r)L

2

]
ψn(r). (2.6)

Pretending that Vv2(r) and ( ∂
∂r )nVv2(r) are independent of each other, Eq. (2.6) for

n = 0, · · · , 4 can be solved algebraically to obtain V0(r), Vv2(r), ∂
∂rVv2(r), ( ∂

∂r )2Vv2(r)
and V�2(r). Hermiticity of the potential can be checked by the consistency among
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the local potentials thus determined. Stability of the potentials against the number
of wave functions introduced can be also checked.

An advantage of defining the potential from the wave functions in the “inner re-
gion” is that the effect of the periodic boundary condition is exponentially suppressed
for finite range interactions: Then one can first make appropriate extrapolation of
U(r, r′) or V (r,v) to L→ ∞, and then solve the Schrödinger equation using the ex-
trapolated potential to calculate the observables such as the phase shifts and binding
energies in the infinite volume.∗) This is in contrast to the approach by Lüscher15)

in which the wave functions in the “outer region” suffering from the boundary con-
ditions are ingeniously utilized to probe the scattering observables. Apparently, the
two approaches are the opposite sides of a same coin.

2.2. Many-body forces

For the interactions among composite particles, there are in principle many-
body forces which take place in the system composed of more than two particles.
The well-known example in nuclear physics is the Fujita-Miyazawa type three-body
force acting among three nucleons.27),28) It is phenomenologically important for the
extra binding of light nuclei29) and for the extra repulsion in high density matter30)

and in elastic nucleus-nucleus scatterings.31)

The method to define the two-body potential from the relative wave function
discussed above can be generalized to the many-body forces. Let us illustrate the
procedure by considering the three-body system of spinless and distinguishable par-
ticles with equal mass m. We consider the local potentials for both two-body and
three-body forces just for simplicity. In the rest frame of the three-body system, we
have

(En −H0r −H0ρ)ψn(r,ρ) =

⎡
⎣∑

i>j

V2(xi,xj) + V3(x1,x2,x3)

⎤
⎦ψn(r,ρ), (2.7)

where r(= x1 − x2) and ρ(= x3 − (x1 + x2)/2) are the Jocobi coordinates. H0r =
−∇2

r/(2μr) and H0ρ = −∇2
ρ/(2μρ) are the kinetic energy operator with μr(= m/2)

and μρ(= 2m/3) being the reduced masses. En is the total energy of the three-body
system at rest. Because of the translational invariance, the two-body potential V2

and the three-body potential V3 are the functions of r and ρ.
If we know the wave function and the total energy on the left-hand side of

Eq. (2.7), the three-body potential can be determined by the following procedure.
We first consider the situation, |ρ| � R � |r|, where V2(x2,x3), V2(x1,x3) and
V3(x1,x2,x3) are vanishingly small because of the assumed short-range nature of
the potentials. Then, V2(x1,x2) can be determined by changing r within the range
R > |r|. One can carry out similar procedure to determine V2(x2,x3) and V2(x1,x3).
Alternatively, one may determine V2 from the genuine two-body system.

Once all the two-body potentials are determined, V3 can be extracted from
the wave function in the range, R > |r| and R > |ρ|, through the three-body

∗) Strictly speaking, the local potentials with higher derivatives must be treated as perturbation

to keep the Schrödinger equation as a second order differential equation.
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equation Eq. (2.7). It is important to note that the three-body potential is always
obtained together with the two-body potential: they are closely tied through the
wave function. If one makes the unitary transformation of the wave function, both
V2 and V3 are changed simultaneously.

The above procedure can be formally generalized to the non-local potentials and
to the N(> 3)-particle systems with different masses and internal degrees of freedom.

§3. Non-local potential in field theory for spin 1/2 particles

3.1. Bethe-Salpeter wave function

In field theory, the best analogue of the two-particle wave function is the equal-
time Bethe-Salpeter (BS) amplitude, so that we use the term “BS wave function”
throughout this paper. Let us consider the following BS wave function for the 6-
quark state with total energy W and the total three-momentum P = 0 in a finite
box L3,

Ψαβ(r, t) = 〈0|nβ(y, t)pα(x, t)|B = 2;W,P = 0〉 ≡ ψαβ(r)e−iWt, (3.1)

where the relative coordinate is denoted as r = x−y. The local composite operators
for the proton and the neutron are denoted by pα(x, t) and nβ(y, t) with spinor
indices α and β. The QCD vacuum is denoted by |0〉, while the state |B = 2;W,P =
0〉 is a QCD eigenstate with baryon number 2 and with the same quantum numbers
as the pn system. One should keep in mind that |B = 2;W,P = 0〉 is not a simple
superposition of a product state |p〉 ⊗ |n〉, since there are complicated exchanges of
quarks and gluons between the two composite particles. The stationary BS wave
function ψ(r) may be regarded as a probability amplitude in |B = 2;W,P = 0〉 to
have “neutron-like” three-quarks located at point y and “proton-like” three-quarks
located at point x.

The spatial extent of the NN interaction in QCD is short ranged and is expo-
nentially suppressed beyond the distance R > 2 fm. Therefore, the spatial part of
the BS wave function in the “outer region” (r > R) satisfies the Helmholtz equa-
tion, ((W/2)2 −∇2 +m2

N )ψαβ(r) = −(∇2 + k2)ψαβ(r) = 0, up to an exponentially
small correction. Here the “asymptotic momentum” k is related to the total en-

ergy W through the relation, W = 2
√
k2 +m2

N . To make a formal resemblance
with the non-relativistic case, we introduce the “effective center of mass energy”,
E = k2/(2μ) = k2/mN .15) As shown in Appendix A, using the unitarity of the
S-matrix, we can show that the asymptotic behaviour of the BS wave function at
large r is identical to that of the scattering wave in the quantum mechanics, with
the identification that the phase of the S-matrix is the scattering phase shift of the
BS wave function.

Now, we apply the same logic as the quantum mechanical case in §2.1. The
threshold of the pion production Eth � mπ is chosen to be Enc . Namely, (∇2 +
k2)ψαβ,E(r) is a function which has a support only in the inner region as long as E
stays below the threshold. Thus we can define the short-ranged non-local potential
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as

(E −H0)ψαβ,E(r) =
∫
Uαβ;γδ(r, r′)ψγδ,E(r′)d3r′, (3.2)

Uαβ;γδ(r, r′) =
Eth∑
E,E′

Kαβ,E(r)N−1
EE′ψ

∗
γδ,E′(r′) (3.3)

= Vαβ;γδ(r,v)δ(r − r′), (3.4)

where E = k2/mN and H0 = −∇2/mN . By construction, the solution of Eq. (3.2)
with Uαβ;γδ(r, r′) extrapolated to L → ∞ reproduces the correct BS wave function
in the asymptotic region, and hence the phase shifts and binding energies of the
two-nucleon system.

The Schrödinger type equation with the non-local potential similar to Eq. (3.2)
has been derived for bosons on the basis of a diagrammatic method in Refs. 15) and
32). A slight difference is that our non-local potential has no explicit E-dependence
by construction as seen in Eq. (3.3).

3.2. Interpolating operators

In Eq. (3.1), simplest interpolating operators for the neutron and the proton
written in terms of the up-quark field u(x) and the down-quark fields d(x) would be

nβ(y) = εabc (ua(y)Cγ5db(y)) dcβ(y), (3.5)
pα(x) = εabc (ua(x)Cγ5db(x))ucα(x), (3.6)

where x = (x, t), y = (y, t) and the color indices are denoted by a, b and c. The
charge conjugation matrix in the spinor space is denoted by C.

As shown in Appendix A, local operators such as given in Eqs. (3.5) and (3.6) are
most convenient for relating the BS wave function to the four-point Green’s function
and the scattering observables at L→ ∞. Closely related observation was obtained
long time ago by Nishijima, Zimmermann and Hagg who derived the generalized
reduction formula for local composite fields.33)

In principle, one may choose any composite operators with the same quantum
numbers as the nucleon to define the BS wave function.∗) Different operators give
different BS wave functions and different NN potentials, although they lead to
the same observables such as the phase shifts and binding energies. This is quite
analogous to the situation in quantum mechanics that the unitary transformation of
the wave function changes the structure of the potential while the observables are not
modified. A theoretical advantage of our approach based on lattice QCD is that we
can unambiguously trace the one-to-one correspondence between the NN potential
and the interpolating operator in QCD. This is in contrast to the phenomenological
NN potentials where connections to QCD operators are not attainable.

∗) In practice, however, we had better restrict ourselves to consider only local composite opera-

tors for the nucleon, since it is very difficult, although not entirely impossible, to derive the reduction

formula for non-local composite operators without violating the causality of relativistic theories.
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Table I. Two-nucleon asymptotic states classified by the total isospin I, the total spin (s), the or-

bital angular momentum (�), and the total angular momentum (J) together with some examples

in low partial waves.

I 0 1

s 0 1 0 1

� odd even even odd

J � � �± 1 � � �± 1

J = 0 − − − 1S0 − 3P0

J = 1 1P1 − 3S1,
3D1 − 3P1 −

J = 2 − 3D2 − 1D2 − 3P2,
3F2

J = 3 1F3 − 3D3,
3G3 − 3F3 −

J = 4 − 3G4 − 1G4 − 3F4,
3H4

...
...

...
...

...
...

...

§4. General form of the NN potential

In the previous section, we illustrated the procedure to define the potential
between the neutron and the proton, which has spinor indices α, β, γ, δ running from
1 to 4. In order to derive the general structure of the NN potential at low energies,
we restrict ourselves to consider only the upper components of these spinor indices
in the following sections.

4.1. Symmetry of the two nucleon system

It is useful to classify the asymptotic two-particle states by the orbital angular
momentum (�), the total spin (s) and the total angular momentum (J) together with
the total isospin I. Using the standard notation, 2s+1�J , and taking into account
constraints due to Pauli principle, we have the well-known relations given in Table
I.

4.2. Okubo-Marshak decomposition

The general form of the NN potential in the two-component spinor space has
been classified by Okubo and Marshak.25) We leave the derivation in Appendix
B and recapitulate only the results here. By using the helmiticity, translational
invariance in space and time, Galilei invariance, rotational invariance, parity and
time-reversal invariance, fermi statistics and isospin invariance, the potential has a
general decomposition

V =
∑

I

V I(r,v,σ1,σ2)P τ
I , (4.1)

V I = V I
0 + V I

σ (σ1 · σ2) +
1
2
{V I

T , S12} + V I
LS L · S +

1
2
{V I

P , P12} +
1
2
{V I

W ,W12},
(4.2)
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where P I
τ is the projection operator to the iso-singlet (I = 0) and iso-triplet (I = 1):

P τ
0 =

1
4
− τ 1 · τ 2, P τ

1 =
3
4

+ τ 1 · τ 2. (4.3)

Also, we define

S12 = 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2, (4.4)

S =
1
2
(σ1 + σ2), L = r × p, (4.5)

P12 = (σ1 · v)(σ2 · v), (4.6)

W12 = Q12 −
1
3
(σ1 · σ2)L2, (4.7)

Q12 =
1
2
{σ1 · L,σ2 · L}, (4.8)

with v = p/μ. The anticommutators in Eq. (4.2) are necessary to make the po-
tential hermitian, since S12, P12,W12 do not commute with the scalar potentials
V I

A(r2,v2,L2) (A = 0, σ, T, LS, P,W ).
If we keep the terms only up to the first order in v, we obtain the conventional

form of the potential at low energies commonly used in nuclear physics:

V I = V I
0 (r) + V I

σ (r) (σ1 · σ2) + V I
T (r)S12 + V I

LS(r)L · S +O(v2), (4.9)

or in a more conventional notation,

V = VC(r) + VT (r)S12 + VLS(r)L · S +O(v2), (4.10)
= V0(r) + Vσ(r)(σ1 · σ2) + Vτ (r)(τ 1 · τ 2) + Vστ (r)(σ1 · σ2)(τ 1 · τ 2)

+ [VT0(r) + VTτ (r)(τ 1 · τ 2)]S12

+ [VLS0(r) + VLSτ (r)(τ 1 · τ 2)]L · S +O(v2). (4.11)

The central and tensor potentials, VC and VT , in Eq. (4.10) are the leading-order
(LO) terms of O(v0) in the velocity expansion, while the spin-orbit potential, VLS

is the next-to-leading-order (NLO) term of O(v).

4.3. Determination of the NN potentials

For given I, s and J , the matrix elements of the LO and NLO potentials up
to O(v) in Eq. (4.11) have the following structure (see Appendix C and also see
Ref. 26)):

V I(r; 1JJ) = V I
0 (r) + V I

σ (r), (4.12)
V I(r; 3JJ) = V I

0 (r) − 3V I
σ (r) + 2V I

T (r) − V I
LS(r), (4.13)

V I(r; 3(J ∓ 1)J) =
(
V I−−(r) V I−+(r)
V I

+−(r) V I
++(r)

)
, (4.14)

with

V I
−−(r) = V I

0 (r) − 3V I
σ (r) − 2(J − 1)

2J + 1
V I

T (r) + (J − 1)V I
LS(r), (4.15)
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V I
++(r) = V I

0 (r) − 3V I
σ (r) − 2(J + 2)

2J + 1
V I

T (r) − (J + 2)V I
LS(r), (4.16)

V I
−+(r) = V I

+−(r) = 6

√
J(J + 1)
2J + 1

V I
T (r). (4.17)

There are 8 unknown functions, V I=0,1
0,σ,LS,T , while we have 4 (2) diagonal and 1(0)

off-diagonal matrix elements at each J for J > 0 (J = 0) as seen from Table I. On
the lattice, it is relatively unambiguous to extract information for � = 0, 1, 2, 3 =
S,P,D,F using the irreducible representations of the cubic group.15) Then, at most
16 independent (14 diagonal and 2 off-diagonal) information as seen in Table I are
obtained for 8 unknowns V I

A(r), so that each V I
A(r) can be determined in two different

ways.

4.4. Long range part of the potential

In QCD with dynamical quarks, the lightest hadron is the pion. Therefore, the
longest range interaction between the nucleons is dictated by the one-pion-exchange
potential (OPEP). For later purpose, let us here summarize several features of OPEP
with special care about its chiral behavior.

First of all, the equivalence theorem implies that the pseudo-scalar πN coupling
gπN (� 14.0) and the pseudo-vector coupling fπN at low energy are related through
fπN = gπN

2MN
. This is simply obtained by kinematics. On the other hand, chiral

symmetry leads to the Goldberger-Treiman (GT) relation, gπN
MN

� gA
Fπ

, where gA(�
1.27) is the nucleon axial-charge and Fπ(� 93 MeV) is the pion decay constant.

With these relations, the OPEP reads

VOPEP(r)

=
f2

πN

4π
(τ 1 · τ 2)(σ1 · ∇1)(σ2 · ∇2)

e−mπr

r
(4.18)

=
g2
πN

4π

(
mπ

2MN

)2 (τ 1 · τ 2)
3

[
(σ1 · σ2) + S12

(
1 +

3
mπr

+
3

m2
πr

2

)]
e−mπr

r
, (4.19)

=
g2
A

4π

(
mπ

2Fπ

)2 (τ 1 · τ 2)
3

[
(σ1 · σ2) + S12

(
1 +

3
mπr

+
3

m2
πr

2

)]
e−mπr

r
(4.20)

−−−−−−−→
chiral limit

g2
A

16πF 2
π

(τ 1 · τ 2)
S12

r3
. (4.21)

Here we have used the equivalence theorem to obtain Eq. (4.19) from Eq. (4.18) and
use the GT relation to obtain Eq. (4.20) from Eq. (4.19). gA and Fπ in Eq. (4.21)
are the values in the chiral limit.

In quenched QCD without dynamical quarks, there arises a dipole ghost in the
flavor-singlet channel (the η-channel in the case of two flavors) which couples to the
nucleons.34),35) The η-propagator in the quenched approximation is written as

Dη(q) =
i

q2 −m2
π + iε

+
iM2

0 (q)
(q2 −m2

π + iε)2
, (4.22)

where M2
0 (q) ≡ m2

0 − α0q
2 with m0 and α0 being ghost parameters. The second
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term is the dipole ghost corresponding to the hairpin diagram with quark-line dis-
connected. Then the NN potential from the η exchange reads35)

Vη(r)

=
f2

ηN

4π
(σ1 · ∇)(σ2 · ∇)

[
(1 − α0) +M2

0 (mπ)
∂

∂m2
π

]
e−mπr

r
(4.23)

=
g2
ηN

4π

(
mπ

2MN

)2 (1 − α0)
3

[
(σ1 · σ2) + S12

(
1 +

3
mπr

+
3

m2
πr

2

)]
e−mπr

r

−
g2
ηN

4π

(
mπ

2MN

)2 (M2
0 (mπ)
2mπ

)
1
3

[
(σ1 · σ2)

(
1 − 2

mπr

)
+ S12

(
1 +

1
mπr

)]
e−mπr,

(4.24)

where fηN (gηN ) is the pseudo-vector (pseudo-scalar) coupling of the flavor-singlet η
to the nucleon. Its magnitude does not necessarily be as large as the πN coupling.36)

Note that the long range part of the potential has exponential fall-off instead of the
Yukawa-type because of the dipole-term in Eq. (4.22).

Let us define a ratio R13 between the central potential in the spin-singlet channel
and that in the spin-triplet channel,

R13 ≡ VC(r; 1S0)
VC(r; 3S1)

−−−→
r→∞

{
+1 (one-pion-exchange),
−3 (one-ghost-exchange). (4.25)

Since we have 〈σ1 · σ2〉spin-singlet = −3, 〈σ1 · σ2〉spin-triplet = +1 and the similar
relations for the isospin, the large r behavior of R13 has different sign and magnitude
between the one-ghost-exchange and one-pion-exchange. Therefore R13 can be used
as a tool to identify the ghost contribution at large distance as will be discussed in
§6.5.

§5. Central and tensor forces in lattice QCD

5.1. BS wave function on the lattice

To define the BS wave function on the lattice with the lattice spacing a and the
spatial lattice volume L3, we start from the four-point correlator,

Gαβ(x,y, t− t0; JP ) =
〈
0
∣∣nβ(y, t)pα(x, t)J pn(t0; JP )

∣∣ 0〉 (5.1)

=
∞∑

n=0

An 〈0 |nβ(y)pα(x)|En〉 e−En(t−t0), (5.2)

−−−→
t�t0

A0 ψαβ(r; JP ) e−E0(t−t0), (5.3)

with the matrix element An = 〈En|J pn(0)|0〉. The states created by the source
J pn have the conserved quantum numbers, (J, Jz) (total angular momentum and its
z-component) and P (parity). For studying the nuclear force in the JP = 0+ (1S0)
channel and the JP = 1+ (3S1 and 3D1) channel, we adopt a wall source located at
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Lattice Nuclear Force 101

t = t0 with the Coulomb gauge fixing only at t = t0:

Jpn(t0; JP ) = P
(s)
βα

[
pwall

α (t0)nwall
β (t0)

]
, (5.4)

where pwall
α (t0) and nwall

β (t0) are obtained by replacing the local quark fields q(x) and
q(y) in Eqs. (3.5) and (3.6) by the wall quark fields,

qwall(t0) ≡
∑

x

q(x, t0). (5.5)

By construction, the source operator Eq. (5.4) has zero orbital angular momentum
at t = t0, so that states with fixed (J, Jz) are obtained by the spin projection with
(s, sz) = (J, Jz), e.g. P (s=0)

βα = (σ2)βα and P (s=1,sz=0)
βα = (σ1)βα. Note that the � and

s are not separately conserved: Therefore, the state created by the source Jpn(t0; 1+)
becomes a mixture of the � = 0 and � = 2 at later time t.

The BS wave function in the orbital S-state is then defined with the projection
operator for the orbital angular momentum (P (�)) and that for the spin (P (s)):

ψ(r;1 S0) = P (�=0)P (s=0)ψ(r; 0+) ≡ 1
24

∑
g∈O

P
(s=0)
βα ψαβ(g−1r; 0+), (5.6)

ψ(r;3 S1) = P (�=0)P (s=1)ψ(r; 1+) ≡ 1
24

∑
g∈O

P
(s=1)
βα ψαβ(g−1r; 1+). (5.7)

Here the summation over g ∈ O is taken for the cubic transformation group with 24
elements to project out the S-state.∗),∗∗)

5.2. Asymptotic momentum

The asymptotic momentum k for the S-states is obtained by fitting the BS wave
function ψ(r) with the Green’s function in a finite and periodic box:15)

G(r; k2) =
1
L3

∑
n∈Z3

ei(2π/L)n·r

(2π/L)2n2 − k2
, (5.8)

which satisfies (∇2 + k2)G(r; k2) = −δlat(r) with δlat(r) being the periodic delta-
function. In the actual calculation, Eq. (5.8) is rewritten in terms of the heat kernel
K satisfying the heat equation, ∂tK(t, r) = ∇2K(t, r) with the initial condition,
K(t → 0+, r) = δlat(r) (see Appendix D for the detail). The fits are performed
outside the range of the NN interaction determined by ∇2ψ(r)/ψ(r).37)

∗) More precisely, this projection picks up an A+
1 state, which contains not only an � = 0

component but also the higher orbital waves with � ≥ 4. Latter contributions, however, are expected

to be negligible at low energy.
∗∗) Note that P (�=0)P (s=0) in Eq. (5.6) is a redundant operation, since we have already prepared

JP = 0+ state by the wall source Jpn(t0; 0
+) which allows only the 1S0 channel. Also, P (s=1) in

Eq. (5.7) is a redundant operation, since the JP = 1+ state prepared by the wall source Jpn(t0; 1
+)

allows only the spin-triplet state.
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102 S. Aoki, T. Hatsuda and N. Ishii

5.3. Effective central potential at low energies

In the S-states at low energies, the effect of the velocity dependent terms in
Eq. (4.11) is supposed to be small compared to the velocity independent terms, so
that it is convenient to define the “effective” central potential V eff

C (r):20)

V eff
C (r) = E +

1
mN

∇2ψ(r)
ψ(r)

. (5.9)

As long as we keep only the LO terms of the velocity expansion in Eq. (4.10),
V eff

C (r;1 S0) is equivalent to VC(r;1 S0), while V eff
C (r;3 S1) differs from VC(r;3 S1) due

to the higher order effects from the tensor potential. One can also study the validity
of velocity expansion in Eq. (4.10) by calculating V eff

C (r;1 S0) for different energies
E (see §6.9).

5.4. Scattering lengths

The NN scattering lengths for the S-states can be deduced from Lüscher’s for-
mula,15),37)

k cot δ0(k) =
2√
πL

Z00(1; q2) =
1
a0

+O(k2), (5.10)

where Z00(1; q2) with q = kL
2π is obtained by the analytic continuation of the gen-

eralized zeta-function Z00(s; q2) = 1√
4π

∑
n∈Z3(n2 − q2)−s defined for Re s > 3/2.

(See also Ref. 38) for more general considerations.) In this formula, the sign of the
S-wave scattering length a0 is defined to be positive for weak attraction.

5.5. Decomposition into central and tensor potentials

Although the tensor force at long distance is dominated by the one-pion ex-
change, its spatial structure at medium and short distances is not well understood
theoretically nor well determined phenomenologically. Therefore, it is quite impor-
tant to extract it from lattice QCD.

In the LO of the velocity expansion in Eq. (4.10), only the central potential VC(r)
and the tensor potential VT (r) are relevant: The central potential acts separately
on the S and D components, while the tensor potential provides a coupling between
these two. Therefore, we consider a coupled-channel Schrödinger equation in the
JP = 1+ channel,39) in which the BS wave function has both S-wave and D-wave
components: (

H0 + VC(r) + VT (r)S12

)
ψ(r; 1+) = Eψ(r; 1+). (5.11)

The projections to the S-wave and D-wave components similar to Eq. (5.7) read

Pψαβ ≡ P (�=0)ψαβ(r; 1+), (5.12)

Qψαβ ≡ (1 − P (�=0))ψαβ(r; 1+). (5.13)

Note that both Pψαβ and Qψαβ contain additional components with � ≥ 4 but they
are expected to be small at low energies.
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Lattice Nuclear Force 103

By multiplying P and Q to Eq. (5.11) from the left and using the fact that H0,
VC(r) and VT (r) commute with P and Q, Eq. (5.11) splits into two equations,

H0[Pψ](r) + VC(r)[Pψ](r) + VT (r)[PS12ψ](r) = E[Pψ](r), (5.14)
H0[Qψ](r) + VC(r)[Qψ](r) + VT (r)[QS12ψ](r) = E[Qψ](r), (5.15)

where we have suppressed the spin indices, α and β, for simplicity.
By picking up (α, β) = (2, 1) component of these two equations, we arrive at

VC(r) = E − 1
Δ(r)

(
[QS12ψ]21(r)H0[Pψ]21(r) − [PS12ψ]21(r)H0[Qψ]21(r)

)
, (5.16)

VT (r) =
1

Δ(r)
(
[Qψ]21(r)H0[Pψ]21(r) − [Pψ]21(r)H0[Qψ]21(r)

)
, (5.17)

Δ(r) ≡ [Pψ]21(r)[QS12ψ]21(r) − [Qψ]21(r)[PS12ψ]21(r). (5.18)

§6. Numerical results in quenched QCD

6.1. Setup of the lattice simulations

We employ the standard plaquette gauge action on a 324 lattice with the bare
QCD coupling constant β = 6/g2 = 5.7. The corresponding lattice spacing is deter-
mined as 1/a = 1.44(2) GeV (a � 0.137 fm) from the ρ meson mass in the chiral
limit.40) The physical size of our lattice then reads L � 4.4 fm. As for the fermion
action, we adopt the standard Wilson quark action with the hopping parameter
(κ = 0.1640, 0.1665 and 0.1678), which controls the quark masses. The periodic
boundary condition is imposed on the quark fields along the spatial direction, while
the Dirichlet boundary condition is imposed along the temporal direction on the
time-slice t = 0. The wall source is placed on the time-slice at t0/a ≡ 5 after the
Coulomb gauge fixing at t = t0.

To generate the quenched gauge configurations, we adopt the heatbath algorithm
and sample configurations are taken in every 200 sweeps after skipping 3000 sweeps
for thermalization. The number of sampled gauge configurations Nconf , the pion
mass mπ, the rho-meson mass mρ and the nucleon mass mN are summarized in
Table II. For κ = 0.1678, we have removed 28 exceptional gauge configurations from
the sample.

The BS wave functions are measured at (t−t0)/a = 7, 6, 5 for κ = 0.1640, 0.1665,
0.1678, respectively. These values of t − t0 are determined by studying the ground
state saturation in the NN potentials as discussed below. We employ the nearest
neighbor representation of the discretized Laplacian as ∇2f(x) ≡

∑3
i=1{f(x + ani)

+ f(x − ani)} − 6f(x), where ni denotes the unit vector along the i-th coordinate
axis. BS wave functions are fully measured for r < 0.7 fm, where rapid change of
the NN potential is expected. Since the change is rather modest for r > 0.7 fm, the
measurement of BS wave functions has been restricted on the coordinate axes and
their nearest neighbors to reduce the computational cost.
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104 S. Aoki, T. Hatsuda and N. Ishii

Table II. Summary of the hopping parameter κ, the pion mass mπ, the rho-meson mass mρ, the

nucleon mass mN, the time-slice (t−t0)/a at which BS wave functions are extracted, the spatial-

slice R/a above which the NN potentials are inactive, and the number of gauge configurations

Nconf with exceptional configurations being removed. The lattice spacing is a � 0.137 fm. Some

numbers are updated from Tables 1 and 2 of Ref. 21).

κ mπ [MeV] mρ [MeV] mN [MeV] (t− t0)/a R/a Nconf

0.1640 731.1(4) 990.3(13) 1558.4(63) 7 11 1000

0.1665 529.0(4) 894.3(28) 1333.8(82) 6 11 2000

0.1678 379.7(9) 837.9(21) 1196.6(83) 5 12 2021

Fig. 1. The NN wave functions in 1S0 and 3S1 channels for mπ = 529 MeV (κ = 0.1665). The

inset is a three-dimensional plot of the wave function ψ(x, y, z = 0; 1S0).

6.2. BS wave functions in the S-state

Figure 1 shows the BS wave functions in 1S0 and 3S1 channels for κ = 0.1665.
The wave functions are normalized to be 1 at the largest spatial point r = 2.192 fm.

Figures 2(a) and (b) show the fitting of the wave function in the interval R/a ≤
r/a ≤ 16 using Eq. (5.8). This leads to the values of the effective energy E ≡ k2/mN

in Table II. The value of R is determined from the ground state saturation of the
potential as discussed below.

6.3. Effective central potential

Shown in Fig. 3 are the reconstructed effective central potentials in the 1S0 and
3S1 channels for κ = 0.1665 with the formula Eq. (5.9). The overall structures of the
potentials are similar to the known phenomenological NN potentials discussed in
§1, namely the repulsive core at short distance surrounded by the attractive well at
medium and long distances. From this figure, we find that the interaction between
the nucleons is well switched off for r > 1.5 fm, so that we chose R/a = 11 (for
mπ = 731, 529 MeV) and R/a = 12 (for mπ = 380 MeV) as given in Table II. In
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Lattice Nuclear Force 105

Fig. 2. (a) The fit of the NN wave functions for mπ = 529 MeV in the 1S0 channel using the

Green’s function in the fit range 11 ≤ r/a ≤ 16. (b) Similar fit for the NN wave functions in

the 3S1 channel.

both cases, the condition R < L/2 = 2.2 fm is satisfied.
To check the stability of these potentials against the time-slice adopted to define

the BS wave functions, we plot the t-dependence of the 1S0 potential for several
different values of r as shown in Fig. 4 for mπ = 529 MeV: In this case, choosing
(t− t0)/a = 6 to extract VC(r) would be good enough to assure the stability within
the statistical errors. The time-slices chosen for other cases by the same procedure
are given in Table II.

6.4. Quark mass dependence of the central potential

In Fig. 5, we compare the NN central potentials in the 1S0 channel for three
different quark masses. As the quark mass decreases, the repulsive core at short
distance and the attractive well at medium distance are enhanced simultaneously.
This feature can be also seen in Fig. 6(a) where r2VC(r), which appears in the
quantum mechanical matrix elements, is plotted. To study the relative magnitude
of the repulsion and the attraction, we define the following volume integrals of the
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106 S. Aoki, T. Hatsuda and N. Ishii

Fig. 3. The effective central potentials in the 1S0 channel and in the 3S1 channel for mπ = 529

MeV.

potential and plot them in Fig. 6(b):

I1 =
∫ r0

0
r2VC(r)dr, I2 =

∫ r1

r0

r2VC(r)dr. (6.1)

Here r0 (∼ 0.5 fm) is the first nodal point where r2VC(r) changes sign from positive
to negative, and r1 is the point at which r2VC(r) becomes essentially zero within the
statistical errors. The error bars in Fig. 6(b) reflect the uncertainties of r0,1 as well
as those from the spline curve fit of the data. The comparison of I1, I2 and I1 + I2
implies that (i) both repulsion and attraction increase in magnitude as quark mass
decreases, and (ii) there is a large cancellation between the repulsion and attraction,
and (iii) there is a net attraction increasing as the quark mass decreases.

6.5. Dipole ghost in the central potential

To check if there is an evidence of the exponential tail from the dipole ghost in the
long range part of the effective central potentials, the ratio R13 given by Eq. (4.25)
is plotted in Fig. 7 as a function of r for the lightest quark mass, mπ = 380 MeV.
Within the statistical errors, there is no sign that R13 → −3 for r > 1 fm, so
that possible ghost contamination is small in our results with relatively heavy quark
masses. The figure also shows that R13 is rather close to +1 for r > 0.7 fm. This
does not necessary implies that the OPEP is seen: as long as there are spin-isospin
independent attraction such as originating from the two-pion-exchange potential, it
also leads to R13 � 1.
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Lattice Nuclear Force 107

Fig. 4. The t-dependence of the potential at r = 0, 0.14, 0.19, 1.37, 2.19, 0.69 fm from top to bottom

for the 1S0 channel at mπ = 529 MeV.

Table III. Effective center of mass energies E = k2/mN obtained from the asymptotic momenta for

different quark mass. a0’s are the associated scattering lengths obtained from Lüscher’s formula

Eq. (5.10).

mπ [MeV] E(1S0) [MeV] E(3S1) [MeV] a0(
1S0) [fm] a0(

3S1) [fm]

731.1(4) −0.400(83) −0.480(97) 0.115(26) 0.141(31)

529.0(4) −0.509(94) −0.560(114) 0.126(25) 0.140(31)

379.7(9) −0.675(264) −0.968(374) 0.153(66) 0.230(101)

6.6. NN scattering lengths

As we found in Fig. 6, the central potential multiplied by r2 shows a net attrac-
tion as a result of the large cancellation between the short range repulsion and the
medium range attraction. This attractive nature of the potential can be quantified
by the scattering length a0 defined from Lüscher’s formula, Eq. (5.10), together with
the asymptotic momentum k obtained from Eq. (5.8).∗)

The results of a0 are summarized in the last two columns in Table III where
O(k2) correction on the right-hand side of Eq. (5.10) is assumed to be small for
the present energy E = k2/mN . In Fig. 8, the scattering lengths for 1S0 and 3S1

channels are shown as a function of m2
π. Although there is a small attraction which

increases as mπ decreases in both channels, the absolute magnitudes of a0 are much
∗) If the net interaction is small in the infinite volume limit, the volume integral of the

potential and the scattering length are related in the Born approximation as, aweak-coupling
0

� −mN

R
VC(r)r2dr.
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108 S. Aoki, T. Hatsuda and N. Ishii

Fig. 5. The central potentials in the 1S0 channel for three different quark masses.

smaller than the experimental values at the physical point: a(exp)
0 (1S0) ∼ 20 fm and

a
(exp)
0 (3S1) ∼ −5 fm at m2

π = 0.018 GeV2.
The above discrepancy is partly attributed to the heavy quark masses employed

in our simulations: If we can get closer to the physical quark mass in full QCD
simulations, there should arise the “unitary region” where the NN scattering length
becomes singular and changes sign. This was first noted in clear terms by Kura-
mashi23) and was later elaborated in Refs. 19) and 41) by using chiral perturbation
theory. The singularity is associated with the formation of the di-nucleon bound
state, so that the NN scattering length becomes a non-linear function of the quark
mass in the unitary region. As suggested in Ref. 23) by using the one-boson-exchange
model with the quark-mass dependence of the hadron masses taken from the lattice
QCD data, the size of the unitary region could be narrow, which implies that the
scattering lengths at the heavy quark masses adopted in our simulation can be as
small as the values in Fig. 8.

Unlike the scattering length, the NN potential would not have singular behavior
in the unitary region as expected from the well-known quantum mechanical examples
such as the low-energy scattering between ultracold atoms. Also, the effective range
parameter would be a rather smooth function of the quark mass. To check these
points in QCD, it is important to study the NN potential, the scattering length
and the effective range simultaneously in the full QCD simulations which allow us to
approach small quark masses without quenched artifact. Studies along this direction
are now underway39) and will be reported elsewhere.
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Fig. 6. (a) The central potentials with r2 multiplied in the 1S0 channel for three different quark

masses. (b) Comparison of the attractive part and repulsive part of the potential in terms of

the volume integral in the 1S0 channel.

6.7. BS wave function in the D-state

In Fig. 9(a), we show the 3S1 and 3D1 components of the BS wave functions
obtained from the JP = 1+, Jz = M = 0 state for mπ � 529 MeV, according to the
procedure given in §5.5. To reduce the computational cost, the points are restricted
on the coordinate axes and their nearest neighbors for r > 0.7 fm, whereas all points
are calculated for r < 0.7 fm.

Note that the 3D1 wave function as a function of r is multivalued due to its angu-
lar dependence. Since (α, β) = (2, 1) spin component of the D-state wave function for
JP = 1+,M = 0 is proportional to the spherical harmonics Y20(θ, φ) ∝ 3 cos2 θ − 1,
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Fig. 7. The ratio of the central potentials defined in Eq. (4.25) for the lightest quark mass, mπ = 380

MeV.

Fig. 8. Scattering length a0 in the 1S0 and 3S1 channels for three different quark masses obtained

in the quenched QCD simulations.

it is a good consistency test to check if the multivaluedness can be absorbed by this
angular dependence. Shown in Fig. 9(b) are the same BS wave functions as Fig. 9(a)
with the angular dependence in the D-state assumed to have this spherical harmon-
ics form. It is clear that the multivaluedness is nicely removed, and thus it is certain
that we indeed extracted the D-state wave function on the lattice.

6.8. Tensor force and its quark mass dependence

Shown in Fig. 10 are the central potential VC(r) and tensor potential VT (r)
together with effective central potential V eff

C (r) in the 3S1 channel. (As mentioned
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Fig. 9. (a) (α, β) = (2, 1) components of the S-state and the D-state BS wave functions projected

out from a single state with JP = 1+,M = 0. (b) The same data with the spherical harmonics

components are removed in the D-state.

before, we consider only the LO terms of the velocity expansion here by assuming
that the NLO term (the spin-orbit potential) and higher order terms are negligible
at this low energy.)

Note that V eff
C (r) contains the effect of VT (r) implicitly as higher order effects

through the process such as 3S1 →3 D1 →3 S1. In the real world, V eff
C (r) is expected

to acquire sufficient attraction from the tensor force. This is the reason why bound
deuteron exists in the 3S1 channel while the bound dineutron does not exist in the
1S0 channel. Now, we see from Fig. 10 that the difference between VC(r) and V eff

C (r)
is still small in our quenched simulations due to relatively large quark masses. This
is also consistent with the results of the small scattering length shown in Fig. 8.

The tensor potentials VT (r) in Fig. 10 are negative for the whole range of r
within statistical errors and have a minimum at short distance around 0.4 fm. If the
tensor force receives significant contribution from the one-pion exchange as expected
from the meson theory, VT (r) would be rather sensitive to the change of the quark
mass. As shown in Fig. 11, it is indeed the case: Attraction of VT (r) is substantially
enhanced as the quark mass decreases. A phenomenological fit of the tensor force
taking into account this physics will be given later.

As discussed in §6.5, the ratio R13 of the effective central potentials in the 1S0

and 3S1 channels is close to unity for r > 0.7 fm so that we do not see evidence
of the dipole ghost (quenched artifact) in the long range part of the potential with
our relatively heavy quark masses. However, this does not necessarily imply that
the OPEP is seen in the effective central potentials: If the OPEP dominates at long
distances, Eq. (4.19) immediately implies that the magnitude of the tensor potential
is always larger than the central potential at long distances. Since this is not seen
in Fig. 10 within the statistical errors, it is unlikely to interpret the attraction of
V eff

C (r) at 0.5 fm < r < 1 fm as the evidence of OPEP.
A technical comment is in order here. Since we use the (α, β) = (2, 1) spin

component of Eq. (5.16), the second equation vanishes at r ∝ (±1,±1,±1). This
is because the spin (2, 1) component of the D-state wave function is proportional to
Y20(θ, φ) ∝ 3 cos2 θ − 1 which vanishes at r ∝ (±1,±1,±1). Although these points

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/123/1/89/1918070 by guest on 20 April 2024



112 S. Aoki, T. Hatsuda and N. Ishii

Fig. 10. The central potential VC(r) and the tensor potential VT (r) obtained from the JP = 1+

BS wave function at mπ = 529 MeV.

Fig. 11. Quark mass dependence of tensor force. The lines are the four-parameter fit using the

one-ρ-exchange + one-pion-exchange with Gaussian form factors.

are removed from our plots, statistical error is accumulated in the neighborhood of
these points. (For instance, see the points at r � 0.5 fm in Figs. 10 and 11.) A
resolution of this problem by combining the data with other spin components will
be reported in the future publication.

The central and tensor potentials obtained from lattice QCD are given at dis-

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/123/1/89/1918070 by guest on 20 April 2024



Lattice Nuclear Force 113

crete data points. For practical applications to nuclear physics, it is more useful
to parametrize the lattice results by known functions. We have tried such a fit
for VT (r) under the assumption of the one-ρ-exchange + one-pion-exchange with
Gaussian form factors:

VT (r) = b1(1 − e−b2r2
)2
(

1 +
3
mρr

+
3

(mρr)2

)
e−mρr

r

+b3(1 − e−b4r2
)2
(

1 +
3

mπr
+

3
(mπr)2

)
e−mπr

r
, (6.2)

where, b1,2,3,4 are the fitting parameters while mρ (mπ) is taken to be the ρ-meson
mass (the pion mass) calculated for each quark mass. At this moment, it is hasty to
extract physical quantities from the fit such as the meson-nucleon coupling constants:
Nevertheless, it may be worth mentioning that the pion-nucleon coupling constant
extracted from the parameter b3 in the case of the lightest pion mass (mπ = 380
MeV) reads g2

πN/(4π) = 12.1 ± 2.7 which is encouragingly close to the empirical
value. We have tried similar fits for the central potential with the phenomenological
repulsive core with a Gaussian form and the meson-exchange potential with form-
factors: The results are still not stable enough due to the statistical errors of the
lattice data.

6.9. Velocity dependence of the potential

So far we have considered the potential determined from the lattice data taken
almost at zero effective energy E � 0 MeV (see Table III). If the local potential
determined from the other energies has different spatial structure, it is an indication
that there are velocity dependent terms as discussed in §2.1.

A lattice QCD analysis on the velocity dependence has been recently carried
out by changing the spatial boundary condition of the quark field from the periodic
one to the anti-periodic one, so that the effective center of mass energy is increased
to E ∼ 3(π/L)2/mN ∼ 50 MeV.42) The result shows that the central and tensor
potentials do not show modifications for every r within the statistical errors: Namely,
the non-locality of the potential with our choice of the interpolating operator is small
and the potentials shown in the present paper can be used in the energy region at
least up to E ∼ 50 MeV without significant modifications.∗) Detailed account of the
above result is beyond the scope of this paper, and will be reported elsewhere.

§7. Summary and concluding remarks

In this paper, we have discussed the basic notion of the nucleon-nucleon potential
and its field-theoretical derivation from the equal-time Bethe-Salpeter wave function
in QCD. By construction, the non-local potential defined through the projection of
the wave function to the interaction region (the inner region) correctly reproduces
the asymptotic form of the wave function in the region beyond the range of the nu-
clear force (the outer region). Thus the observables such as the phase shifts and the

∗) An investigation based on integrable models suggests that potentials derived from the BS wave

functions with local operators in these models are slowly varying functions of energy (velocity).43)
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binding energies can be calculated after extrapolating the potential to the infinite
volume limit. Non-locality of the potential can be taken into account successively
by making its velocity expansion, which introduces the velocity-dependent local po-
tentials. The leading-order terms of such velocity expansion for the nucleon-nucleon
interaction are the central and the tensor potentials.

As an exploratory study to test how this formulation works, we have carried
out quenched lattice QCD simulations of the two-nucleon system in a spatial box of
the size (4.4 fm)3 with the quark masses corresponding to mπ = 380, 529, 731 MeV.
We found that the NN potential calculated on the lattice at low energy shows all
the characteristic features expected from the empirical NN potentials obtained from
the experimental NN phase shifts, namely the attractive well at long and medium
distances and the repulsive core at short distance for the central potential. As for the
tensor potential obtained from the coupled channel treatment of the 3S1-state and
the 3D1-state in the BS wave functions on the lattice, we found appreciable attraction
at long and medium distances and a moderate repulsion at short distance.

As the quark mass decreases, the repulsive core and attractive well in the central
potential, and the attractive well in the tensor potential tend to be enhanced. Also,
we found net attraction in both 1S0 and 3S1 channels after the cancellation of the
repulsive core and the attractive well. The absolute magnitudes of the scattering
lengths are still much smaller than the physical values due to the large quark mass
in our simulation. Phenomenological fit of the tensor potential strongly suggests the
existence of the one-pion-exchange contribution in its long range part.

There are a number of directions to be investigated on the basis of our approach
as listed below:

1. Determination of the velocity dependence is important in deriving the NN po-
tentials which can be used for the wide range of scattering energies. Studies
along this line using the anti-periodic boundary condition in the spatial direc-
tion has been already started42) as mentioned in §6.9.

2. To derive the realistic NN potentials on the lattice, it is necessary to carry out
full QCD simulations with dynamical quarks. Studies along this line with the
use of the (2+1)-flavor QCD configurations with the Wilson fermion generated
by PACS-CS Collaboration45) is currently under way.39)

3. The hyperon-nucleon (Y N) and hyperon-hyperon (Y Y ) potentials are essential
for understanding the properties of hyper nuclei and the hyperonic matter inside
the neutron stars. However, the experimental scattering data are very limited
due to the short life-time of hyperons. On the other hand, the NN , Y N and
Y Y interactions on the lattice can be treated in the same manner by changing
only the quark flavors. Recently, the ΞN potential in quenched QCD24) and
the ΛN potential in quenched and full QCD44) are examined as a first step
toward systematic derivation of the hyperon potentials.

4. The three-nucleon force is thought to play important roles in nuclear structures
and in the equation of state of high density matter as mentioned in §2.2. Since
the experimental information is scarce, simulations of the three nucleons on
the lattice combined with the method proposed in §2.2 may lead to the first
principle determination of the three-nucleon potential in the near future.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/123/1/89/1918070 by guest on 20 April 2024



Lattice Nuclear Force 115

If it turns out that the program described in this paper indeed works in full
QCD with realistic quark masses, it would be the promising first step toward the
understanding of atomic nuclei and neutron stars from the fundamental law of the
strong interaction, the quantum chromodynamics.
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Appendix A
Bethe-Salpeter Wave Function and Its Asymptotic Behaviour

In this appendix we derive the behaviour of the Bethe-Salpeter (BS) wave func-
tion at large r, only using the properties of quantum field theories.

A.1. Unitarity of S-matrix and structure of T -matrix

We first determine the structure of the NN scattering T -matrix below the pion-
production threshold. Due to the unitarity of the S-matrix. S†S = 1 with S = 1+iT ,
we obtain

〈f |T |i〉 − 〈f |T †|i〉 = i
∑
n

〈f |T †|n〉〈n|T |i〉. (A.1)

In the case ofNN scattering in the center of mass frame such that (ka, sa)+(kb, sb) →
(kc, sc) + (kd, sd) where ka = (εk,k), kb = (εk,−k) and kc = (εp,p), kd = (εp,−p)

with εk =
√

k2 +m2
N and εp =

√
p2 +m2

N , we write

in〈pc, sc, pd, sd|T |pa, sa, pb, sb〉in = (2π)4δ(4)(pa + pb − pc − pd)T (p, sc, sd; k, sa, sb).
(A.2)

Here si = ±1/2 is a helicity of each nucleon, and k = |k| = |p| in the center of mass

frame. Below the pion production threshold such that 2
√
k2 +m2

N < 2mN + mπ,
the sum over intermediate states n in Eq. (A.1) can be restricted to the NN states
due to energy-momentum conservations as

∑
n

|n〉〈n| =
∑
s1,s2

∫
d3p1

(2π)32εp1

d3p2

(2π)32εp2

|p1, s1, p2, s2〉〈p1, s1, p2, s2|. (A.3)
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This leads to

T (p, sc, sd; k, sa, sb) − T †(p, sc, sd; k, sa, sb)

= i
∑
s1,s2

k

32π2εk

∫
dΩq T

†(p, sc, sd; q, s1, s2)T (q, s1, s2; k, sa, sb), (A.4)

where |q| = k and Ωq is the solid angle of vector q. Using the angular momentum
basis,46)

T (p, sc, sd; k, sa, sb) = 4π
∑
J,M

2J + 1
4π

〈sc, sd|T J(k)|sa, sb〉(DJ)†s′M (Ωp)DJ
Ms(Ωk),

(A.5)

with s = sa − sb and s′ = sc − sd, we obtain

T J (k) − [T J ]†(k) = i
k

8πεk
[T J ]†(k)T J(k). (A.6)

Here T J is considered as a 4 × 4 matrix and the Wigner D-matrix DJ is defined by

DJ
Mλ(Ω) = e−iMαdJ

Mλ(β)e+iλα, (A.7)

where the solid angle is denoted as dΩ = sinβdβdα and dJ
Mλ(β) is the Wigner

d-matrix. The normalization of the D-matrix is given by∫
dΩ (DJ)†λM (Ω)DJ ′

M ′λ(Ω) =
4π

2J + 1
δJJ ′

δMM ′ , (A.8)

where no summation is taken for λ. For the NN scattering, with new helicity basis
such that |+ 1

2 ,+
1
2〉 ± | − 1

2 ,−
1
2〉 and |+ 1

2 ,−
1
2〉 ± | − 1

2 ,+
1
2〉, T J is decomposed into

two 1 × 1 submatrices and and one 2 × 2 submatrix as46)

T J =

⎛
⎝ T J

�=J,s=0 0 01×2

0 T J
�=J,s=1 01×2

02×1 02×1 T J
�=J∓1,s=1

⎞
⎠ . (A.9)

The unitarity condition then gives

T J
�=J,s = T̂Js, T J

�=J∓1,s=1 = O(k)
(
T̂J−1,1 0

0 T̂J+1,1

)
O−1(k), (A.10)

with

T̂�s =
16πεk

k
eiδ�s(k) sin δ�s(k), O(k) =

(
cos εJ(k) − sin εJ(k)
sin εJ(k) cos εJ(k)

)
, (A.11)

where δ�s(k) is the scattering phase shift, whereas εJ(k) is the mixing angle between
� = J±1. They correspond to the standard Blatt-Biedenharn eigenphase and mixing
angle.
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A.2. BS amplitude and half off-shell T -matrix

Let us now consider the Bethe-Salpeter (BS) amplitude for the proton and the
neutron, defined by

Ψαβ(x, y) = 〈0|T{nβ(y)pα(x)}|p(q, s)n(q′, s′)〉in, (A.12)

where T represents the time-ordered product. The spatial momentum and the he-
licity for the incoming proton and those for the neutron are denoted by (q, s) and
(q′, s′), respectively. The single nucleon state is normalized covariantly,
〈Bi(q, s)|Bj(q′, s′)〉 = 2εq(2π)3δijδss′δ3(q − q′) where B1 = p (proton) and B2 =
n(neutron).

The fields, nβ(y) and pα(x), are the local composite operators for the neutron
and the proton whose explicit forms are irrelevant for the following derivation. One
of the advantages to use local operators is that the standard reduction formula can
be generalized without much modification as shown by Nishijima, Zimmermann and
Haag (NZH).33) In particular, one can define in and out composite fields, nin(out)(x)
and pin(out)(x), in a similar way as the elementary field through the Yang-Feldman
equation as33)

√
ZNin(out)(x) = N(x) −

∫
Sret(adv)(x− x′;m)J(x′)d4x, (A.13)

where N takes either n or p, Sret(adv) denotes the retarded (advanced) Green’s func-
tion in the free space with the mass m = mN , and the “source” is J(x) ≡ (i∂/x −
m)N(x). The wave function renormalization constant Z is defined as

√
Zuα(p, s) =

〈0|Nα(0)|B(p, s)〉, where we have the following normalization of the Dirac spinors:∑
α

u†α(p, s)uα(p, s′) =
∑
α

v†α(p, s)vα(p, s′) = 2εpδss′ , (A.14)

∑
s

uα(p, s)ūβ(p, s) = (p/+m)αβ,
∑

s

vα(p, s)v̄β(p, s) = (p/−m)αβ. (A.15)

Then the NZH reduction formula is summarized as
√
Z
[
T(O)B†

in(p, s) − (−)|O|B†
out(p, s)T(O)

]
=
∫
d4x e−ipx T{ON̄(x)}[−iS−1(p)u(p, s)], (A.16)

√
Z
[
Bout(p, s)T(O) − (−)|O|T(O)Bin(p, s)

]
=
∫
d4x eipx [−iū(p, s)S−1(p)]T{N(x)O}. (A.17)

Here O is an arbitrary product of operators with the number of fermionic operators
denoted by |O|, and S−1(p) = (p/ −m + iδ) is the inverse of the free nucleon prop-
agator. The asymptotic baryon and anti-baryon operators, Bas(p, s) and Das(p, s)
(as = in, out) are defined by the Fourier decomposition of Nas(x),

Nas(x) =
∑

s

∫
d3p

(2π)32εp

[
e−ipx Bas(p, s)u(p, s) + eipx D†

as(p, s)v(p, s)
]
, (A.18)
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where the flavor and spinor indices are suppressed. The operatorBas thus defined sat-
isfies the covariant commutation relation, {Bas(p, s), B

†
as(p′, s′)} = 2εp(2π)3δss′δ3(p−

p′), and asymptotic states are defined by |B(p, s)〉as = B†
as(p, s)|0〉.

By using the NZH reduction formula, we can evaluate our BS amplitude Eq. (A.12)
as

Ψ12(x1, x2) =

Z−1

∫ 2∏
i=1

{
d4qi
(2π)4

e−iqixi

}
G12;34(q1, q2; q3, q4)[−iS−1(q3)u(3)]3[−iS−1(q4)u(4)]4,

(A.19)

where the four-point Green’s function is defined by

G12;34(q1, q2; q3, q4) =
∫ 4∏

i=1

{
d4xie

iqixi
}

〈0|T{n2(x2)p1(x1)p̄3(x3)n̄4(x4)}|0〉.

(A.20)

Here, to simplify the notation, we abbreviate the Lorentz indices by the lower-
case suffixes (1, · · · , 4) with the repeated suffixes being contracted and the state
labels are abbreviated as the numbers in the parenthesis, e.g. uα(q, s) → u3(3) and
uβ(q′, s′) → u4(4). The four-point function can be decomposed into the free part
and the connected part as G12;34 = Z2(G(0)

12;34 +G
(c)
12;34). The free part reads

G
(0)
12;34 = (2π)8δ4(q1 − q3)δ4(q2 − q4)[iS(q3)]13[iS(q4)]24, (A.21)

whereas the connected part is rewritten with the proper vertex Γ as

G
(c)
12;34(q1, q2; q3, q4)

= (2π)4δ4(K −Q) [iS(q1)]11′[iS(q2)]22′ (−i)Γ1′2′;3′4′(k; q|Q) [iS(q3)]3′3[iS(q4)]4′4.
(A.22)

Here we have introduced relative and center-of-mass (c.m.) 4-momenta by

K = q1 + q2, k = (q1 − q2)/2, Q = q3 + q4, q = (q3 − q4)/2. (A.23)

Then, the K-integration in Eq. (A.19) can be carried out to obtain

Ψ12(x1, x2) =
[
ψ

(0)
12 (r) + ψ

(c)
12 (r)

]
e−iQR, (A.24)

ψ
(0)
12 (r) = Zu1(3)u2(4)e−iqr, (A.25)

ψ
(c)
12 (r) = iZ

∫
d4k

(2π)4
e−ikr [S(q1)]11′[S(q2)]22′Γ1′2′;34(k; q|Q)u3(3)u4(4),

(A.26)

where r = x1 − x2 and R = (x1 + x2)/2 are relative and c.m. 4-dimensional coordi-
nates, respectively. Covariant Nambu-Bethe-Salpeter type differential equation can
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be obtained by multiplying S−1(i∂/1)S−1(i∂/2) to Eqs. (A.24)−(A.26) from the left:

[S−1(i∂/x)]αα′ [S−1(i∂/y)]ββ′Ψα′β′(x, y)

= iZ

∫
d4k

(2π)4
e−ikre−iQR Γαβ;γδ(k; q|Q)uγ(q, s)uδ(q′, s′). (A.27)

In our applications of the NN scattering at low energies, it is useful to consider
the equal-time BS amplitude (which we call the BS wave function in the text) and
associated Lippmann-Schwinger type integral equation or the Schrödinger type dif-
ferential equation. For this purpose, we first carry out the integration over k0 in
Eq. (A.26) using the explicit form of the free propagator:

S(p) =
(

1
p/−m+ iδ

)
αβ

=
1

2εp

[∑
s uα(p, s)ūβ(p, s)
p0 − εp + iδ

+
∑

s vα(−p, s)v̄β(−p, s)
p0 + εp − iδ

]
.

(A.28)

Since we are interested in the asymptotic form of the wave function at |r| → ∞ below
pion production threshold, we can pick up only the nucleon pole from S(p) in the
k0-integral of Eq. (A.26) without loss of generality. Possible poles from Γ associated
with the resonance production and with the deuteron bound state, as well as anti-
nucleon poles in S(p) in Eq. (A.28), modify only the short-distant part of the wave
function. This does not at all imply that those contributions are not important.
They do affect the actual values of the phase shifts and mixing parameters and are
fully taken into account in the definition of our potential, Eqs. (3.3) and (3.4).

Using the residue theorem and taking the equal-time limit (x0 = y0 ≡ t) in the
rest frame of the two-particles (Q = 0), we end up with the Lippmann-Schwinger
type equation;

Ψαβ(r, t) = ψαβ(r; q, s, s′) e−2iεqt, (A.29)

ψ
(0)
αβ (r; q, s, s′) = Zuα(q, s)uβ(−q, s′)eiq·r, (A.30)

ψαβ(r; q, s, s′) = ψ
(0)
αβ (r; q, s, s′)

+
∑
s̃,s̃′

∫
d3k

(2π)3
ψ

(0)
αβ (r; k, s̃, s̃′)

εq + εk

8ε2k

Ts̃s̃′;ss′(k; q)
k2 − q2 − iδ

+ I(r). (A.31)

Here I(r) originates from the contributions other than the nucleon pole and is an
exponentially localized function in r below inelastic threshold.47) In Eq. (A.31), we
have defined the half off-shell T -matrix,

iT12;34(k; q) = ū1(1)ū2(2)(−i)Γ12;34(k; q|Q)u3(3)u4(4), (A.32)

where the outgoing energy 2εk = 2
√

k2 +m2 is not necessary equal to the incoming
energy 2εq = 2

√
q2 +m2. The Schrödinger type differential equation is obtained

from Eq. (A.31) by multiplying q2 + ∇2,

(q2 + ∇2)ψαβ(r; q, s, s′) = −
∑
s̃,s̃′

∫
d3k

(2π)3
ψ

(0)
αβ (r; k, s̃, s̃′)

εq + εk

8ε2k
Ts̃s̃′;ss′(k; q) + K(r),

(A.33)
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with K(r) = (q2 +∇2)I(r). Since the plain wave part of ψαβ(r; q, s, s′) is projected
out by the operator (q2 + ∇2), the right-hand side of Eq. (A.33) is exponentially
localized in r and vanishes for r > R.

A.3. Asymptotic BS wave function and the phase shift

Let us further consider the asymptotic behaviour of ψαβ(r; q, s, s′) at large r
to relate it to the scattering parameters (phase shifts and mixing angles) defined
in §A.1. The derivation of this subsection has been essentially given by Ishizuka in
Ref. 38).

To perform the k integration in Eq. (A.33), we introduce the following helicity
decomposition of the half-off shell T -matrix,

Ts1s2;s3s4(k, q) = 4π
∑
J,M

2J + 1
4π

〈s1, s2|T J(k; q)|s3, s4〉(DJ)†sM (Ωk)DJ
Ms′(Ωq),

(A.34)

uα(k, s1)uβ(−k, s2)eik·r =
∑
JM

DJ
Ms(Ωk)Uαa(∇)Uβb(−∇)φ[j]

JMs1s2;ab(r, k),

(A.35)

where s = s1 − s2, s′ = s3 − s4, k = |k| and q = |q|. The reduced wave function φ[j]

in the 2 × 2 spinor space labeled by the indices a, b is defined as

φ
[j]
JMλ1λ2

(r, k) =
∑
�,s

φ
[j]
JM�s(r, k)〈JM�s|JMλ1λ2〉, (A.36)

φ
[j]
JM�s(r, k) = j�(kr)Y �s

JM (Ωr), Y �s
JM (Ωr) =

∑
�zsz

Y��z(Ωr)χ(s, sz)〈�s�zsz|JM〉.

(A.37)

Note that Uαa(∇) and Uβb(−∇) in Eq. (A.35) are the 4×2 matrices acting on the 2×2
matrix φ[j]

ab so that the Dirac structure uα(k, s1)uβ(−k, s2) is correctly reproduced:
Explicitly, U(∇) =

√
(εk +mN )(I2×2,−iσ · ∇/(εk +mN )). Alternatively, one may

use the Lorentz transformation, u(p, s) = Λ(p)u(0, s) to define the reduced wave
function.48)

Note that 〈JM�s|JMλ1λ2〉 in Eq. (A.36) is a transformation function between
the helicity basis and the orbital-spin basis at fixed J,M .46) Also, χab(s, sz) in
Eq. (A.37) is a 2 × 2 matrix in the spinor space with total spin s = 1 or 0 and its
z-component sz, and j�(x) is a spherical Bessel function. Using Eq. (A.8), Eq. (A.31)
for large r becomes

ψ(r; q, s, s′) = Z
∑
JM

DJ
Mλ(Ωq)U(∇)U(−∇)ψJMss′(r; q), λ = s− s′, (A.38)

ψJMss′(r; q) −−−→
r>R

φ
[j]
JMss′(r, q) +

∑
s̃,s̃′

∫ ∞

0

k2dk

2π2
φ

[j]
JMs̃s̃′(r, k)

εq + εk

8ε2k

〈s̃s̃|T J(k; q)|ss′〉
k2 − q2 − iδ

.

(A.39)
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To evaluate the integral in Eq. (A.39), we use the following formula37),38) valid
for r > R in which

∫∞
0 f(k)k−�j0(kr)k2dk = 0 is satisfied:∗)∫ ∞

0

k2dk

2π2

j�(kr)f(k)
k2 − q2 − iδ

= i
q

4π
h

(+)
� (qr)f(q). (A.40)

Here h(±)
� (x)(≡ j�(x)±in�(x)) is the spherical Hankel function with j0(x) = (sinx)/x

and n0(x) = −(cosx)/x, so that h(+)
� (qr) represents the spherical outgoing-wave.

Then, we obtain

ψJMss′(r; q) −−−→
r>R

φ
[j]
JMss′(r, q) + i

∑
s̃,s̃′

q

16πεq
φ

[h(+)]
JMs̃s̃′(r, q)〈s̃s̃|T

J(q; q)|ss′〉

=
∑
s̃,s̃′

[
φ

[j]
JMs̃s̃′(r, q)A

J
s̃s̃′;ss′(q) − φ

[n]
JMs̃s̃′(r, q)B

J
s̃s̃′;ss′(q)

]
, (A.41)

AJ(q) = 1 + i
q

16πεq
T J (q; q), BJ(q) =

q

16πεq
T J(q; q), (A.42)

where φ
[n,h(+)]
JMs̃s̃′ (r, q) is obtained from φ

[j]
JMs̃s̃′(r, q) by the replacement j�(kr) →

n�(qr), h
(+)
� (qr).

Using the explicit form of the T -matrix given in (A.11), we finally obtain

XJ
�=J,s = X̂Js, XJ

�=J∓1,s=1 = O(q)
(
X̂J−1,1 0

0 X̂J+1,1

)
O−1(q), (A.43)

with X being either A or B, and

Â�s(q) = eiδ�s(q) cos δ�s(q), B̂�s(q) = eiδ�s(q) sin δ�s(q), (A.44)

Â�s(q)
B̂�s(q)

=
1

tan δ�s(q)
. (A.45)

We now have shown that the BS wave function in QCD has an asymptotic form
of the scattering wave of the quantum mechanics at large r. To derive this we have
only use the unitary of the S-matrix below the inelastic threshold, and have identified
the phase of the S-matrix as the scattering phase shift of the asymptotic BS wave
function. This observation leads to the important conclusion that the potential
defined through the BS wave function, by construction, gives the correct scattering
phase shift at asymptotically large r.

Appendix B
Okubo-Marshak Decomposition

In this appendix, we derive the general form of the NN potential in the space
of two-component spinors, following the argument by Okubo and Marshak.25) The

∗) Since the nucleons are non-interacting in the asymptotic region, the right hand side

of Eq. (A.33) is exponentially small for r > R. This gives a little weaker condition thatR ∞
0
f(k)jl(kr)k

2dk = 0, which, together with some properties of the T -matrix, leads to the stronger

condition used here.
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general form of the 2-body potential with derivatives reads

V (r1, r2,v1,v2,σ1,σ2, τ 1, τ 2, t), (B.1)

where v1,2 = p1,2/mN .
There are several conditions to be satisfied by V .

1. Probability conservation: This leads to the hermiticity of the potential: V † = V .
2. Energy-momentum conservation: The energy conservation demands that the

potential does not depend on time explicitly. The momentum conservation
leads the translational invariance of the potential. Thus we have

V = V (r,v1,v2,σ1,σ2, τ 1, τ 2), (B.2)

where r = r1 − r2.
3. Galilei invariance: The potential is assumed to be independent of the center of

mass momentum of the two-body system, which leads to

V = V (r,v,σ1,σ2, τ 1, τ 2), (B.3)

where v = p/μ = (p1 − p2)/(2μ) = v1 − v2.
4. Conservation of total-angular momentum: The total angular momentum is de-

fined as J = S + L with

S =
1
2
(σ1 + σ2), L = r × p. (B.4)

The potential is a scalar under the spatial rotation. Then, V is the scalar
functions of r,v,σ1 and σ2.

5. Parity invariance: The strong interaction conserves parity. Thus V is invariant
under reflection, r → −r and v → −v,

V (r,v,σ1,σ2, τ 1, τ 2) = V (−r,−v,σ1,σ2, τ 1, τ 2). (B.5)

6. Time-reversal invariance: The strong interaction preserves time-reflection sym-
metry under r → r, v → −v, σi → −σi, which leads to

V (r,v,σ1,σ2, τ 1, τ 2) = V (r,−v,−σ1,−σ2, τ 1, τ 2). (B.6)

7. Fermi statistics: The potential is invariant under the permutation of the particle
coordinates,

V (r,v,σ1,σ2, τ 1, τ 2) = V (−r,−v,σ2,σ1, τ 2, τ 1) = V (r,v,σ2,σ1, τ 2, τ 1),
(B.7)

where parity invariance was used in the second equality.
8. Isospin invariance: The potential is invariant under the rotation in isospin space,

which leads to two independent potentials V I=0,1,

V = V 0(r,v,σ1,σ2)P τ
0 + V 1(r,v,σ1,σ2)P τ

1 . (B.8)
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9. Furthermore, V has only the terms σn
1σ

m
2 with (n,m) = (0, 0), (1, 0), (0, 1), (1, 1).

The other higher order terms can be always reduced to the above form because
of the property of the Pauli matrices: σiσj = δij + iεijkσk.

Then, the terms which have Pauli matrices and satisfy the above constraints are
restricted only to the following combinations:

σ1 · σ2, (σ1 + σ2) · L, (σ1 · r)(σ2 · r), (B.9)
(σ1 · v)(σ2 · v), (σ1 · L)(σ2 · L). (B.10)

It is sometimes convenient to reorganize the above 5 terms into the following her-
mitian operators:

σ1 · σ2, S12 ≡ 3(σ1 · r̂)(σ2 · r̂) − σ1 · σ2,

L · S,

P12 ≡ (σ1 · v)(σ2 · v), W12 ≡ Q12 −
1
3
(σ1 · σ2)L2, (B.11)

where

Q12 ≡ 1
2

[(σ1 · L)(σ2 · L) + (σ2 · L)(σ1 · L)] . (B.12)

In Q12 the spins need to be symmetrized to make it hermitian since Li and Lj do not
commute with each other. Note that the term such as (S · L)2 can be decomposed
into Q12, S · L and spin-independent L2 term.

We decompose V 0 and V 1 in terms of the above operators with coefficients V I
A

(I = (0, 1), A = (0, σ, T, LS, P,W )) which are the scalar function made of r and v
satisfying the general constraints;

V I
A = V I

A(r2,v2,L2). (B.13)

Note that the scalar (r · p)2 can be written by r2p2 and L2.
Combining all, we arrive at the general decomposition given in §4.

Appendix C
Matrix Element of the Potential

In this appendix, we consider the partial wave decomposition of the general form
of the NN potential. At given J , there are 2 distinct states, the spin-singlet (s = 0)
state and the spin-triplet (s = 1) state. We now consider how the five operators in
Eq. (B.11) act on these states.

The singlet state is denoted as 1JJ , since it has s = 0 and J = �. The fact that
I + � + s must be odd to satisfy fermion anti-symmetry gives I = 0 for odd J and
I = 1 for even J . The eigenstate with Jz = M can be easily obtained as

|1JJ ,M〉 = |M, 0〉J,0, (C.1)

where we use the short-handed notation, |Jz, sz〉J,s = |J, Jz〉 ⊗ |s, sz〉.
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The spin-triplet state is classified into 3 types: 3JJ , 3(J ± 1)J . For the first
one, I = 0 (even J) or I = 1 (odd J), and vice versa for other two types. By the
Wigner-Eckart theorem, the matrix elements of the five operators do not depend on
Jz. Therefore it is enough to know eigenstates with Jz = J only. Explicitly we have

|3JJ , J〉 =
1√
J + 1

{
|J − 1, 1〉J,1 −

√
J |J, 0〉J,1

}
, (C.2)

|3(J − 1)J , J〉 = |J − 1, 1〉J−1,1 , (C.3)

|3(J + 1)J , J〉 =
1√

(J + 1)(2J + 3)

{
|J − 1, 1〉J+1,1

+
√

2J + 1
[√

(J + 1)|J + 1,−1〉J+1,1 − |J, 0〉J+1,1

]}
. (C.4)

Using these eigenstates, it is easy to see

σ1 · σ2 = 2s(s+ 1) − 3 = −3, 1, 1, 1 , (C.5)

L · S =
J(J + 1) − �(�+ 1) − s(s+ 1)

2
= 0, −1, J − 1, −(J + 2) , (C.6)

W12 = 0, −(2J − 1)(2J + 3)
3

,
(J − 1)(2J − 3)

3
,

(J + 2)(2J + 5)
3

,(C.7)

for 1JJ , 3JJ , 3(J − 1)J and 3(J + 1)J , respectively.
For S12 and P12 results are more complicated due to the mixing between 3(J−1)J

and 3(J + 1)J . After a little algebra we obtain

S12 = 0, 2,

⎛
⎜⎜⎜⎜⎝

−2(J − 1)
2J + 1

,
6
√
J(J + 1)
2J + 1

6
√
J(J + 1)
2J + 1

, −2(J + 2)
2J + 1

⎞
⎟⎟⎟⎟⎠ , (C.8)

μ2P12 = 0, 2p2
J ,

⎛
⎜⎜⎜⎜⎝

−2(J − 1)
2J + 1

p2
J−1,

6
√
J(J + 1)
2J + 1

p2
+

6
√
J(J + 1)
2J + 1

p2−, −2(J + 2)
2J + 1

p2
J+1

⎞
⎟⎟⎟⎟⎠ , (C.9)

where

p2
� = p2

r − i
2
r
pr +

�(�+ 1)
r2

≡ μ2v2
� , (C.10)

p2
+ =

(
pr − i

J + 1
r

)(
pr − i

J + 2
r

)
≡ μ2v2

+, (C.11)

p2
− =

(
pr + i

J

r

)(
pr + i

J − 1
r

)
≡ μ2v2

−, (C.12)

with � = J ± 1 and ipr = ∂/(∂r).
Using these results, we obtain the potential for each channel: We have

V [1JJ ] = V I
0 (r2, v2

J , Ĵ
2) + V I

σ (r2, v2
J , Ĵ

2), Ĵ2 = J(J + 1) (C.13)
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for the 1JJ state, and

V [3JJ ] = V Ī
0 (r2, v2

J , Ĵ
2) − 3V Ī

σ (r2, v2
J , Ĵ

2) − V Ī
LS(r2, v2

J , Ĵ
2) + 2V Ī

T (r2, v2
J , Ĵ

2)

− (2J − 1)(2J + 3)
3

V Ī
W (r2, v2

J , Ĵ
2) + {V Ī

P (r2, v2
J , Ĵ

2), v2
J} (C.14)

for the 3JJ state, where Ī = 1 − I.
For 3(J ∓ 1)J , the result is more involved:

V [3(J ∓ 1)J ] =
(
V−− V−+

V+− V++

)
, (C.15)

where

V−− = V I
0 (r2, v2

J− , Ĵ
2
−) − 3V I

σ (r2, v2
J− , Ĵ

2
−) + (J − 1)V I

LS(r2, v2
J− , Ĵ

2
−)

−(J − 1)(2J − 3)
3

V I
W (r2, v2

J− , Ĵ
2
−)

− J − 1
2J + 1

[
2V I

T (r2, v2
J− , Ĵ

2
−) + {V I

P (r2, v2
J− , Ĵ

2
−), v2

J−}
]
, (C.16)

V++ = V I
0 (r2, v2

J+
, Ĵ2

+) − 3V I
σ (r2, v2

J+
, Ĵ2

+) − (J + 2)V I
LS(r2, v2

J+
, Ĵ2

+)

+
(J + 2)(2J + 5)

3
V I

W (r2, v2
J+
, Ĵ2

+)

− J + 2
2J + 1

[
2V I

T (r2, v2
J+
, Ĵ2

+) + {V I
P (r2, v2

J+
, Ĵ2

+), v2
J+

}
]
, (C.17)

V−+ =
3
√
J(J + 1)

2(2J + 1)

[
2V I

T (r2, v2
J+
, Ĵ2

+) + 2V I
T (r2, v2

J− , Ĵ
2
−)

+v2
+V

I
P (r2, v2

J− , Ĵ
2
−) + v2

+V
I
P (r2, v2

J+
, Ĵ2

+)v2
+

]
,(C.18)

V+− =
3
√
J(J + 1)

2(2J + 1)

[
2V I

T (r2, v2
J+
, Ĵ2

+) + 2V I
T (r2, v2

J− , Ĵ
2
−)

+v2
−V

I
P (r2, v2

J− , Ĵ
2
−) + v2

−V
I
P (r2, v2

J+
, Ĵ2

+)
]
, (C.19)

where J± = J ± 1 and Ĵ2± = J±(J± + 1). Note that V+− = (V−+)† with r2 from the
integration measure.

Appendix D
Heat-Kernel Representation of the Green’s Function

We define the heat kernel K(t,x) through the initial value problem as

∂

∂t
K(t,x) = ∇2K(t,x), lim

t→0+
K(t,x) = δlat(x), (D.1)

where δlat(x) ≡ 1
L3

∑
n∈Z3 e2πin·x/L denotes the delta function in a periodic box of

spatial extension L. K(t,x) is explicitly expressed as

K(t,x) = et∇2
δlat(x) =

1
L3

∑
n∈Z3

exp
(
−t(2π/L)2n2 + 2πin · x/L

)
. (D.2)
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For convenience, we define a modified heat kernel K̃(t,x; k2) as

K̃(t,x; k2) ≡ etk2K(t,x), (D.3)

which is the solution to the equation that

∂

∂t
K̃(t,x; k2) =

(
∇2 + k2

)
K̃(t,x; k2), lim

t→0+
K̃(t,x; k2) = δlat(x). (D.4)

An integration from 0 to s leads us to

K̃(s,x; k2) = δlat(x) +
∫ s

0
dt
(
∇2 + k2

)
K̃(t,x; k2). (D.5)

This identity gives an expression for Green’s function as

G(x; k2) ≡ −
(
∇2 + k2

)−1 K̃(s,x; k2) +
∫ s

0
dt K̃(t,x; k2)

= −esk2 (∇2 + k2
)−1 K(s,x) +

∫ s

0
dt etk2K(t,x). (D.6)

By inserting Eq. (D.2), we have

G(x; k2) =
esk2

L3

∑
n∈Z3

exp
(
−s(2π/L)2n2 + 2πin · x/L

)
(2π/L)2n2 − k2

+
∫ s

0
dt

etk2

(4πt)3/2

∑
p∈Z3

exp
(
− 1

4t
(x − pL)2

)
, (D.7)

where, in the second term, we used Poisson’s summation formula∑
n∈Z

exp
(
−n

2

2β
+ inθ

)
=
√

2πβ
∑
p∈Z

exp
(
−β

2
(θ + 2πp)2

)
. (D.8)

The convergence of the summations and the integration in Eq. (D.7) is quite good
except at p = 0, where the integration in the second term has to be done analytically
for t ∼ 0. For this purpose, we use the formula

1
4πr

=
∫ ∞

0

dt

(4πt)3/2
exp

(
−r

2

4t

)
, (D.9)

and the integration can be evaluated as∫ s

0

dt etk2

(4πt)3/2
exp

(
− 1

4t
x2

)

=
1

4π|x| −
∫ s

0

dt

(4πt)3/2

(
etk2 − 1

)
exp

(
−x2

4t

)
−
∫ ∞

s

dt

(4πt)3/2
exp

(
−x2

4t

)
.

(D.10)

Note that s dependences in Eq. (D.6) and Eq. (D.7) cancel out on the right-hand
side, and s plays a role of the cutoff λ of Eq. (D.2) in Ref. 15) as s ∼ 1/λ2. It
controls the convergence of the summation in the first term in Eq. (D.7).
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